Skip to main content

Advertisement

Log in

Recent advances in multivariate analysis coupled with chemical analysis for soil surveys: a review

  • Soils, Sec 1 • Soil Organic Matter Dynamics and Nutrient Cycling • Review Article
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Purpose

Soil is a complex open system covering various physical and chemical attributes. In soil testing, multivariate analysis (MVA) has an important application because it allows the interpretation of a large amount of data for the design of relevant environmental scenarios. The purpose of this research is to summarize recent applications of MVA for identifying soil types or characteristics and for predicting soil attributes with a critical evaluation.

Methods

Based on a comprehensive search of the available database, in this review, we have provided updated information on the most representative classification and regression MVA applied in the past decade in soil surveys. Regression MVA were compared in terms of applicability, efficiency, and predictive power of different soil attributes.

Results

Principal component analysis (PCA) allows the grouping of soils into independent clusters according to their differences in texture or physicochemical composition, which may mirror local or regional environmental signatures. PCA is also used to reduce the dimensionality of spectral data before their application in regression MVA. Partial least square regression (PLSR) is the most commonly applied regression MVA for predicting soil attributes after the correlation of spectra (e.g., Vis–NIR) vs. conventional analysis results. The resulting PLSR models, evaluated by correlation coefficient (R2) and root mean squared error (RMSE), can be valid for the estimation of several soil attributes (e.g., organic carbon, clay).

Conclusions

Application of regression MVA may have limitations in predicting some soil attributes. Objective interpretation of the dynamic nature of soils requires the selection of representative samples as well as appropriate MVA, which can have significant potential in an effective soil survey.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Copyright © 2022 Elsevier

Fig. 4

Copyright © 2022 Elsevier

Similar content being viewed by others

References

  • Abdi H (2013) Partial last square (PLSR) regression. In: Lewis-Beck M, Bryman A, Futing T (eds) Encyclopedia of social sciences research methods. Sage, CA, pp 1–7

    Google Scholar 

  • Al Maliki A, Bruce D, Owens G (2014) Prediction of lead concentration in soil using reflectance spectroscopy. Environ Technol Innov 1–2:8–15

    Article  Google Scholar 

  • Angelopoulou T, Dimitrakos A, Terzopoulou E, Zalidis G, Theocharis J, Stafilov T, Zouboulis A (2017) Reflectance spectroscopy (Vis-NIR) for assessing soil heavy metals concentrations determined by two different analytical protocols, based on ISO 11466 and ISO 14869–1. Water Air Soil Pollut 228:436

    Article  Google Scholar 

  • Barra I, Haefele SM, Sakrabani R, Kebede F (2021) Soil spectroscopy with the use of chemometrics, machine learning and pre-processing techniques in soil diagnosis: recent advances - a review. Trends Anal Chem 135:116166

    Article  CAS  Google Scholar 

  • Batsanov SS, Derbeneva SS, Batsanova LR (1969) Electronic spectra of fluorides, oxyfluorides, and oxides of rare-earth metals. J Appl Spectrosc 10:240–242

    Article  Google Scholar 

  • Ben-Dor E, Banin A (1995) Near infrared analysis (NIRA) as a rapid method to simultaneously evaluate several soil properties. Soil Sci Soc Am J 59:364–372

    Article  CAS  Google Scholar 

  • Brereton RG (1990) Chemometrics. Wiley, New York

    Google Scholar 

  • Brereton RG (2000) Introduction to multivariate calibration in analytical chemistry. Analyst 125:2125–2154

    Article  CAS  Google Scholar 

  • Cécillon L, Barthès BG, Gomez C, Ertlen D, Genot V, Hedde M, Stevens A, Brun JJ (2009) Assessment and monitoring of soil quality using near‐infrared reflectance spectroscopy (NIRS). Eur J Soil Sci 60:770–784

    Article  Google Scholar 

  • Chakraborty S, Li B, Deb S, Paul S, Weindorf DC, Das BS (2017) Predicting soil arsenic pools by visible near infrared diffuse reflectance spectroscopy. Geoderma 296:30–37

    Article  CAS  Google Scholar 

  • Chen T, Chang Q, Clevers JPGW, Kooistra L (2015) Rapid identification of soil cadmium pollution risk at regional scale based on visible and near-infrared spectroscopy. Environ Pollut 206:217–226

