Skip to main content
Log in

Trace element distribution and pollution status of surface sediments in lakes impacted by volcanic activity

  • Sediments, Sec 1 • Sediment Quality and Impact Assessment • Research Article
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

A Correction to this article was published on 16 February 2023

This article has been updated

Abstract

Purpose

The main objective of the study was to assess the environmental quality status of the sediments of eleven Patagonian lakes regarding the concentrations of five trace elements, evaluating the influence of volcanic activity and water and sediment parameters on element concentration and distribution.

Materials and methods

Surface sediment samples from 11 lakes were collected at different depths for granulometric analysis, organic matter (OM) contents, and determination of As, Br, Cr, Hg, Ni, and Zn concentrations. Physicochemical variables of the water column were also measured. The quality of the sediments and the potential ecological risks were assessed by comparing the concentrations of elements with local and global geochemical background values and with consensus-based sediment quality guidelines and through the calculation of environmental quality indices (enrichment factor and index of geo-accumulation).

Results and discussion

A higher proportion of sand with a lower %OM characterized the surface sediments in lakes close to the volcanic complex (PCCVC), while a higher proportion of silt–clay with a higher %OM was found in sediments from lakes furthest from the PCCVC, consistent with the expected gradient of volcanic ash size deposited in the lakes. The presence of volcanic ashes in sediments seems to dilute trace element concentrations of samples, having sediment samples from lakes near the PCCVC lower concentrations of Br, Cr, and Ni than the furthest lakes. Environmental quality indices indicated minimal to moderate enrichment/contamination in sediments from deep lakes near the PCCVC and significant to high enrichment/contamination in sediments from lakes far from the volcano and in the shallower lakes. The concentrations of As, Cr, and Ni in six of the 11 sampled lakes are at levels considered harmful for sediment-dwelling organisms according to north hemisphere guidelines.

Conclusions

Despite being in a protected area, the sediments of some Patagonian lakes have concentrations of potentially toxic elements at levels that may cause pollution and be of risk to the aquatic biota, with the volcanic ashes acting to dilute this effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and material

The datasets used and/or analyzed during the current study are available from the corresponding author upon reasonable request.

Change history

References

  • Aleksander-Kwaterczak U, Ciszewski D (2020) Metal mobility in afforested sites of an abandoned Zn-Pb ore mining area. Appl Sci 10(17):6041. https://doi.org/10.3390/app10176041

    Article  CAS  Google Scholar 

  • Aleksander-Kwaterczak U, Kostka A, Leśniak A (2021) Multiparameter assessment of select metal distribution in lacustrine sediments. J Soils Sediments 21:512–529. https://doi.org/10.1007/s11368-020-02732-x

    Article  CAS  Google Scholar 

  • Amiard J-C (1992) Bioavailability of sediment-bound metals for benthic aquatic organisms. In: Vernet JP (ed) Impact of heavy metals on the environment. Elsevier, Amsterdam, pp 183–202

    Google Scholar 

  • Arcagni M, Rizzo A, Juncos R, Pavlin M, Campbell LM, Arribére MA, Horvat M, Ribeiro Guevara S (2017) Mercury and selenium in the food web of Lake Nahuel Huapi, Patagonia, Argentina. Chemosphere 166:163–173. https://doi.org/10.1016/j.chemosphere.2016.09.085

    Article  CAS  Google Scholar 

  • Arcagni M, Juncos R, Rizzo A, Pavlin M, Fajon V, Arribére MA, Horvat M, Ribeiro Guevara S (2018) Species- and habitat-specific bioaccumulation of total mercury and methylmercury in the food web of a deep oligotrophic lake. Sci Total Environ 612:1311–1319

    Article  CAS  Google Scholar 

  • Arribére MA, Campbell LM, Rizzo AP, Arcagni M, Revenga J, Ribeiro Guevara S (2010) Trace elements in plankton, benthic organisms, and forage fish of lake Moreno, Northern Patagonia, Argentina. Water Air Soil 212:167–182

