Skip to main content
Log in

Invariant Measures for Nonlinear Conservation Laws Driven by Stochastic Forcing

  • Published:
Chinese Annals of Mathematics, Series B Aims and scope Submit manuscript

Abstract

Some recent developments in the analysis of long-time behaviors of stochastic solutions of nonlinear conservation laws driven by stochastic forcing are surveyed. The existence and uniqueness of invariant measures are established for anisotropic degenerate parabolic-hyperbolic conservation laws of second-order driven by white noises. Some further developments, problems, and challenges in this direction are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnold, L., Random Dynamical Systems, Springer-Verlag, Berlin Heidelberg, 1998.

    Book  MATH  Google Scholar 

  2. Barré, J., Bernardin, C. and Chertrite, R., Density large deviations for multidimensional stochastic hyperbolic conservation laws, J. Stat. Phys., 170(4), 2017, 466–491.

    MathSciNet  MATH  Google Scholar 

  3. Bauzet, C., Vallet, G. and Wittbold, P., The Cauchy problem for conservation laws with a multiplicative stochastic perturbation, J. Hyper. Diff. Eq., 9(4), 2012, 661–709.

    Article  MathSciNet  MATH  Google Scholar 

  4. Bergé, B. and Saussereau, B., On the long-time behavior of a class of parabolic SPDEs: Monotonicity methods and exchange of stability, ESAIM: Probab. Stat., 9, 2005, 254–276.

    Article  MathSciNet  MATH  Google Scholar 

  5. Birkens, J., Sufficient conditions for the eventual strong Feller property for degenerate stochastic evolutions, J. Math. Anal. Appl., 379(4), 2011, 469–481.

    Article  MathSciNet  Google Scholar 

  6. Bouchut, F. and Desvillettes, L., Averaging lemmas without time Fourier transform and application to discretized kinetic equations, Proc. Royal Soc. Edin. Sec. A, 129, 1999, 19–36.

    Article  MathSciNet  MATH  Google Scholar 

  7. Bricmont, J., Kupiainen, A. and Lefevere, R., Ergodicity of the 2D Navier-Stokes equations with random forcing, Comm. Math. Phys., 224(4), 2001, 65–81.

    Article  MathSciNet  MATH  Google Scholar 

  8. Bricmont, J., Kupiainen, A. and Lefevere, R., Exponential mixing of the 2D Navier-Stokes dynamics, Comm. Math. Phys., 224(4), 2002, 87–132.

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen, G. -Q., Ding, Q. and Karlsen, K., On nonlinear stochastic balance laws, Arch. Ration. Mech. Anal., 204(4), 2012, 707–743.

    Article  MathSciNet  MATH  Google Scholar 

  10. Chen, G. -Q. and Frid, H., Large time behavior of entropy solutions in L8 for multidimensional conservation laws, Advances in Nonlinear PDEs and Related Areas, 28–44, World Sci. Publ., River Edge, NJ, 1998.

    Google Scholar 

  11. Chen, G. -Q. and Lu, Y. -G., A study of approaches to applying the theory of compensated compactness, Chinese Sci. Bull., 34, 1989, 15–19.

    Article  MathSciNet  Google Scholar 

  12. Chen, G. -Q. and Pang, P., On nonlinear anisotropic degenerate parabolic-hyperbolic equations with stochastic forcing, 2019, arXiv:1903.02693.

    Google Scholar 

  13. Chen, G. -Q. and Perthame, B., Well-posedness for non-isotropic degenerate parabolic-hyperbolic equations, Ann. l’I.H.P. Anal. Non-Linéaires, 20(4), 2003, 645–668.

    Article  MathSciNet  MATH  Google Scholar 

  14. Chen, G. -Q. and Perthame, B., Large-time behavior of periodic entropy solutions to anisotropic degenerate parabolic-hyperbolic equations, Proc. A.M.S., 137(4), 2009, 3003–3011.

    Article  MathSciNet  MATH  Google Scholar 

  15. Chueshov, I. and Vuillermot, P., On the large-time dynamics of a class of random parabolic equations, C. R. Acad. Sci. Paris, 322(4), 1996, 1181–1186.

