Skip to main content

Advertisement

Log in

The soil microbiomes of the Brazilian Cerrado

  • Soils, Sec 5 • Soil and Landscape Ecology • Review Article
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Purpose

The slightly exuberant appearance suggests a misleading idea of an insignificant diversity of microorganisms in Cerrado soils. Thus, a review is necessary, gathering essential information on the microbiology of the Cerrado soil, and its biogeochemical processes, as well as the effects of anthropogenic impacts on this important biome.

Materials and methods

We reviewed studies of microbiota, bacteria, archaea, and fungi, from the Cerrado soil, which were carried out by metagenomic methods, or amplicons sequencing. Also, we evaluated the descriptions of the Cerrado’s characteristics, and describe the implications of the expansion of agricultural areas, anthropic impacts, and wildfires on the soil microbiota.

Results and discussion

The acidic soil, subject to variations in nutrient cycling depending on the climatic season, reflects on the structures of the communities of the main bacterial groups of Proteobacteria, Acidobacteria, and Actinobacteria. Members of the Archaea are also abundant in the Cerrado soil, with an emphasis on representatives of the groups Euryarchaeota, Crenarchaeota, and Thaumarchaeota. The fungi found in Cerrado soils are normally dominated by Ascomycota and Basidiomycota, which exert influence of the impact of land use, such as grazing and agriculture. Despite its immense microbial biodiversity, the Cerrado constantly suffers the impacts of the “new agricultural frontier,” which has been devastating the biome through the cultivation of sugarcane, maize, cotton, and soybean monocultures, in particular.

Conclusions

These activities, with consequent loss of native areas of the Cerrado, modify the microbiome present in the soil, changing the flow of nutrients and interfering in biogeochemical processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Not applicable.

References

  • Abalos D, Sanz-Cobena A, Andreu G, Vallejo A (2017) Rainfall amount and distribution regulate DMPP effects on nitrous oxide emissions under semiarid Mediterranean conditions. Agric Ecosyst Environ 238:36–45

    CAS  Google Scholar 

  • Acosta-Martínez V, Dowd SE, Sun Y, Allen VG (2008) Tag-encoded pyrosequencing analysis of bacterial diversity in a single soil type as affected by management and land use. Soil Biol Biochem 40:2762–2770

    Google Scholar 

  • Ali SW, Yu FB, Li LT, Li XH, Gu LF, Jiang JD, Li SP (2012) Studies revealing bioremediation potential of the strain Burkholderia sp. GB-01 for abamectin contaminated soils. World J Microbiol Biotechnol 28:39–45

    CAS  Google Scholar 

  • Alves-Prado HF, Pavezzi FC, Leite RS, de Oliveira VM, Sette LD, Dasilva R (2010) Screening and production study of microbial xylanase producers from Brazilian Cerrado. Appl Biochem Biotechnol 161:333–346

    CAS  Google Scholar 

  • Araujo JF, de Castro AP, Costa MM, Togawa RC, Júnior GJ, Quirino BF, Bustamante MM, Williamson L, Handelsman J, Krüger RH (2012) Characterization of soil bacterial assemblies in Brazilian savanna-like vegetation reveals acidobacteria dominance. Microb Ecol 64:760–770

    CAS  Google Scholar 

  • Archibald S, Lehmann CER, Gomez-Dans J, Bradstock RA (2013) Defining pyromes and global syndromes of fire. Proc Natl Acad Sci U S A 10:6442–6447

    Google Scholar 

  • Arnold AE, Lutzoni F (2007) Diversity and host range of foliar fungal endophytes: are tropical leaves biodiversity hotspots? Ecology 88:541–549

    Google Scholar 

  • Arraes FB, Benoliel B, Burtet RT, Costa PL, Galdino AS, Lima LH, Marinho-Silva C, Oliveira-Pereira L, Pfrimer P, Procópio-Silva L, Reis VC, Felipe MS (2005) General metabolism of the dimorphic and pathogenic fungus Paracoccidioides brasiliensis. Genet Mol Res 4:290–308

    CAS  Google Scholar 

  • Baldrian P (2017) Forest microbiome: diversity, complexity and dynamics. FEMS Microbiol Rev 41:109–130

    CAS  Google Scholar 

  • Balota EL, Auler PAM (2011) Soil microbial biomass under different management and tillage systems of permanent intercropped cover species in an orange orchard. Braz J Soil Sci 35:1873–1883

    Google Scholar 

  • Banerjee S, Thrall PH, Bissett A, van der Heijden MGA, Richardson AE (2018) Linking microbial co-occurrences to soil ecological processes across a woodland-grassland ecotone. Ecol Evol 8:8217–8230

    Google Scholar 

  • Baraúna AC, Rouws LFM, Simoes-Araujo JL, Dos Reis Junior FB, Iannetta PPM, Maluk M, Goi SR, Reis VM, James EK, Zilli JE (2016) Rhizobium altiplani sp. nov., isolated from effective nodules on Mimosa pudica growing in untypically alkaline soil in central Brazil. Int J Syst Evol Microbiol 66:4118–4124

    Google Scholar 

  • Barbosa PMG, de Morais TP, de Andrade Silva CA, da Silva Santos FR, Garcia NFL, Fonseca GG, Leite RSR, da Paz MF (2018) Biochemical characterization and evaluation of invertases produced from Saccharomyces cerevisiae CAT-1 and Rhodotorula mucilaginosa for the production of fructooligosaccharides. Prep Biochem Biotechnol 48:506–513