    Article  Google Scholar 

  • Barałkiewicz D, Siepak J (1999) Chromium, nickel and cobalt in environmental samples and existing legal norms. Pol J Environ Stud 8:201–208

    Google Scholar 

  • Bonadonna C, Cioni R, Pistolesi M, Elissondo M, Baumann V (2015) Sedimentation of long-lasting wind-affected volcanic plumes: the example of the 2011 rhyolitic Cordón Caulle eruption, Chile. Bull Volcanol 77(2)

  • Boyle J (2001) Redox remobilization and the heavy metal record in lake sediments: a modelling approach. J Paleolimnol 26:423–431

    Article  Google Scholar 

  • Bryan GW, Langston WJ (1992) Bioavailability, accumulation and effects of heavy metals in sediments with special reference to United Kingdom estuaries: a review. Environ Pollut 76:89–131

    Article  CAS  Google Scholar 

  • Bubach D, Pérez Catán S, Arribére MA, Ribeiro Guevara S (2012) Bioindication of volatile elements emission by the Puyehue-Cordón Caulle (North Patagonia) volcanic event in 2011. Chemosphere 88:584–590

    Article  CAS  Google Scholar 

  • Bubach DF, Macchi PJ, Pérez Catán S (2015) Influence of volcanic activity and anthropic impact in the trace element contents of fishes from the North Patagonia in a global context. Environ Monit Assess 187:710

    Article  CAS  Google Scholar 

  • Bureau H, Keppler H, Métrich N (2000) Volcanic degassing of bromine and iodine: experimental fluid/melt partitioning data and applications to stratospheric chemistry. Earth Planet Sci Lett 183:51–60

    Article  CAS  Google Scholar 

  • Calmano W, Hong J, Förstner U (1993) Binding and mobilization of heavy metals in contaminated sediments affected by pH and redox potential. Water Sci Technol 28:223–235

    Article  CAS  Google Scholar 

  • Camarero L, Botev I, Muri G, Psenner R, Rose N, Stuchlik E (2009) Trace elements in alpine and arctic lake sediments as a record of diffuse atmospheric contamination across Europe. Freshwater Biol 54:2518–2532

    Article  CAS  Google Scholar 

  • Cempel M, Nikel G (2006) Nickel: a review of its sources and environmental toxicology. Pol J Environ Stud 15:375–382

    CAS  Google Scholar 

  • Chapman PM, Wang F, Adams WJ, Green A (1999) Appropriate applications of sediment quality values for metals and metalloids. Environ Sci Technol 33:3937–3941

    Article  CAS  Google Scholar 

  • Chen CY, Stemberger RS, Klaue B, Blum JD, Pickhardt PC, Folt CL (2000) Accumulation of heavy metals in food web components across a gradient of lakes. Limnol Oceanogr 45:1525–1536

    Article  CAS  Google Scholar 

  • Collini E, Osores M, Folch A, Viramonte J, Villarosa G, Salmuni G (2013) Volcanic ash forecast during the June 2011 Cordón Caulle eruption. Nat Hazards 66:389–412

    Article  Google Scholar 

  • Corno C, Modenutti BE, Callieri C, Balseiro EG, Bertoni R, Caravatia E (2009) Bacterial diversity and morphology in deep ultraoligotrophic Andean lakes: role of UVR on vertical distribution. Limnol Oceanogr 54(4):1098–1112

    Article  CAS  Google Scholar 

  • Daga R, Caselli A, Ribeiro Guevara S, Agusto M (2017) Tefras emitidas durante la fase inicial hidromagmática (Julio 2012) del ciclo eruptivo 2012-actual (2016) del volcán Copahue (Andes del Sur). Revista De La Asociación Geológica Argentina 74:191–206

    Google Scholar 

  • Daga R, Ribeiro Guevara S, Pavlin M, Rizzo A, Lojen S, Vreča P, Horvat M, Arribére M (2016) Historical records of mercury in southern latitudes over 1600 years: Lake Futalaufquen, Northern Patagonia. Sci Total Environ 553:541–550