    Article  CAS  Google Scholar 

  • Clairotte M, Grinand C, Kouakoua E, Thébault A, Saby NPA, Bernoux M, Barthès BG (2016) National calibration of soil organic carbon concentration using diffuse infrared reflectance spectroscopy. Geoderma 276:41–52

    Article  CAS  Google Scholar 

  • Conforti M, Matteucci G, Buttafuoco G (2018) Using laboratory Vis-NIR spectroscopy for monitoring some forest soil properties. J Soils Sediments 18:1009–1019

    Article  CAS  Google Scholar 

  • Curcio D, Ciraolo G, D’Asaro F, Minacapilli M (2013) Prediction of soil texture distributions using VNIR-SWIR reflectance spectroscopy. Procedia Environ Sci 19:494–503

    Article  Google Scholar 

  • Dayal BS, MacGregor JF (1997) Improved PLSR algorithms. J Chemom 11:73–85

    Article  CAS  Google Scholar 

  • De Jong S (1993) SIMPLSR - an alternative approach to partial least-squares regression. Chemom Intell Lab Syst 18:251–263

    Article  Google Scholar 

  • dos Santos FR, de Oliveira JF, Bona E, dos Santos JVF, Barboza GMC, Melquiades FL (2020) EDXRF spectral data combined with PLSR to determine some soil fertility indicators. Microchem J 152:104275

    Article  Google Scholar 

  • Dotto AC, Dalmolin RSD, Grunwald S, ten Caten A, Pereira Filho W (2017) Two preprocessing techniques to reduce model covariables in soil property predictions by Vis-NIR spectroscopy. Soil Tillage Res 172:59–68

    Article  Google Scholar 

  • Engelen S, Hubert M, Vanden Branden K, Verboven S (2004) Robust PCR and robust PLSR: a comparative study. In: Theory and applications of recent robust methods. Statistics for industry and technology (Hubert M, Pison G, Struyf A, van Aelst S eds.). Brikhäuser, Basel, pp 105–117

  • Ge Y, Morgan CLS, Ackerson JP (2014) VisNIR spectra of dried ground soils predict properties of soils scanned moist and intact. Geoderma 221–222:61–69

    Article  Google Scholar 

  • Geladi P, Kowalski BR (1986) Partial least-squares regression - a tutorial. Anal Chim Acta 185:1–17

    Article  CAS  Google Scholar 

  • Gomez C, Chevallier T, Moulin P, Arrouays D, Barthès BG (2022) Using carbonate absorbance peak to select the most suitable regression model before predicting soil inorganic carbon concentration by mid-infrared reflectance spectroscopy. Geoderma 405:115403

    Article  CAS  Google Scholar 

  • Gomez C, Chevallier T, Moulin P, Bouferra I, Hmaidi K, Arrouays D, Jolivet C, Barthès BG (2020) Prediction of soil organic and inorganic carbon concentrations in Tunisian samples by mid-infrared reflectance spectroscopy using a French national library. Geoderma 375:114469

    Article  CAS  Google Scholar 

  • Gomez C, Lagacherie P, Coulouma G (2012) Regional predictions of eight common soil properties and their spatial structures from hyperspectral Vis-NIR data. Geoderma 189–190:176–185

    Article  Google Scholar 

  • Guanghui Z, Ryu D, Caixia J, Changqiao H (2016) Estimation of organic matter content in coastal soil using reflectance spectroscopy. Pedosphere 26:130–136

    Article  Google Scholar 

  • Guo F, Xu Z, Ma H, Liu X, Tang S, Yang Z, Zhang L, Liu F, Peng M, Li K (2021) Estimating chromium concentration in arable soil based on the optimal principal components by hyperspectral data. Ecol Indic 133:108400

    Article  CAS  Google Scholar 

  • Haaland DM, Thomas EV (1988) Partial least-squares methods for spectral analyses. 1. Relation to other quantitative calibration methods and the extraction of qualitative information. Anal Chem 60:1193–1202

    Article  CAS  Google Scholar 

  • Hong Y, Yu L, Chen Y, Liu Y, Liu Y, Liu Y, Cheng H (2018) Prediction of soil organic matter by Vis-NIR spectroscopy using normalized soil moisture index as a proxy of soil moisture. Remote Sens 10:28

    Article  Google Scholar 

  • Hou D, O’Connor D, Nathanail P, Tian L, Ma Y (2017) Integrated GIS and multivariate statistical analysis for regional scale assessment of heavy metal contamination: a critical review. Environ Pollut 231:1188–1200

