Skip to main content
Log in

A Second Main Theorem of Nevanlinna Theory for Closed Subschemes in Subgeneral Position

  • Published:
Chinese Annals of Mathematics, Series B Aims and scope Submit manuscript

Abstract

In this paper, by using Seshadri constants for subschemes, the author establishes a second main theorem of Nevanlinna theory for holomorphic curves intersecting closed subschemes in (weak) subgeneral position. As an application of his second main theorem, he obtain a Brody hyperbolicity result for the complement of nef effective divisors. He also give the corresponding Schmidt’s subspace theorem and arithmetic hyperbolicity result in Diophantine approximation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aroca, J. M., Hironaka, H. and Vicente, J. L., Complex Analytic Desingularization, Springer-Verlag, Tokyo, 2018.

    Book  Google Scholar 

  2. Cartan, H., Sur les zeros des combinaisions linearires de p fonctions holomorpes données, Mathematica, 7, 1933, 80–103.

    Google Scholar 

  3. Chen, Z., Ru, M. and Yan, Q., The degenerated second main theorem and Schmidt’s subspace theorem, Sci. China Math., 55(7), 2012, 1367–1380.

    Article  MathSciNet  Google Scholar 

  4. Cutkosky, S. D., Ein, L. and Lazarsfeld, R., Positivity and complexity of ideal sheaves, Math. Ann., 321(2), 2001, 213–234.

    Article  MathSciNet  Google Scholar 

  5. Ellwood, D., Hauser, H., Mori, S. and Shicho, J., The Resolution of Singular Algebraic Varieties, American Mathematical Society, Providence, 2014.

    Google Scholar 

  6. Hartshorne, R., Algebraic Geometry, Springer-Verlag, New York, 1977.

    Book  Google Scholar 

  7. He, Y. and Ru, M., A generalized subspace theorem for closed subschemes in subgeneral position, J. Number Theory, 229, 2021, 125–141.

    Article  MathSciNet  Google Scholar 

  8. Heier, G. and Levin, A., On the degeneracy of integral points and entire curves in the complement of nef effective divisors, Journal of Number Theory, 217, 2020, 301–319.

    Article  MathSciNet  Google Scholar 

  9. Heier, G. and Levin, A., A generalized Schmidt subspace theorem for closed subschemes, Amer. J. Math., 143(1), 2021, 213–226.

    Article  MathSciNet  Google Scholar 

  10. Matsumura, H., Commutative Ring Theory, Cambridge University Press, Cambridge, 1986.

    MATH  Google Scholar 

  11. McKinnon, D. and Roth, D., Seshadri constants, Diophantine approximation, and Roth’s theorem for arbitrary varieties, Invent. Math., 200(2), 2015, 513–583.

    Article  MathSciNet  Google Scholar 

  12. Nochka, E. I., On the theory of meromorphic functions, Sov. Math. Dokl., 27, 1983, 377–381.

    MATH  Google Scholar 

  13. Quang, S. D., Degeneracy second main theorems for meromorphic mappings into projective varieties with hypersurfaces, Tran. AMS, 371(4), 2019, 2431–2453.

    Article  MathSciNet  Google Scholar 

  14. Ru, M., A defect relation for holomorphic curves intersecting hypersurfaces, Amer. J. Math., 126(1), 2004, 215–226.

    Article  MathSciNet  Google Scholar 

  15. Ru, M., Holomorphic curves into algebraic varieties, Ann. Math. (2), 169(1), 2009, 255–267.

    Article  MathSciNet  Google Scholar 

  16. Ru, M. and Vojta, P., A birational Nevanlinna constant and its consequences, Amer. J. Math., 142(3), 2020, 957–991.

    Article  MathSciNet  Google Scholar 

  17. Ru, M. and Wang, J. T.-Y., A subspace theorem for subvarieties, Algebra & Number Theory, 11–10, 2017, 2323–2337.

    Article  MathSciNet  Google Scholar 

  18. Ru, M. and Wang, J. T.-Y., The Ru-Vojta result for subvarieties, Int. J. Number Theory, 18, 2022, 61–74.

    Article  MathSciNet  Google Scholar 

  19. Silverman, J. H., Arithmetic distance functions and height functions in Diophantine geometry, Math. Ann., 279(2), 1987, 193–216.

    Article  MathSciNet  Google Scholar 

  20. Vojta, P., Diophantine Approximations and Value Distribution Theory, Lecture Notes in Mathematics, 1239, Springer-Verlag, Berlin, 1987.

    Book  Google Scholar 

  21. Vojta, P., Diophantine Approximation and Nevanlinna Theory, Arithmetic Geometry, Lecture Notes in Math., 2009, Springer-Verlag, Berlin, 2011, 111–224.

    MATH  Google Scholar 

  22. Vojta, P., Birational Nevanlinna constants, beta constants, and Diophantine approximation to closed subschemes, 2020, arXiv: 2008.00405.

  23. Yamanoi, Katsutoshi, Kobayashi hyperbolicity and higher-dimensional Nevanlinna theory, Geometry and Analysis on Manifolds, Springer-Verlag, International Publishing, 2015, 209–273.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangsheng Yu.

Additional information

This work was supported by the National Natural Science Foundation of China (No. 11801366).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, G. A Second Main Theorem of Nevanlinna Theory for Closed Subschemes in Subgeneral Position. Chin. Ann. Math. Ser. B 43, 567–584 (2022). https://doi.org/10.1007/s11401-022-0346-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11401-022-0346-1

Keywords

2000 MR Subject Classification

Navigation