    Article  CAS  Google Scholar 

  • Daga R, Ribeiro Guevara S, Poire DG, Arribére M (2014) Characterization of tephras dispersed by the recent eruptions of volcanoes Calbuco (1961), Chaitén (2008) and Cordón Caulle Complex (1960 and 2011), in Northern Patagonia. J S A Earth Sci 49:1–14

    Article  CAS  Google Scholar 

  • Daga RB, Castro A, de La Rosa J, Riberiro Guevara S, Sánchez ML, Arribére M (2012) Heterogeneidades texturales y composicionales en productos piroclásticos de la erupción de 1960 del sistema del Cordón Caulle (40°30’S, 72°10’O). Revista De La Asociación Geológica Argentina 69(4):496–507

    Google Scholar 

  • Díaz M, Pedrozo F, Reynolds C, Temporetti P (2007) Chemical composition and the nitrogen-regulated trophic state of Patagonian Andes. Limnologica 37:17–27

    Article  Google Scholar 

  • Dung TTT, Cappuyns V, Swennen R, Phung NK (2013) From geochemical background determination to pollution assessment of heavy metals in sediments and soils. Rev Environ Sci Biotechnol 12:335–353. https://doi.org/10.1007/s11157-013-9315-1

    Article  CAS  Google Scholar 

  • El Bilali L, Rasmussen PE, Hall GEM, Fortin D (2002) Role of sediment composition in trace metal distribution in lake sediments. Appl Geochem 17:1171–1181

    Article  Google Scholar 

  • Escosteguy L, Geuna S, Franchi M, González Díaz E, DalMolín C, Cegarra M, Wilson C, Etcheverría M, González R (2013) Hoja Geológica 4172-II, San Martín de los Andes. Provincias del Neuquén y de Río Negro. Instituto de Geología y Recursos Minerales, Servicio Geológico Minero Argentino. Boletín 409, Buenos Aires, pp. 92

  • Farkas A, Erratico C, Vigano L (2007) Assessment of the environmental significance of heavy metal pollution in surficial sediments of the river Po. Chemosphere 68:761–768

    Article  CAS  Google Scholar 

  • Fonseca R, Fonseca Araújo J, Gomes Pinho C (2021) Importance of the spatial distribution of rare earth elements in the bottom sediments of reservoirs as a potential proxy for tracing sediments sources. A case study in the Dominican Republic. Geosciences 11:490

  • Fu J, Zhao C, Luo Y, Liu C, Kyzas GZ, Luo Y, Zhao D, An S, Zhu H (2014) Heavy metals in surface sediments of the Jialu River, China: their relations to environmental factors. J Hazard Mater 270:102–109

    Article  CAS  Google Scholar 

  • Garrett RG (2000) Natural sources of metals to the environment. Hum Ecol Risk Assess 6:945–963

    Article  CAS  Google Scholar 

  • Gawel JE, Burdick JA, Asplund S, Miller M, Peterson SM, Tollefson A, Ziegler K (2014) Arsenic and lead distribution and mobility in lake sediments in the south-central Puget Sound watershed: the long-term impact of a metal smelter in Ruston, Washington, USA. Sci Total Environ 472:530–537

    Article  CAS  Google Scholar 

  • Giacosa R, Heredia N, González R, Faroux A, Césari O, Franchi M (2001) Hoja Geológica 4172–IV, San Carlos de Bariloche. Provincias de Río Negro y Neuquén. Buenos Aires: Servicio Geológico Minero Argentino SEGEMAR. Boletín N°279.