    Article  CAS  Google Scholar 

  • Huang Z, Huang W, Li S, Ni B, Zhang Y, Wang M, Chen M, Zhu F (2021) Inversion evaluation of rare earth elements in soil by visible-shortwave infrared spectroscopy. Remote Sens 13:4886

    Article  Google Scholar 

  • Hubert M, Branden KV (2003) Robust methods for partial least squares regression. J Chemom 17:537–549

    Article  CAS  Google Scholar 

  • Hume R, Marschner P, Schilling RK, Mason S, Mosley LM (2022) Detection of agriculturally relevant lime concentrations in soil using mid-infrared spectroscopy. Geoderma 409:115639

    Article  CAS  Google Scholar 

  • Jenkins R (1988) X-ray fluorescence spectrometry. Wiley, New York

    Google Scholar 

  • Jiang Q, Chen Y, Guo L, Fei T, Qi K (2016) Estimating soil organic carbon of cropland soil at different levels of soil moisture using Vis-NIR spectroscopy. Remote Sens 8:755

    Article  Google Scholar 

  • Kalev SD, Toor GS (2018) The composition of soils and sediments. In: Torok B, Dransfield T (eds) Green chemistry an inclusive approach. Elsevier, Amsterdam, pp 339–357

    Google Scholar 

  • Kästner F, Sut-Lohmann M, Ramezany S, Raab T, Feilhauer H, Chabrillat S (2022) Estimating heavy metal concentrations in Technosols with reflectance spectroscopy. Geoderma 406:115512

    Article  Google Scholar 

  • Leone AP, Viscarra-Rossel RA, Amenta P, Buondonno A (2012) Prediction of soil properties with PLSR and vis-NIR spectroscopy: application to Mediterranean soils from Southern Italy. Curr Anal Chem 8:283–299

    Article  CAS  Google Scholar 

  • Lindgren F, Geladi P, Wold S (1993) The kernel algorithm for PLSR. J Chemom 7:45–59

    Article  CAS  Google Scholar 

  • Liu J, Han J, Xie J, Wang H, Tong W, Ba Y (2020a) Assessing heavy metal concentrations in earth-cumulic-orthic-anthrosols soils using Vis-NIR spectroscopy transform coupled with chemometrics. Spectrochim Acta A: Mol Biomol Spectrosc 226:117639

    Article  CAS  Google Scholar 

  • Liu J, Han J, Zhang Y, Wang H, Kong H, Shi L (2018) Prediction of soil organic carbon with different parent materials development using visible-near infrared spectroscopy. Spectrochim Acta A Mol Biomol Spectrosc 204:33–39

    Article  CAS  Google Scholar 

  • Liu J, Xie J, Han J, Wang H, Sun J, Li R, Li S (2020b) Visible and near-infrared spectroscopy with chemometrics are able to predict soil physical and chemical properties. J Soils Sediments 20:2749–2760

    Article  CAS  Google Scholar 

  • Liu Y, Jiang Q, Shi T, Fei T, Wang J, Liu G, Chen Y (2014) Prediction of total nitrogen in cropland soil at different levels of soil moisture with Vis/NIR spectroscopy. Acta Agric Scand B - Soil Plant Sci 64:267–281

    CAS  Google Scholar 

  • Luna AS (2017) Raman spectroscopy, soil analysis applications. In: Lindon JC, Tranter GE, Koppenaal DW (eds) Encyclopedia of spectroscopy and spectrometry. Elsevier Ltd., pp 919–923

  • Malinowski ER (1991) Factor analysis in chemistry, 2nd edn. Wiley, New York

    Google Scholar 

  • Malmir M, Tahmasbian I, Xu Z, Farrar MB, Bai SH (2019) Prediction of soil macro- and micro-elements in sieved and ground air-dried soils using laboratory-based hyperspectral imaging technique. Geoderma 340:70–80

    Article  CAS  Google Scholar 

  • Martens H, Naes T (1998) Multivariate calibration. Wiley, Chichester

    Google Scholar 

  • Martins JPA, Teófilo RF, Ferreira MC (2010) Computational performance and cross-validation error precision of five PLSR algorithms using designed and real data sets. J Chemom 24:320–332

    CAS  Google Scholar 

  • Massart DL, Vandeginste BGM, Deming SN, Michotte Y, Kaufman L (1988) Chemometrics: a textbook. Elsevier, Amsterdam

