Skip to main content
Log in

An Extension of the Win Theorem: Counting the Number of Maximum Independent Sets

  • Published:
Chinese Annals of Mathematics, Series B Aims and scope Submit manuscript

Abstract

Win proved a well-known result that the graph G of connectivity κ(G) with α(G) ≤ κ(G) + k − 1 (k ≥ 2) has a spanning k-ended tree, i.e., a spanning tree with at most k leaves. In this paper, the authors extended the Win theorem in case when κ(G) = 1 to the following: Let G be a simple connected graph of order large enough such that α(G) ≤ k + 1 (k ≥ 3) and such that the number of maximum independent sets of cardinality k + 1 is at most n − 2k − 2. Then G has a spanning k-ended tree.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahmed, T., A survey on the Chvátal-Erdős theorem, https://doi.org/citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.90.9100&rep=repl&type=pdf

  2. Ainouche, A., Common generalization of Chvátal-Erdős and Fraisse’s sufficient conditions for Hamiltonian graphs, Discrete Math., 142, 1995, 21–26.

    Article  MathSciNet  MATH  Google Scholar 

  3. Akiyama, J. and Kano, M., Factors and Factorizations of Graphs: Proof Techniques in Factor Theory, Lecture Notes in Mathematics, 2031, Springer-Verlag, Heidelberg, 2011.

    Google Scholar 

  4. Chen, G., Hu, Z. and Wu, Y., Circumferences of k-connected graphs involving independence numbers, J. Graph Theory, 68, 2011, 55–76.

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen, G., Li, Y., Ma, H., et al., An extension of the Chvátal-Erdős theorem: Counting the number of maximum independent sets, Graphs Combin, 31, 2015, 885–896.

    Article  MathSciNet  MATH  Google Scholar 

  6. Chvátal, V. and Erdős, P., A note on Hamiltonian circuits, Discrete Math., 2, 1972, 111–113.

    Article  MathSciNet  MATH  Google Scholar 

  7. Enomoto, H., Kaneko, A., Saito, A. and Wei, B., Long cycles in triangle-free graphs with prescribed independence number and connectivity, J. Combin. Theory Ser. B, 91, 2004, 43–55.

    Article  MathSciNet  MATH  Google Scholar 

  8. Han, L., Lai, H.-J., Xiong, L. and Yan, H., The Chvátal-Erdős condition for supereulerian graphs and the Hamiltonian index, Discrete Math., 310, 2010, 2082–2090.

    Article  MathSciNet  MATH  Google Scholar 

  9. Heuvel, van den J., Extentions and consequences of Chvátal-Erdős theorem, Graphs Combin., 12, 1996, 231–237.

    Article  MathSciNet  MATH  Google Scholar 

  10. Jackson, B. and Oradaz, O., Chvátal-Erdős conditions for paths and cycles in graphs and digraphs, A survey, Discrete Math., 84, 1990, 241–254.

    Article  MathSciNet  MATH  Google Scholar 

  11. Neumann-Lara, V. and Rivera-Campo, E., Spanning trees with bounded degrees, Combinatorica, 11, 1991, 55–61.

    Article  MathSciNet  MATH  Google Scholar 

  12. Saito, A., Chvátal-Erdős theorem —old theorem with new aspects, Lect. Notes Comput. Sci., 2535, 2008, 191–200.

    Article  MATH  Google Scholar 

  13. West, D. B., Introduction to Graph Theory, 2nd ed., Prentice Hall, Upper Saddle River, 2001.

    Google Scholar 

  14. Win, S., On a conjecture of Las Vergnas concerning certain spanning trees in graphs, Results Math., 2, 1979, 215–224.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wanpeng Lei, Liming Xiong, Junfeng Du or Jun Yin.

Additional information

This work was supported by the National Natural Science Foundation of China (Nos. 11871099, 11671037, 11801296) and the Nature Science Foundation from Qinghai Province (No. 2017-ZJ-949Q).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, W., Xiong, L., Du, J. et al. An Extension of the Win Theorem: Counting the Number of Maximum Independent Sets. Chin. Ann. Math. Ser. B 40, 411–428 (2019). https://doi.org/10.1007/s11401-019-0141-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11401-019-0141-9

Keywords

2000 MR Subject Classification

Navigation