  • Heiri O, Lotter AF, Lemcke G (2001) Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. J Paleolimnol 25:101–110

    Article  Google Scholar 

  • Herut B, Sandler A (2006) Normalization method for pollutants in marine sediments: review and recommendations for the Mediterranean. IORL Report H18(2006):23

    Google Scholar 

  • Horowitz AJ (1991) A primer on sediment-trace element chemistry. Lewis, Chelsea MI, p 136

    Google Scholar 

  • Huang Z, Liu C, Zhao X, Dong J, Zheng B (2020) Risk assessment of heavy metals in the surface sediment at the drinking water source of the Xiangjiang River in South China. Environ Sci Eur 32:23. https://doi.org/10.1186/s12302-020-00305-w

    Article  CAS  Google Scholar 

  • Iriondo M (1989) Quaternary lakes of Argentina. Palaeogeogr Palaeoclimatol Palaeoecol 70:81–88

    Article  Google Scholar 

  • Juárez A, Arribére MA, Arcagni M, Williams N, Rizzo A, Ribeiro Guevara S (2016) Heavy metal and trace elements in riparian vegetation and macrophytes associated with lacustrine systems in Northern Patagonia Andean Range. Environ Sci Pollut Res Int 23(18):17995–18009

    Article  Google Scholar 

  • Juncos R, Arcagni M, Rizzo A, Campbell L, Arribére MA, Ribeiro Guevara S (2016) Natural origin arsenic in aquatic organisms from a deep oligotrophic lake under the influence of volcanic eruptions. Chemosphere 144:2277–2289. https://doi.org/10.1016/j.chemosphere.2015.10.092

    Article  CAS  Google Scholar 

  • Jokinen SA, Jilbert T, Tiihonen-Filppula R, Koho K (2020) Terrestrial organic matter input drives sedimentary trace metal sequestration in a human-impacted boreal estuary. Sci Total Environ 15:717–137047. https://doi.org/10.1016/j.scitotenv.2020.137047

    Article  CAS  Google Scholar 

  • Kainz M, Lucotte M (2006) Mercury concentrations in lake sediments – revisiting the predictive power of catchment morphometry and organic matter composition. Water Air Soil Pollut 170:173–189. https://doi.org/10.1007/s11270-006-3009-z

    Article  CAS  Google Scholar 

  • Lamela PA, Navoni JA, Pérez RD, Pérez CA, Vodopivez CL, Curtosi A, Bongiovanni GA (2019) Analysis of occurrence, bioaccumulation and molecular targets of arsenic and other selected volcanic elements in Argentinean Patagonia and Antarctic ecosystems. Sci Total Environ 681:379–391. https://doi.org/10.1016/j.scitotenv.2019.05.096

    Article  CAS  Google Scholar 

  • Lent RM, Alexander CR (1997) Mercury accumulation in Devils Lake, North Dakota effects of environmental variation in closed-basin lakes on mercury chronologies. Water Air Soil Pollut 98:275–296

    Article  CAS  Google Scholar 

  • Liao J, Chen J, Ru X, Chen J, Wu H, Wei C (2017) Heavy metals in river surface sediments affected with multiple pollution sources, South China: Distribution, enrichment and source apportionment. J Geochem Explor 176:9–19

    Article  CAS  Google Scholar 

  • Liang A, Wang Y, Guo H, Bo L, Zhang S, Bai Y (2015) Assessment of pollution and identification of sources of heavy metals in the sediments of Changshou Lake in a branch of the Three Gorges Reservoir. Environ Sci Pollut Res 22:16067–16076

    Article  CAS  Google Scholar 

  • Liu M, Zhong J, Zheng X, Yu J, Liu D, Fan C (2018) Fraction distribution and leaching behavior of heavy metals in dredged sediment disposal sites around Meiliang Bay, Lake Taihu (China). Environ Sci Pollut Res 25:9737–9744

    Article  CAS  Google Scholar 

  • Loring DH, Rantala RTT (1992) Manual for the geochemical analyses of marine sediments and suspended particulate matter. Earth Sci Rev 32:235–283

    Article  CAS  Google Scholar 

  • Macdonald DD, Ingersoll CG, Berger TA (2000) Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Arch Environ Contam Toxicol 39:20–31

