Skip to main content
Log in

On Mixed Pressure-Velocity Regularity Criteria to the Navier-stokes Equations in Lorentz Spaces, Part II: The Non-slip Boundary Value Problem

  • Published:
Chinese Annals of Mathematics, Series B Aims and scope Submit manuscript

Abstract

This paper is a continuation of the authors recent work [Beirão da Veiga, H. and Yang, J., On mixed pressure-velocity regularity criteria to the Navier-Stokes equations in Lorentz spaces, Chin. Ann. Math., 42(1), 2021, 1–16], in which mixed pressure-velocity criteria in Lorentz spaces for Leray-Hopf weak solutions of the three-dimensional Navier-Stokes equations, in the whole space ℝ3 and in the periodic torus \({\mathbb{T}^3}\), are established. The purpose of the present work is to extend the result of mentioned above to smooth, bounded domains, under the non-slip boundary condition. Let π denote the fluid pressure and v the fluid velocity. It is shown that if \({\pi \over {{{\left( {1 + \left| v \right|} \right)}^\theta }}} \in {L^p}\left( {0,T;{L^{q,\infty }}\left( \Omega \right)} \right)\);, where 0 ≤ θ ≤ 1, and \({2 \over p} + {3 \over q} = 2 - \theta \) with p ≥ 2, then v is regular on Ω × (0, T].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beirão da Veiga, H., Existence and asymptotic behaviour for strong solutions of the Navier-Stokes equations in the whole space, Indiana Univ. Math. J., 36, 1987, 149–166.

    Article  MathSciNet  Google Scholar 

  2. Beirão da Veiga, H., Concerning the regularity of the solutions to the Navier-Stokes equations via the truncation method; Part I, Diff. Int. Eq., 10, 1997, 1149–1156.

    MATH  Google Scholar 

  3. Beirão da Veiga, H., Concerning the regularity of the solutions to the Navier-Stokes equations via the truncation method, Part II, Équations aux Dérivées Partielles et Applications, Gauthier-Villars, Éd. Sci. Méd. Elsevier, Paris, 1998, 127–138.

    MATH  Google Scholar 

  4. Beirão da Veiga, H., A sufficient condition on the pressure for the regularity of weak solutions to the Navier-Stokes equations, J. Math. Fluid Mech., 2, 2000, 99–106.

    Article  MathSciNet  Google Scholar 

  5. Beirão da Veiga, H., On the Truth, and limits, of a full equivalence pv2 in the regularity theory of the Navier-Stokes equations: A point of view, J. Math. Fluid Mech., 20, 2018, 889–898.

    Article  MathSciNet  Google Scholar 

  6. Beirão da Veiga, H. and Yang, J., On mixed pressure-velocity regularity criteria to the Navier-Stokes equations in Lorentz spaces, Chin. Ann. Math., 42(1), 2021, 1–16.

    Article  MathSciNet  Google Scholar 

  7. Bergh, J. and Löfström, J., Interpolation Spaces, Springer-Verlag, Berlin, 1976.

    Book  Google Scholar 

  8. Berselli, L. C. and Galdi, G. P., Regularity criteria involving the pressure for the weak solutions to the Navier-Stokes equations, Proc. Am. Math. Soc., 130, 2002, 3585–3595.

    Article  MathSciNet  Google Scholar 

  9. Berselli, L. C. and Manfrin, R., On a theorem of Sohr for the Navier-Stokes equations, J. Evol. Eq., 4, 2004, 193–211.

    Article  MathSciNet  Google Scholar 

  10. Carrillo, J. A. and Ferreira, L. C. F., Self-similar solutions and large time asymptotics for the dissipative quasi-geostrophic equation, Monatsh. Math., 151, 2007, 111–142.

    Article  MathSciNet  Google Scholar 

  11. Escauriaza, L., Seregin, G. and Sverak, V., L3,∞-solutions of the Navier-Stokes equations and backward uniqueness, Russian Mathematical Surveys, 58, 2003, 211–250.

    Article  MathSciNet  Google Scholar 

  12. Galdi, G. P. and Maremonti, P., Sulla regolarità delle soluzioni deboli al sistema di Navier-Stokes in domini arbitrari, Ann. Univ. Ferrara., 34, 1988, 59–73.

    Article  Google Scholar 

  13. Giga, Y., Solutions for semilinear parabolic equations in Lp and regularity of weak solutions of the Navier-Stokes system, J. Diff. Eq., 61, 1986, 186–212.