    MathSciNet  MATH  Google Scholar 

  16. Chueshov, I. and Vuillermot, P., On the large-time dynamics of a class of parabolic equations subjected homogeneous white noise: Stratonovitch’s case, C. R. Acad. Sci. Paris, 323(4), 1996, 29–33.

    MathSciNet  MATH  Google Scholar 

  17. Chueshov, I. and Vuillermot, P., Long-time behavior of solutions to a class of quasilinear parabolic equations with random coefficients, Ann. I.H.P. Anal. Non-Linéaires, 15(4), 1998, 191–232.

    Article  MATH  Google Scholar 

  18. Chueshov, I. and Vuillermot, P., Long-time behavior of solutions to a class of stochastic parabolic equations with homogeneous white noise: Straonovitch’s case, Probab. Theory Related Fields, 112(4), 1998, 149–202.

    Article  MathSciNet  MATH  Google Scholar 

  19. Chueshov, I. and Vuillermot, P., On the large-time dynamics of a class of parabolic equations subjected to homogeneous white noise: Itô’s case, C. R. Acad. Sci. Paris, 326(4), 1998, 1299–1304.

    Article  MathSciNet  MATH  Google Scholar 

  20. Chueshov, I. and Vuillermot, P., Long-time behavior of solutions to a class of stochastic parabolic equations with homogeneous white noise: Itô’s case, Stoch. Anal. Appl., 18(4), 2000, 581–615.

    Article  MATH  Google Scholar 

  21. Coti-Zelati, M., Glatt-Holtz, N. and Trivisa, K., Invariant measures for the stochastic one-dimensional compressible Navier-Stokes equations, 2018, arXiv:1802.04000v1.

    Google Scholar 

  22. Crauel, H., Markov measures for random dynamical systems, Stochastics and Stochastic Reports, 37(4), 1991, 153–173.

    Article  MathSciNet  MATH  Google Scholar 

  23. Crauel, H., Random Probability Measures on Polish Spaces, Taylor and Francis, London, 2002.

    Book  MATH  Google Scholar 

  24. Crauel, H., Debussche, A. and Flandoli, F., Random attractors, J. Dynam. Diff. Eq., 9(4), 1997, 307–341.

    Article  MathSciNet  MATH  Google Scholar 

  25. Crauel, H. and Flandoli, F., Attractors for random dynamical systems, Probab. Theory Relat. Fields, 100(4), 1994, 365–393.

    Article  MathSciNet  MATH  Google Scholar 

  26. Da Prato, G. and Debussche, A., Two-dimensional Navier-Stokes equations driven by a space-time white noise, J. Funct. Anal., 196(4), 2002, 180–210.

    Article  MathSciNet  MATH  Google Scholar 

  27. Da Prato, G. and Debussche, A., Ergodicity for the 3D stochastic Navier-Stokes equations, J. Math. Pures Appl., 82(4), 2003, 877–947.

    Article  MathSciNet  MATH  Google Scholar 

  28. Da Prato, G., Debussche, A., and Temam, R., Stochastic Burger’s equation, No.D.E.A., 1, 1994, 389–402.

    MathSciNet  MATH  Google Scholar 

  29. Da Prato, G., Flandoli, F., Priola, E., and Röckner, M., Strong uniqueness for stochastic evolution equations in Hilbert spaces perturbed by a bounded measurable drift, Ann. Prob., 41(4), 2013, 3306–3344.

    Article  MathSciNet  MATH  Google Scholar 

  30. Da Prato, G. and Zabczyk, J., Stochastic Equations in Infinite Dimensions, Cambridge University Press, Cambridge, 2008.

    MATH  Google Scholar 

  31. Debussche, A., On the finite dimensionality of random attractors, Stoch. Anal. Appl., 15(4), 1997, 473–492.

    Article  MathSciNet  MATH  Google Scholar 

  32. Debussche, A., Hausdorff dimension of a random invariant set, J. Math. Pures Appl., 77(4), 1998, 967–988.

    Article  MathSciNet  MATH  Google Scholar 

  33. Debussche, A., Hofmanov´a, M. and Vovelle, J., Degenerate parabolic stochastic partial differential equations: Quasilinear case, Ann. Probab., 44(4), 2016, 1916–1955.