    Article  CAS  Google Scholar 

  • Markert B, Pedrozo P, Geller W, Friese K, Korhammer S, Baffico G, Díaz M, Wölfl S (1997) A contribution to the study of the heavy-metal and nutritional element status of some lakes in the southern Andes of Patagonia (Argentina). Sci Total Environ 206:1–15

    Article  CAS  Google Scholar 

  • Martin RS, Watt SFL, Pyle DM, Mather TA, Matthews NE (2009) Environmental effects of ashfall in Argentina from the 2008 Chaitén volcanic eruption. J Volcanol Geotherm Res 184:462–472

    Article  CAS  Google Scholar 

  • Masciocchi M, Pereira AJ, Lantschner MV, Corley JC (2013) Of volcanoes and insects: the impact of the Puyehue-Cordon Caulle ash fall on populations of invasive social wasps, Vespula spp. Ecol Res 28:199–205

    Article  Google Scholar 

  • McLennan SM (1989) Rare earth elements in sedimentary rocks: Influence of provenance and sedimentary processes. Rev Mineral 21:169–200

    CAS  Google Scholar 

  • Modenutti BE, Balseiro E, Diéguez MC, Queimaleños C, Albariño R (1998) Heterogeneity of Fresh-Water Patagonian Ecosystems Ecologia Austral 8:155–165

    Google Scholar 

  • Montañez JC, Arribére MA, Rizzo AP, Arcagni M, Campbell L, Ribeiro Guevara S (2018) Zinc in an ultraoligotrophic lake food web. Environ Sci Pollut Res 25:15422–15435. https://doi.org/10.1007/s11356-018-1725-8

  • Müller G (1969) Index of geoaccumulation in the sediments of the Rhine River. GeoJournal 2:108–118

    Google Scholar 

  • Naranjo J, Stern C (2004) Holocene tephrochronology of the southernmost part (42° 30’–45°S) of the Andean Southern Volcanic Zone. Rev Geol Chile 31:225–240

    Article  CAS  Google Scholar 

  • Nriagu JO (1990) Global metal pollution: poisoning the biosphere? Environ Sci Policy 32:7–33

    Google Scholar 

  • Oppenheimer C, Tsanev V, Braban CF, Cox RA, Adams JW, Aiuppa A, Bobrowski N, Delmelle P, Barclay J, McGonigle AJS (2006) BrO formation in volcanic plumes. Geochim Cosmochim Acta 70:2935–2941

    Article  CAS  Google Scholar 

  • Paruelo JM, Beltrán A, Jobbágy E, Sala OE, Golluscio RA (1998) The climate of Patagonia: general patterns and controls on biotic processes. Ecol Austral 8:85–101

    Google Scholar 

  • Pérez G, Queimaliños C, Balseiro E, Modenutti B (2007) Phytoplankton absorption spectra along the water column in deep North Patagonian Andean lakes (Argentina). Limnologica 37:3–16

    Article  Google Scholar 

  • Perez Catán S, Juárez NA, Bubach DF (2016) Characterization of freshwater changes in lakes of Nahuel Huapi National Park produced by the 2011 Puyehue-Cordón Caulle eruption. Environ Sci Pollut Res 23:20700–20710

    Article  Google Scholar 

  • Pistolesi M, Cioni R, Bonadonna C, Elissondo M, Baumann V, Bertagnini A, Chiari L, Gonzales R, Rosi M, Francalanci L (2015) Complex dynamics of small-moderate volcanic events: the example of the 2011 rhyolitic Cordón Caulle eruption, Chile. Bull Volcanol 77. https://doi.org/10.1007/s00445-014-0898-3

  • Reimann C, De Caritat P (2005) Distinguishing between natural and anthropogenic sources for elements in the environment: regional geochemical surveys versus enrichment factors. Sci Total Environ 337:91–107

    Article  CAS  Google Scholar 

  • Revenga JE, Campbell LM, Arribére MA, Ribeiro Guevara S (2012) Arsenic, cobalt and chromium food web biodilution in a Patagonia mountain lake. Ecotoxicol Environ Saf 81:1–10. https://doi.org/10.1016/j.ecoenv.2012.03.014