    Google Scholar 

  • McDowell ML, Bruland GL, Deenik JL, Grunwald S, Knox NM (2012) Soil total carbon analysis in Hawaiian soils with visible, near-infrared and mid-infrared diffuse reflectance spectroscopy. Geoderma 189–190:312–320

    Article  Google Scholar 

  • Mohamed ES, Saleh AM, Belal AB, Gad AA (2018) Application of near-infrared reflectance for quantitative assessment of soil properties. Egypt J Remote Sens Space Sci 21:1–14

    Google Scholar 

  • Morona F, dos Santos FR, Brinatti AM, Melquiades FL (2017) Quick analysis of organic matter in soil by energy-dispersive X-ray fluorescence and multivariate analysis. Appl Radiat Isot 130:13–20

    Article  CAS  Google Scholar 

  • Munawar AA, Yunus Y, Devianti SP (2020) Calibration models database of near infrared spectroscopy to predict agricultural soil fertility properties. Data Brief 30:105469

    Article  CAS  Google Scholar 

  • Nawar S, Buddenbaum H, Hill J, Kozak J, Mouazen AM (2016) Estimating the soil clay content and organic matter by means of different methods of Vis-NIR diffuse reflectance spectroscopy. Soil Tillage Res 155:510–522

    Article  Google Scholar 

  • Nengsih TA, Bertrand F, Maumy-Bertrand M, Meyer N (2019) Determining the number of components in PLSR regression on incomplete data set. Stat Appl Genet Mol 20180059

  • Ng W, Minasny B, Jones E, McBratney A (2022) To spike or to localize? Strategies to improve the prediction of local soil properties using regional spectral library. Geoderma 406:115501

    Article  CAS  Google Scholar 

  • Nocita M, Stevens A, Noon C, van Wesemael B (2013) Prediction of soil organic carbon for different levels of soil moisture using Vis-NIR spectroscopy. Geoderma 199:37–42

    Article  CAS  Google Scholar 

  • Novaes CG, Bezerra MA, da Silva EGP, dos Santos AMP, Romão ILS, Nesto JHS (2016) A review of multivariate designs applied to the optimization of methods based on inductively coupled plasma optical emission spectrometry (ICP OES). Microchem J 128:331–346

    Article  CAS  Google Scholar 

  • Nowkandeh SM, Noroozi AA, Homaee M (2018) Estimating soil organic matter content form Hyperion reflectance images using PLSR, PCR, MinR and SWR models in semi-arid regions of Iran. Environ Dev 25:23–32

    Article  Google Scholar 

  • Nyamangara J, Mzezewa J (1999) The effects of long-term sewage sludge application on Zn, Cu, Ni and Pb levels in clay loam soil under pasture grass in Zimbabwe. Agric Ecosyst Environ 73:199–204

    Article  CAS  Google Scholar 

  • Paltseva AA, Deeb M, Di Iorio E, Circelli L, Cheng Z, Colombo C (2022) Prediction of bioaccessible lead in urban and suburban soils with Vis-NIR diffuse reflectance spectroscopy. Sci Total Environ 809:151107

    Article  CAS  Google Scholar 

  • Pudelko A, Chodak M (2020) Estimation of total nitrogen and organic carbon contents in mine soils with NIR reflectance spectroscopy and various chemometric methods. Geoderma 368:114306

    Article  CAS  Google Scholar 

  • Qu M, Guang X, Liu H, Zhao Y, Huang B (2022) Additional sampling using in-situ portable X-ray fluorescence (PXRF) for rapid and high-precision investigation of soil heavy metals at a regional scale. Environ Pollut 292:118324

    Article  CAS  Google Scholar 

  • Reis AS, Rodrigues M, Leboso G, dos Santos AA, de Oliveira KM, Furlanetto RH, Crusiol LGT, Cezar E, Nanni MR (2021) Detection of soil organic matter using hyperspectral imaging sensor combined with multivariate regression modeling procedures. Remote Sens Appl Soc Environ 22:100492

    Google Scholar 

  • Rocha DR, Melquiades FL, Thomaz EL (2019) Modeling the soil burnt effect for temperature prediction by energy dispersive X ray fluorescence in an haplic cambisol soil. Appl Radiat Isot 150:26–30