    Article  MathSciNet  MATH  Google Scholar 

  34. Debussche, A. and Vovelle, J., Scalar conservation laws with stochastic forcing, J. Funct. Anal., 259(4), 2010, 1014–1042.

    Article  MathSciNet  MATH  Google Scholar 

  35. Debussche, A. and Vovelle, J., Invariant measure of scalar first-order conservation laws with stochastic forcing, Probab. Theory Relat. Fields, 163(4), 2015, 575–611.

    Article  MATH  Google Scholar 

  36. Dembo, A. and Zeitouni, O., Large Deviations Techniques and Applications, 2nd ed., Springer-Verlag, New York, 1997.

    MATH  Google Scholar 

  37. Delarue, F., Flandoli, F. and Vincenzi, D., Noise prevents collapse of Vlasov-Poisson point charges, Comm. Pure Appl. Math., 67(4), 2014, 1700–1736.

    Article  MathSciNet  MATH  Google Scholar 

  38. Deuschel, J. -D., and Stroock, D., Large Deviations, Academic Press, London, 1989.

    MATH  Google Scholar 

  39. Doeblin, W., Éléments d’une théorie générale des chaînes simples constantes de Markoff, Ann. Sci. École Normale Superieur, 57, 1940, 61–111.

    Article  MATH  Google Scholar 

  40. Doeblin, W. and Fortet, R., Sur le chaînes à liaisons complète, Bull. Soc. Math. France, 65, 1937, 132–148.

    Article  MathSciNet  MATH  Google Scholar 

  41. Dong, Z., Wu, J. -L., Zhang, R. -R. and Zhang, T. -S., Large deviation principles for first-order scalar conservation laws with stochastic forcing, 2018, arXiv:1806.02955v1.

    Google Scholar 

  42. Doob, J., Asymptotic property of Markoff transition probability, Trans. Amer. Math. Soc., 64(4), 1948, 393–421.

    MATH  Google Scholar 

  43. Dupuis, P. and Ellis, R. S., A Weak Convergence Approach to the Theory of Large Deviations, New York, Wiley, 1997.

    Book  MATH  Google Scholar 

  44. E, Weinan, Khanin, K., Mazel, A. and Sinai, Ya., Probability distribution functions for the random forced Burgers equation, Phys. Rev. Lett., 78(4), 1997, 1904–1907.

    Google Scholar 

  45. E. Weinan, Khanin, K., Mazel, A. and Sinai, Ya., Invariant measures for Burgers equation with stochastic forcing, Ann. Math., 151(4), 2000, 877–960.

    MathSciNet  MATH  Google Scholar 

  46. E. Weinan, Mattingly, J. and Sinai, Ya., Gibbsian dynamics and ergodicity for the stochastically forced Navier-Stokes equation, Comm. Math. Phys., 224(4), 2001, 83–106.

    MathSciNet  MATH  Google Scholar 

  47. Fedrizzi, E., Flandoli, F., Priola, E. and Vovelle, J., Regularity of stochastic kinetic equations, Electron. J. Probab., 22(4), 2017, 1–42.

    MathSciNet  MATH  Google Scholar 

  48. Fehrman, B. and Gess, B., Well-posedness of nonlinear diffusion equations with nonlinear, conservative noise, 2019, arXiv:1712.05775.

    Book  MATH  Google Scholar 

  49. Feng, J. and Nualart, D., Stochastic scalar conservation laws, J. Funct. Anal., 255(4), 2008, 313–373.

    Article  MathSciNet  MATH  Google Scholar 

  50. Flandoli, F., Stochastic flows and Lyapunov exponents for abstract stochastic PDEs of parabolic type, Lyapunov Exponents Proceedings, Arnold, L., Crauel, H., Eckamann, J. -P. (eds), LNM 1486, 1991, 196–205.