    Article  CAS  Google Scholar 

  • Ribeiro Guevara S, Meili M, Rizzo A, Daga R, Arribére M (2010) Sediment records of highly variable mercury inputs to mountain lakes in Patagonia during the past millennium. Atmos Chem Phys 10:3443–3453. https://doi.org/10.5194/acp-10-3443-2010,2010

    Article  Google Scholar 

  • Ribeiro Guevara S, Rizzo A, Daga R, Williams N, Villa S (2019) Bromine as indicator of source of lacustrine sedimentary organic matter in paleolimnological studies. Quat Res 92:257–271. https://doi.org/10.1017/qua.2018.125

    Article  CAS  Google Scholar 

  • Ribeiro Guevara S, Rizzo A, Sánchez R, Arribére M (2005) Heavy metal inputs in Northern Patagonia lakes from short sediment core analysis. J Radioanal Nucl Chem 265:481–493

    Article  Google Scholar 

  • Roach AC (2005) Assessment of metals in sediments from Lake Macquarie, New South Wales, Australia, using normalisation models and sediment quality guidelines. Mar Environ Res 59(5):453–472

    Article  CAS  Google Scholar 

  • Román-Ross G, Depetris PJ, Arribére MA, Ribeiro Guevara S, Cuello GJ (2002) Geochemical variability since the Late Pleistocene in Lake Mascardi sediments, northern Patagonia. Argentina, J S A Earth Sci 15:657–667

    Article  Google Scholar 

  • Ruggieri F, Fernández-Turiel JL, Saavedra J, Gimeno D, Polanco E, Naranjo JS (2011) Environmental geochemistry of recent volcanic ashes from the Southern Andes. Environ Chem 8:236–247. https://doi.org/10.1071/EN10097

    Article  CAS  Google Scholar 

  • Sanei H, Goodarzi F (2006) Relationship between organic matter and mercury in recent lake sediment: the physical-geochemical aspects. Appl Geochem 21:1900–1912. https://doi.org/10.1016/j.apgeochem.2006.08.015

    Article  CAS  Google Scholar 

  • Shyleshchandran MN, Mohan M, Ramasamy EV (2018) Risk assessment of heavy metals in Vembanad Lake sediments (south-west coast of India), based on acid-volatile sulfide (AVS)-simultaneously extracted metal (SEM) approach. Environ Sci Pollut Res 25:7333–7345

    Article  CAS  Google Scholar 

  • Singer BS, Jicha BR, Harper MA, Naranjo JA, Lara LE, Moreno-Roa H (2008) Eruptive history, geochronology, and magmatic evolution of the Puyehue-Cordón Caulle volcanic complex. Chile Geol Soc Am Bull 120(5–6):599–618

    Article  CAS  Google Scholar 

  • Singh A, Hasnain S, Banerjee D (1999) Grain size and geochemical partitioning of heavy metals in sediments of the Damodar River – a tributary of the lower Ganga, India. Environ Geol 39:90–98. https://doi.org/10.1007/s002540050439

    Article  CAS  Google Scholar 

  • Stern CR (2004) Active Andean volcanism: its geologic and tectonic setting. Rev Geol Chile 31(2):161–206. https://doi.org/10.4067/S0716-02082004000200001

    Article  Google Scholar 

  • Suresh G, Sutharsan P, Ramasamy V, Venkatachalapathy R (2012) Assessment of spatial distribution and potential ecological risk of the heavy metals in relation to granulometric contents of Veeranam lake sediments, India. Ecotoxicol Environ Saf 84:117–124

    Article  CAS  Google Scholar 

  • Sutherland R (2000) Bed sediment-associated trace metals in an urban stream, Oahu. Hawaii Environ Geol 39:611–627

    Article  CAS  Google Scholar 

  • Teisserenc R, Lucotte M, Houel S (2011) Terrestrial organic matter biomarkers as tracers of Hg sources in lake sediments. Biogeochemistry 103:235–244