    Article  CAS  Google Scholar 

  • Rowan LC, Kingston MJ, Crowley JK (1986) Spectral reflectance of carbonatites and related alkalic igneous rocks; selected samples from four North American localities. Econ Geol 81:857–871

    Article  CAS  Google Scholar 

  • Sabetizade M, Gorji M, Roudier P, Zolfaghari AA, Keshavarzi A (2021) Combination of MIR spectroscopy and environmental covariates to predict soil organic carbon in a semi-arid region. Catena 196:104844

    Article  CAS  Google Scholar 

  • Seema, Ghosh AK, Das BS, Reddy N (2020) Application of VIS-NIR spectroscopy for estimation of soil organic carbon using different spectral preprocessing techniques and multivariate methods in the middle Indo-Gangetic plains of India. Geoderma Reg 23:e00349

    Article  Google Scholar 

  • Seybold CA, Ferguson R, Wysocki D, Bailey S, Anderson J, Nester B, Schoenberger P, Wills S, Libohova Z, Hoover D, Thomas P (2019) Application of mid infrared spectroscopy in soil survey. Soil Sci Soc Am J 83:1746–1759

    Article  CAS  Google Scholar 

  • Sharaf MA, Illman DL, Kowalski BR (1986) Chemometrics. Wiley, New York

    Google Scholar 

  • Shen ZQ, Shan YJ, Peng LP, Jiang YG (2013) Mapping of total carbon and clay contents in glacial till soil using on-the-go near-infrared reflectance spectroscopy and partial least squares regression. Pedosphere 23(3):305–311

    Article  Google Scholar 

  • Shi T, Chen Y, Liu Y, Wu G (2014) Visible and near-infrared reflectance spectroscopy - an alternative for monitoring soil contamination by heavy metals. J Hazard Mater 265:166–176

    Article  CAS  Google Scholar 

  • Soriano-Disla JM, Janik LJ, Allen DJ, McLaughlin MJ (2017) Evaluation of the performance of portable visible-infrared instruments for the prediction of soil properties. Biosyst Eng 161:24–36

    Article  Google Scholar 

  • Stoner ER, Baumgardner MF (1981) Characteristic variations in reflectance of surface soils. Soil Sci Soc Am J 45:1161–1165

    Article  Google Scholar 

  • Sun W, Zhang X, Sun X, Sun Y, Cen Y (2018) Predicting nickel concentration in soil using reflectance spectroscopy associated with organic matter and clay minerals. Geoderma 327:25–35

    Article  CAS  Google Scholar 

  • Sun W, Liu S, Zhang X, Li Y (2022) Estimation of soil organic matter content using selected spectral subset of hyperspectral data. Geoderma 409:115653

    Article  CAS  Google Scholar 

  • Sun W, Zhang X (2017) Estimating soil zinc concentrations using reflectance spectroscopy. Int J Appl Earth Obs Geoinf 58:126–133

    Google Scholar 

  • Tinti A, Tugnoli V, Bonora S, Francioso O (2015) Recent applications of vibrational mid-infrared (IR) spectroscopy for studying soil components: a review. J Cent Eur Agric 16:1–22

    Article  Google Scholar 

  • Todorova M, Atanassova S, Sitaula B, Apturachim D, Valkova P, Dermendgieva D (2012) Application of NIRS as a rapid and alternative method for prediction of heavy metals content in soil. Agric Sci Technol 4:440–444

    Google Scholar 

  • Tümsavaş Z, Tekin Y, Ulusoy Y, Mouazen AM (2019) Prediction and mapping of soil clay and sand contents using visible and near-infrared spectroscopy. Biosyst Eng 177:90–100

    Article  Google Scholar 

  • Vohland M, Ludwig M, Thiele-Bruhn S, Ludwig B (2014) Determination of soil properties with visible to near- and mid-infrared spectroscopy: effects of spectral variable selection. Geoderma 223–225:88–96

    Article  Google Scholar 

  • Wan M, Qu M, Hu W, Li W, Zhang C, Cheng H, Huang B (2019) Estimation of soil pH using pXRF spectrometry and Vis-NIR spectroscopy for rapid environmental risk assessment of soil heavy metals. Process Saf Environ Prot 132:73–81

    Article  CAS  Google Scholar 

  • Wang C, Zhang T, Pan X (2017) Potential of visible and near-infrared reflectance spectroscopy for the determination of rare earth elements in soil. Geoderma 306:120–126