    Google Scholar 

  51. Flandoli, F., Dissipativity and invariant measures for stochastic Navier-Stokes equations, No.D.E.A., 1(4), 1994, 403–423.

    MathSciNet  MATH  Google Scholar 

  52. Flandoli, F., Regularity Theory and Stochastic Flows for Parabolic SPDEs, Gordon and Breach Science Publishers, Singapore, 1995.

    MATH  Google Scholar 

  53. Flandoli, F. and Gatarek, D., Martingale and stationary solutions for stochastic Navier-Stokes equations, Probab. Theory Relat. Fields, 102(4), 1995, 367–391.

    Article  MathSciNet  MATH  Google Scholar 

  54. Flandoli, F., Gubinelli, M. and Priola, E., Well-posedness of the transport equation by stochastic perturbation, Invent. Math., 180(4), 2010, 1–53.

    Article  MathSciNet  MATH  Google Scholar 

  55. Flandoli, F. and Maslowski, B., Ergodicity of the 2-D Navier-Stokes equations under random perturbations, Comm. Math. Phys., 172(4), 1995, 119–141.

    Article  MathSciNet  MATH  Google Scholar 

  56. Földes, J., Friedlander, S., Glatt-Holtz, N. and Richards, G., Asymptotic analysis for randomly forced MHD, 2016, arXiv:1604.06352.

    MATH  Google Scholar 

  57. Földes, J., Glatt-Holtz, N., Richards, G. and Whitehead, J. P., Ergodicity in randomly forced Rayleigh-Bénard convection, 2015, arXiv:1511.01247.

    MATH  Google Scholar 

  58. Freidlin, M. I. and Wentzell, A. D., Random Perturbation of Dynamical Systems, 2nd ed., Springer-Verlag, New York, 1998.

    Book  MATH  Google Scholar 

  59. Gess, B. and Souganidis, P., Long-time behavior, invariant measures and regularizing effects for stochastic scalar conservation laws, 2014, arXiv:1411.3939.

    MATH  Google Scholar 

  60. Gess, B. and Souganidis, P., Stochastic non-isotropic degenerate parabolic-hyperbolic equations, 2016, arXiv:1611.01303.

    MATH  Google Scholar 

  61. Giga, Y. and Miyakawa, T., A kinetic construction of global solutions of first order quasilinear equations, Duke Math. J., 50(4), 1989, 505–515.

    MathSciNet  MATH  Google Scholar 

  62. Gyöngy, I. and Nualart, D., On the stochastic Burgers equation in the real line, Ann. Probab., 27(4), 1999, 782–802.

    Article  MathSciNet  MATH  Google Scholar 

  63. Hairer, M. and Mattingly, J., Ergodicity of the 2D Navier-Stokes equations with degenerate stochastic forcing, Ann. Math., 164, 2006, 993–1032.

    Article  MathSciNet  MATH  Google Scholar 

  64. Hairer, M. and Mattingly, J., Spectral gaps in Wasserstein distances and the 2D stochastic Navier-Stokes equations, Ann. Probab., 36(4), 2008, 2050–2091.

    Article  MathSciNet  MATH  Google Scholar 

  65. Hairer, M. and Mattingly, J., A theory of hypoellipticity and unique ergodicity for semilinear stochastic PDEs, Electr. J. Probab., 16(4), 2011, 658–738.

    Article  MathSciNet  MATH  Google Scholar 

  66. Hairer, M. and Voss, J., Approximations to the stochastic Burgers equation, J. Nonlin. Sci., 21(4), 2011, 897–920.

    Article  MathSciNet  MATH  Google Scholar 

  67. Hofmanov´a, M., Degenerate parabolic stochastic partial differential equations, Stochastic Process. Appl., 123(4), 2013, 4294–4336.

    Article  MathSciNet  MATH  Google Scholar 

  68. Hollander den, F., Large Deviations, Fields Institute Monographs, A. M.S., Providence, RI, 2000.

    Google Scholar 

  69. Karlsen, K. H. and Storrøsten, E., On stochastic conservation laws and Malliavin calculus, 2015, arX-iv:1507.05518v2.