    Article  CAS  Google Scholar 

  • Turekian KK, Wedepohl KH (1961) Distribution of the elements in some major units of the Earth’s crust. Bull Geol Soc Am 32:175–192

    Article  Google Scholar 

  • Wetzel RG (2001) Limnology: lake and river ecosystems. Academic Press, San Diego

    Google Scholar 

  • Wilson T, Stewart C, Bickerton H, Baxter P, Outes V, Villarosa G, Rovere E (2013) Impacts of the June 2011 Puyehue-Cordón Caulle volcanic complex eruption on urban infrastructure, agriculture and public health. GNS Sci Report 2012(20):88

    Google Scholar 

  • Witham CS, Oppenheimer C, Horwell CJ (2005) Volcanic ash-leachates: a review and recommendations for sampling methods. J Volcanol Geoth Res 141:299–326

    Article  CAS  Google Scholar 

  • Wu B, Wang G, Wu J, Fu Q, Liu C (2014) Sources of heavy metals in surface sediments and an ecological risk assessment from two adjacent plateau reservoirs. PLoS One 9(7):e102101. https://doi.org/10.1371/journal.pone.0102101

  • Yang H, Rose N (2005) Trace element pollution records in some UK lake sediments, their history, influence factors and regional differences. Environ Int 31:63–75

    Article  Google Scholar 

  • Zhang C, Yu ZG, Zeng GM, Jiang M, Yang ZZ, Cui F, Zhu M, Shen L, Hu L (2014) Effects of sediments geochemical properties on heavy metal bioavailability. Environ Int 73:270–281

    Article  CAS  Google Scholar 

  • Zhang J, Liu CL (2002) Riverine composition and estuarine geochemistry of particulate metals in China-weathering features, anthropogenic impact and chemical fluxes. Estuar Coast Shelf Sci 54(6):1051–1070

    Article  CAS  Google Scholar 

  • Zhang W, Jin X, Di Z, Zhu X, Shan B (2016) Heavy metals in surface sediments of the shallow lakes in eastern China: their relations with environmental factors and anthropogenic activities. Environ Sci Pollut Res Int 23(24):25364–25373

    Article  CAS  Google Scholar 

  • Zhao HT, Li XY, Wang XM (2011) Heavy metal contents of road deposited sediment along the urban-rural gradient around Beijing and its potential contribution to runoff pollution. Environ Sci Technol 45:7120–7127

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the assistance of Ricardo Sánchez and Dr. Daniela Milano during sampling. We are especially grateful to the two anonymous reviewers for suggesting significant improvements to this manuscript.

Funding

This study was partially funded by the Agencia Nacional de Promoción Científica y Tecnológica, through the projects PICT 2017–02292 and PICT 2016 -1332.

Author information

Authors and Affiliations

Authors

Contributions

The concept of this paper was developed by Romina Juncos together with Romina Daga, Andrea Rizzo, and Sergio Ribeiro Guevara. Material preparation and data collection were conducted by Aranza Apestegui, Romina Juncos, Juan Pablo Barriga, and Andrea Rizzo. The processing of sediment samples, granulometric analysis, and organic matter determinations was performed by Aranza Apestegui, Romina Juncos, and Romina Daga. Trace element concentrations were determined by Sergio Ribeiro Guevara. Data analysis, interpretation, and paper writing were done by Aranza Apestegui and Romina Juncos. All authors commented on previous versions of the manuscript and revised and approved the final manuscript.

Corresponding author

Correspondence to Romina Juncos.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible editor: Marcel van der Perk.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: In the original version of this article, the name of the first author was incorrectly spelled as "Aaranza Apestegui" with an extra "a". The correct name is "Aranza Apestegui".

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 101 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Apestegui, A., Juncos, R., Daga, R. et al. Trace element distribution and pollution status of surface sediments in lakes impacted by volcanic activity. J Soils Sediments 23, 1552–1567 (2023). https://doi.org/10.1007/s11368-023-03429-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-023-03429-7

Keywords

Navigation