Skip to main content
Log in

Supervised Vessels Classification Based on Feature Selection

  • Regular Paper
  • Published:
Journal of Computer Science and Technology Aims and scope Submit manuscript

Abstract

Arterial-venous classification of retinal blood vessels is important for the automatic detection of cardiovascular diseases such as hypertensive retinopathy and stroke. In this paper, we propose an arterial-venous classification (AVC) method, which focuses on feature extraction and selection from vessel centerline pixels. The vessel centerline is extracted after the preprocessing of vessel segmentation and optic disc (OD) localization. Then, a region of interest (ROI) is extracted around OD, and the most efficient features of each centerline pixel in ROI are selected from the local features, grey-level co-occurrence matrix (GLCM) features, and an adaptive local binary patten (A-LBP) feature by using a max-relevance and min-redundancy (mRMR) scheme. Finally, a feature-weighted K-nearest neighbor (FW-KNN) algorithm is used to classify the arterial-venous vessels. The experimental results on the DRIVE database and INSPIRE-AVR database achieve the high accuracy of 88.65% and 88.51% in ROI, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Niemeijer M, van Ginneken B, Abràmoff M D. Automatic classification of retinal vessels into arteries and veins. In Proc. SPIE7260, Medical Imaging 2009: Computer-Aided Diagnosis, October 2009, p.72601F.

  2. Grisan E, Ruggeri A. A divide et impera strategy for automatic classification of retinal vessels into arteries and veins. In Proc. the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Sept. 2003, pp.890-893.

  3. Hubbard L D, Brothers R J, KingWN, Clegg L X, Klein R, Cooper L S et al. Methods for evaluation of retinal microvascular abnormalities associated with hypertension/sclerosis in the atherosclerosis risk in communities study. Ophthalmology, 1999, 106(12): 2269-2280.

  4. Wong T Y, Knudtson M D, Klein R, Klein B E K, Meuer S M, Hubbard L D. Computer-assisted measurement of retinal vessel diameters in the Beaver Dam Eye Study: Methodology, correlation between eyes, and effect of refractive errors. Ophthalmology, 2004, 111(6): 1183-1190.

    Article  Google Scholar 

  5. Aguilar W, Martinez-Perez M E, Frauel Y, Escolano F, Lozano M A, Espinosa-Romero A. Graph-based methods for retinal mosaicing and vascular characterization. In Proc. the 6th IAPR-TC-15 International Workshop on Graph-Based Representations in Pattern Recognition, June 2007, pp.25-36.

  6. Rothaus K, Jiang X, Rhiem P. Separation of the retinal vascular graph in arteries and veins based upon structural knowledge. Image and Vision Computing, 2009, 27(7): 864-875.

    Article  MATH  Google Scholar 

  7. Niemeijer M, Xu X, Dumitrescu A V, Gupta P, van Ginneken B et al. Automated measurement of the arteriolarto-venular width ratio in digital color fundus photographs. IEEE Transactions on Medical Imaging, 2011, 30(11): 1941-1950.

    Article  Google Scholar 

  8. Dashtbozorg B, Mendonca A M, Campilho A. An automatic graph-based approach for artery/vein classification in retinal images. IEEE Transactions on Image Processing, 2014, 23(3): 1073-1083.

    Article  MathSciNet  MATH  Google Scholar 

  9. Estrada R, Allingham M J, Mettu P S, Cousins S W, Tomasi C, Farsiu S. Retinal artery-vein classification via topology estimation. IEEE Transactions on Medical Imaging, 2015, 34(12): 2518-2534.

    Article  Google Scholar 

  10. Relan D, Ballerini L, Trucco E, MacGillivray T. Retinal vessel classification based on maximization of squared-loss mutual information. In Proc. Machine Intelligence and Signal Processing, October 2016, pp.77-84.

  11. Staal J, Abramoff M D, Niemeijer M, Viergever M A, Ginneken B V. Ridge-based vessel segmentation in color images of the retina. IEEE Transactions on Medical Imaging, 2004, 23(4): 501-509.

    Article  Google Scholar 

  12. Vijayakumar V, Koozekanani D D,White R, Kohler J, Roychowdhury S, Parhi K K. Artery/vein classification of retinal blood vessels using feature selection. In Proc. the 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), August 2016, pp.1320-1323.

  13. Zhu C, Zou B, Zhao R et al. Retinal vessel segmentation in colour fundus images using extreme learning machine. Computerized Medical Imaging and Graphics, 2017, 55: 68-77.

    Article  Google Scholar 

  14. Abdullah M, Fraz M M, Barman S A. Localization and segmentation of optic disc in retinal images using circular Hough transform and grow-cut algorithm. https://peerj.com/articles/2003/, Sept. 2017.

  15. Telea A, vanWijk J J. An augmented fast marching method for computing skeletons and centerlines. In Proc. the Symposium on Data Visualisation, May 2002, pp.251-260.

  16. Foracchia M, Grisan E, Ruggeri A. Luminosity and contrast normalization in retinal images. Medical Image Analysis, 2005, 9(3): 179-190.

    Article  Google Scholar 

  17. Soares J V B, Leandro J J G, Cesar R M, Jelinek H F, Cree M J. Retinal vessel segmentation using the 2-D Gabor wavelet and supervised classification. IEEE Transactions on Medical Imaging, 2006, 25(9): 1214-1222.

    Article  Google Scholar 

  18. Hanchuan P, Fuhui L, Ding C. Feature selection based on mutual information: Criteria of max-dependency, max-relevance, and min-redundancy. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(8): 1226-1238.

    Article  Google Scholar 

  19. Chhabra S, Bhushan B. Supervised pixel classification into arteries and veins of retinal images. In Proc. Innovative Applications of Computational Intelligence on Power, Energy and Controls with Their Impact on Humanity (CIPECH), November 2014, pp.59-62.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng-Zhang Zhu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 795 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, BJ., Chen, Y., Zhu, CZ. et al. Supervised Vessels Classification Based on Feature Selection. J. Comput. Sci. Technol. 32, 1222–1230 (2017). https://doi.org/10.1007/s11390-017-1796-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11390-017-1796-x

Keywords

Navigation