    MATH  Google Scholar 

  70. Khas’minskii, R., Ergodic properties of recurrent diffusion processes and stabilization of the solutions to the Cauchy problem for parabolic equations, Theory Probab. Appl., 5(4), 1960, 179–196.

    Article  MathSciNet  MATH  Google Scholar 

  71. Krylov, N. and Röckner, M., Strong solutions of stochastic equations with singular time dependent drift, Probab. Theory Relat. Fields, 131(4), 2005, 154–196.

    Article  MathSciNet  MATH  Google Scholar 

  72. Kuksin, S. and Shirikyan, A., Mathematics of Two-Dimensional Turbulence, Cambridge University Press, Cambridge, 2002.

    MATH  Google Scholar 

  73. Kuksin, S. and Shirikyan, A., Randomly Forced Nonlinear PDEs and Statistical Hydrodynamics in 2 Space Dimensions, European Mathematical Society, Zürich, 2006.

    Book  Google Scholar 

  74. Le Jan, Y., Équilibre statistique pour les produits de difféomorphismes aléatoires indépendants, Ann. l’I.H.P. Probab. Stat., 23(4), 1987, 111–120.

    MATH  Google Scholar 

  75. Ledrappier, F., Positivity of the exponent for stationary sequences of matrices, Lyapunov Exponents Proceedings, Arnold, L., Wihstutz, V. (eds.), LNM 1186, 1986, 56–73.

    Google Scholar 

  76. Le`on, J., Nualart, D. and Pettersson, R., The stochastic burgers equation: Finite moments and smoothness of the density, Infinite Dimensional Analysis, 3, 2000, 363–385.

    MathSciNet  MATH  Google Scholar 

  77. Lindvall, T., Lectures on the Coupling Method, John Wiley & Sons, New York, 1992.

    MATH  Google Scholar 

  78. Lions, P. -L., Perthame, B. and Souganidis, P., Scalar conservation laws with rough (stochastic) fluxes, Stochastic PDEs: Anal. Comput., 1, 2013, 664–686.

    MathSciNet  MATH  Google Scholar 

  79. Lions, P. -L., Perthame, B. and Souganidis, P., Scalar conservation laws with rough (stochastic) fluxes, the spatially dependent case, Stochastic PDEs: Anal. Comput., 2(4), 2014, 517–538.

    MathSciNet  MATH  Google Scholar 

  80. Lions, P. -L., Perthame, B. and Tadmor, E., A kinetic formulation of multidimensional scalar conservation laws and related equations, J. Amer. Math. Soc., 7(4), 1994, 169–191.

    Article  MathSciNet  MATH  Google Scholar 

  81. Lions, P. -L., Perthame, B. and Tadmor, E., Kinetic formulation of the isentropic gas dynamics and p-systems, Comm. Math. Phys., 163, 1994, 415–431.

    Article  MathSciNet  MATH  Google Scholar 

  82. Majda, A., Introduction to Turbulent Dynamical Systems in Complex Systems, Springer-Varlag, Cham, 2016.

    Book  MATH  Google Scholar 

  83. Majda, A., and Tong, X. -T., Ergodicity of truncated stochastic Navier Stokes with deterministic forcing and dispersion, J. Nonlin. Sci., 26(4), 2016, 1483–1506.

    Article  MathSciNet  MATH  Google Scholar 

  84. Majda, A. and Wang, X. -M., Nonlinear Dynamics and Statistical Theories for Basic Geophysical Flows, Cambridge University Press, Cambridge, 2006.

    Book  MATH  Google Scholar 

  85. Mariani, M., Large deviations principles for stochastic scalar conservation laws, Probab. Theory Relat. Fields, 147, 2010, 607–648.

    Article  MathSciNet  MATH  Google Scholar 

  86. Maslowski, B. and Seidler, J., Invariant measures for nonlinear SPDE’s: Uniqueness and stability, Archivum Mathematicum, 34(4), 1998, 153–172.