    Article  CAS  Google Scholar 

  • Wang J, Cui L, Gao W, Shi T, Chen Y, Gao Y (2014) Prediction of low heavy metal concentrations in agricultural soils using visible and near-infrared reflectance spectroscopy. Geoderma 216:1–9

    Article  Google Scholar 

  • Wang Q, Xie Z, Li F (2015) Using ensemble models to identify and apportion heavy metal pollution sources in agricultural soils on a local scale. Environ Pollut 206:227–235

    Article  CAS  Google Scholar 

  • Wang Q, Zhang H, Li F, Gu C, Qiao Y, Huang S (2021) Assessment of calibration methods for nitrogen estimation in wet and dry soil samples with different wavelength ranges using near-infrared spectroscopy. Comput Electron Agric 186:106181

    Article  Google Scholar 

  • Xing Z, Du C, Tian K, Ma F, Shen Y, Zhou J (2016) Application of FTIR-PAS and Raman spectroscopies for the determination of organic matter in farmland soils. Talanta 158:262–269

    Article  CAS  Google Scholar 

  • Xu D, Ma W, Chen S, Jiang Q, He K, Shi Z (2018a) Assessment of important soil properties related to Chinese soil taxonomy based on Vis-NIR reflectance spectroscopy. Comput Electron Agric 144:1–8

    Article  Google Scholar 

  • Xu S, Zhao Y, Wang M, Shi X (2018b) Comparison of multivariate methods for estimating selected soil properties from intact soil cores of paddy fields by Vis-NIR spectroscopy. Geoderma 310:29–43

    Article  CAS  Google Scholar 

  • Xuebin X, Changwen D, Fei M, Yazhen S, Ke W, Dong L, Jianmin Z (2019) Detection of soil organic matter from laser-induced breakdown spectroscopy (LIBS) and mid infrared spectroscopy (FTIR-ATR) coupled with multivariate techniques. Geoderma 355:113905

    Article  Google Scholar 

  • Xue-Yu H (2013) Application of visible/near-infrared spectra in modeling of soil total phosphorus. Pedosphere 23(4):417–421

    Article  Google Scholar 

  • Yu X, Liu Q, Wang Y, Liu X, Liu X (2016) Evaluation of MLSR and PLSR for estimating soil element contents using visible/near-infrared spectroscopy in apple orchards on the Jiaodong peninsula. CATENA 137:340–349

    Article  CAS  Google Scholar 

  • Zhang S, Shen Q, Nie C, Huang Y, Wang J, Hu Q, Ding X, Zhou Y, Chen Y (2019) Hyperspectral inversion of heavy metal content in reclaimed soil from a mining wasteland based on different spectral transformation and modeling methods. Spectrochim Acta A: Mol Biomol Spectrosc 211:393–400

    Article  CAS  Google Scholar 

  • Zhang Y, Li M, Zheng L, Zhao Y, Pei X (2016) Soil nitrogen content forecasting based on real-time NIR spectroscopy. Comput Electron Agric 124:29–36

    Article  Google Scholar 

  • Zhao D, Arshad M, Wang J, Triantafilis J (2021) Soil exchangeable cations estimation using Vis-NIR spectroscopy in different depths: effects of multiple calibration models and spiking. Comput Electron Agric 182:105990

    Article  Google Scholar 

  • Zhao S, Afgan MS, Zhu H, Gao X (2022) Femtosecond laser filamentation-induced breakdown spectroscopy combined with chemometrics methods for soil heavy metal analysis. Optik 251:168444

    Article  CAS  Google Scholar 

Download references

Funding

This research was supported by the project “SHS—Soil health surrounding former mining areas: characterization, risk analysis, and intervention,” which is financed by national funds from the Norte Portugal Regional Coordination and Development Commission (CCDR-N), Grant Number: NORTE-01–0145-FEDER-000056.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jelena Milinovic.

Ethics declarations

Ethical approval

The research did not involve any studies with human participants and/or animals.

Consent to participate

Informed consent was obtained from all individual participants included in the study.

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Responsible editor: Woo-Jung Choi

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Milinovic, J., Vale, C. & Azenha, M. Recent advances in multivariate analysis coupled with chemical analysis for soil surveys: a review. J Soils Sediments 23, 1085–1098 (2023). https://doi.org/10.1007/s11368-022-03377-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-022-03377-8

Keywords

Navigation