    Article  Google Scholar 

  14. Giga, Y. and Sohr, H., Abstract Lp estimates for the Cauchy problem with applications to the Navier-Stokes equations in exterior domains, J. Funct. Anal., 102, 1991, 72–94.

    Article  MathSciNet  Google Scholar 

  15. Grafakos, L., Classical Fourier Analysis, 2nd edn, Springer-Verlag, Berlin, 2008.

    MATH  Google Scholar 

  16. Ji, X., Wang, Y. and Wei, W., New regularity criteria based on pressure or gradient of velocity in Lorentz spaces for the 3D Navier-Stokes equations, J. Math. Fluid Mech., 22, 2020, 1–8.

    Article  MathSciNet  Google Scholar 

  17. Ladyžhenskaya, O. A., Uniqueness and smoothness of generalized solutions of Navier-Stokes equations, Zap. Naučn. Sem. Leningrad Otdel. Mat. Inst. Steklov (LOMI), 5, 1967, 169–185.

    MathSciNet  MATH  Google Scholar 

  18. Ladyzhenskaya, O. A., The mathematical theory of viscous incompressible flow, Silverman and John Chu. Mathematics and its Applications, Vol. 2, Gordon and Breach, Science Publishers, New York-London-Paris, 1969, 224 pp.

    MATH  Google Scholar 

  19. Malý, J., Advanced theory of differentiation-Lorentz spaces, March 2003, http://www.karlin.mff.cuni.cz/maly/lorentz.pdf.

  20. O’Neil, R., Convolution operaters and Lp,q spaces, Duke Math. J., 30, 1963, 129–142.

    Article  MathSciNet  Google Scholar 

  21. Prodi, G., Un teorema di unicità per le equazioni di Navier-Stokes, Ann. Mat. Pura Appl., 48, 1959, 173–182.

    Article  MathSciNet  Google Scholar 

  22. Seregin, G., On smoothness of L3,∞-solutions to the Navier-Stokes equations up to the boundary, Math. Ann., 332, 2005, 219–238.

    Article  MathSciNet  Google Scholar 

  23. Serrin, J., The initial value problem for the Navier-Stokes equations, Langer editor, Nonlinear Problems, Univ. Wisconsin Press, Madison, Wisconsin, 69–98, 1963.

    Google Scholar 

  24. Sohr, H., A regularity class for the Navier-Stokes equations in Lorentz spaces, J. Evol. Equ., 1, 2001, 441–467.

    Article  MathSciNet  Google Scholar 

  25. Solonnikov, V. A., Estimates for solutions of a non-stationary linearized system of Navier-Stokes equations, Amer. Math. Soc. Transl., 75, 1968, 1–116.

    MATH  Google Scholar 

  26. Suzuki, T., Regularity criteria of weak solutions in terms of the pressure in Lorentz spaces to the Navier-Stokes equations, J. Math. Fluid Mech., 14, 2012, 653–660.

    Article  MathSciNet  Google Scholar 

  27. Suzuki, T., A remark on the regularity of weak solutions to the Navier-Stokes equations in terms of the pressure in Lorentz spaces, Nonlinear Anal. Theory Methods Appl., 75, 2012, 3849–3853.

    Article  MathSciNet  Google Scholar 

  28. Wang, Y., Wei, W. and Yu, H., ε-Regularity criteria for the 3D Navier-Stokes equations in Lorentz spaces, J. Evol. Equ., 21, 2021, 1627–1650.

    Article  MathSciNet  Google Scholar 

  29. Zhou, Y., Regularity criteria in terms of pressure for the 3-D Navier-Stokes equations in a generic domain, Math. Ann., 328, 2004, 173–192.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hugo Beirão Da Veiga or Jiaqi Yang.

Additional information

This work was supported by the Fundação para a Ciência e a Tecnologia of Portugal (No. UIDB/MAT/04561/2020) and the National Natural Science Foundation of China (No. 12001429).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beirão Da Veiga, H., Yang, J. On Mixed Pressure-Velocity Regularity Criteria to the Navier-stokes Equations in Lorentz Spaces, Part II: The Non-slip Boundary Value Problem. Chin. Ann. Math. Ser. B 43, 51–58 (2022). https://doi.org/10.1007/s11401-022-0303-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11401-022-0303-z

Keywords

2000 MR Subject Classification

Navigation