    MathSciNet  MATH  Google Scholar 

  87. Masmoudi, N. and Young, L. -S., Ergodic theory of infinite dimensional systems with applications to dissipative parabolic PDEs, Comm. Math. Phys., 227(4), 2002, 461–481.

    Article  MathSciNet  MATH  Google Scholar 

  88. Mattingly, J. C., Exponential convergence for the stochastically forced Navier-Stokes equations and other partially dissipative dynamics, Comm. Math. Phys., 230(4), 2002, 421–462.

    Article  MathSciNet  MATH  Google Scholar 

  89. Mattingly, J. C., Recent progress for the stochastic Navier-Stokes equations, Journeé EDP., 11, 2003, 52 pages, DOI: 10.5802/jedp.625.

  90. Perthame, B., Kinetic Formulation of Conservation Laws, Oxford University Press, Oxford, 2002.

    MATH  Google Scholar 

  91. Peszat, S. and Zabczyk, J., Strong Feller property and irreducibility for diffusions on Hilbert spaces, Ann. Probab., 23(4), 1995, 157–172.

    Article  MathSciNet  MATH  Google Scholar 

  92. Peszat, S. and Zabczyk, J., Stochastic Partial Differential Equations with Lévy Noise: An Evolution Equation Approach, Cambridge University Press, Cambridge, 2007.

    Book  MATH  Google Scholar 

  93. Röckner, M. and Zhang, X. -C., Stochastic tamed 3D Navier-Stokes equations: existence, uniqueness and ergodicity, Prob. Theory Relat. Fields, 145, 2009, 211–267.

    Article  MathSciNet  MATH  Google Scholar 

  94. Romito, M. and Xu, L. -H., Ergodicity of the 3D stochastic Navier-Stokes equations driven by mildly degenerate noise, Stoc. Proc. Appl., 121, 2011, 673–700.

    Article  MathSciNet  MATH  Google Scholar 

  95. Schmalfuss, B., The random attractor of the stochastic Lorenz system, ZAMP, 48(4), 1997, 951–975.

    MathSciNet  MATH  Google Scholar 

  96. Sinai, Ya, Two results concerning asymptotic behavior of solutions of the Burgers equation with force, J. Stat. Phys., 64(4), 1991, 1–12.

    Article  MathSciNet  MATH  Google Scholar 

  97. Tadmor, E. and Tao, T., Velocity averaging, kinetic formulations and regularizing effects in quasi-linear pdes, Comm. Pure Appl. Math., 60(4), 2007, 1488–1521.

    Article  MathSciNet  MATH  Google Scholar 

  98. Temam, R., Infinite Dimensional Dynamical Systems in Mechanics and Physics, Springer-Verlag, New York, 1997.

    Book  MATH  Google Scholar 

  99. Varadhan, S. R. S., Large Deviations, Courant Lecture Notes, A. M.S., Providence, RI, 2016.

    Google Scholar 

  100. Veretennikov, A., On strong solutions and explicit formulas for solutions of stochastic integral equations, Math. USSR Sbornik, 39(4), 1981.

    Google Scholar 

  101. Villani, C., Optimal Transport, Grundlehren der Mathematischen Wissenschaften, 338, Springer-Verlag, 2009.

  102. Zhu, R. and Zhu, X., Three-dimensional Navier-Stokes equations driven by space-time white noise, J. Diff. Eq., 259(4), 2015, 4443–4508.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gui-Qiang G. Chen or Peter H. C. Pang.

Additional information

Dedicated to Professor Andrew J. Majda on the occasion of his 70th birthday

This work was supported by the UK Engineering and Physical Sciences Research Council Award EP/E035027/1, EP/L015811/1, the Royal Society-Wolfson Research Merit Award (UK) and an Oxford Croucher Scholarship

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, GQ.G., Pang, P.H.C. Invariant Measures for Nonlinear Conservation Laws Driven by Stochastic Forcing. Chin. Ann. Math. Ser. B 40, 967–1004 (2019). https://doi.org/10.1007/s11401-019-0169-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11401-019-0169-x

Keywords

2000 MR Subject Classification

Navigation