    CAS  Google Scholar 

  • Barcellos FG, Batista JS, Menna P, Hungria M (2009) Genetic differences between Bradyrhizobium japonicum variant strains contrasting in N(2)-fixation efficiency revealed by representational difference analysis. Arch Microbiol 191(2):113–122

    CAS  Google Scholar 

  • Barcellos FG, Menna P, da Silva Batista JS, Hungria M (2007) Evidence of horizontal transfer of symbiotic genes from a Bradyrhizobium japonicum inoculant strain to indigenous diazotrophs Sinorhizobium (Ensifer) fredii and Bradyrhizobium elkanii in a Brazilian Savannah soil. Appl Environ Microbiol 73:2635–2643

    CAS  Google Scholar 

  • Barnard RL, Osborne CA, Firestone MK (2013) Responses of soil bacterial and fungal communities to extreme desiccation and rewetting. ISME J 7:2229–2241

    CAS  Google Scholar 

  • Bartossek R, Nicol GW, Lanzen A, Klenk HP, Schleper C (2010) Homologues of nitrite reductases in ammonia-oxidizing archaea: diversity and genomic context. Environ Microbiol 12:1075–1088

    CAS  Google Scholar 

  • Batista JSS, Hungria M, Barcellos FG, Ferreira MC, Mendes IC (2007) Variability in Bradyrhizobium japonicum and B. elkanii seven years after introduction of both the exotic microsymbiont and the soybean host in a Cerrados soil. Microb Ecol 53:270–284

    Google Scholar 

  • Beato FB, Bergdahl B, Rosa CA, Forster J, Gombert AK (2016) Physiology of Saccharomyces cerevisiae strains isolated from Brazilian biomes: new insights into biodiversity and industrial applications. FEMS Yeast Res 16:fow076

    Google Scholar 

  • Bell MJ, Cloy JM, Topp CFE, Ball BC, Bagnall A, Rees RM, Chadwick DR (2016) Quantifying N2O emissions from intensive grassland production: the role of synthetic fertilizer type, application rate, timing and nitrification inhibitors. J Agric Sci 154:812–827

    CAS  Google Scholar 

  • Belmok A, Rodrigues-Oliveira T, Lopes FAC, Miranda HS, Krüger RH, Kyaw CM (2019) Long-term effects of periodical fires on archaeal communities from Brazilian Cerrado soils. Archaea 2019:6957210

    Google Scholar 

  • Benoliel B, Torres FA, de Moraes LM (2013) A novel promising Trichoderma harzianum strain for the production of a cellulolytic complex using sugarcane bagasse in natura. Springerplus 2:656

    Google Scholar 

  • Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28:1327–1350

    CAS  Google Scholar 

  • Blanco AJV, Costa MO, Silva RDN, Albuquerque FS, Melo ATO, Lopes FAC, Steindorff AS, Barbosa ET, Ulhoa CJ, Lobo Junior M (2018) Diversity and pathogenicity of Rhizoctonia species from the Brazilian Cerrado. Plant Dis 102(4):773–781

    Google Scholar 

  • Bonan GB (2008) Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320:1444–1449

    CAS  Google Scholar 

  • Bond WJ (2008) What limits trees in C4 grasslands and savannahs? Annu Rev Ecol Evol Syst 39:641–659

    Google Scholar 

  • Bowles TM, Barrios-Masias FH, Carlisle EA, Cavagnaro TR, Jackson LE (2016) Effects of arbuscular mycorrhizae on tomato yield, nutrient uptake, water relations, and soil carbon dynamics under deficit irrigation in field conditions. Sci Total Environ 566-567:1223–1234

    CAS  Google Scholar 

  • Braga LF, Oliveira FA, Couto EAPD, Santos KFDN, Ferreira EPB, Martin-Didonet CCG (2018) Polyphasic characterization of bacteria obtained from upland rice cultivated in Cerrado soil. Braz J Microbiol 49:20–28

    CAS  Google Scholar 

  • Braker G, Conrad R (2011) Diversity, structure, and size of N(2)O-producing microbial communities in soils-what matters for their functioning? Adv Appl Microbiol 75:33–70

    CAS  Google Scholar 

  • Busato JG, Zandonadi DB, Mól AR, Souza RS, Aguiar KP, Júnior FB, Olivares FL (2017) Compost biofortification with diazotrophic and P-solubilizing bacteria improves maturation process and P availability. J Sci Food Agric 97:949–955

    CAS  Google Scholar 

  • Bustamante MM, Nardoto GB, Pinto AS, Resende JC, Takahashi FS, Vieira LC (2012) Potential impacts of climate change on biogeochemical functioning of Cerrado ecosystems. Braz J Biol 72:655–671

    CAS  Google Scholar 

  • Carneiro Filho A, Costa K (2016) A expansão da soja no Cerrado: caminhos para a ocupação territorial, uso do solo e produção sustentável. Available at: http://www.inputbrasil.org/wp-content/uploads/2016/11/A-Expans%C3%A3o-da-Soja-noCerrado_Agroicone_INPUT.pdf, .

  • Cassman NA, Soares JR, Pijl A, Lourenço KS, van Veen JA, Cantarella H, Kuramae EE (2019) Nitrification inhibitors effectively target N2O-producing Nitrosospira spp. in tropical soil. Environ Microbiol 21:1241–1254

    CAS  Google Scholar 

  • Castro AP, Quirino B, Pappas G Jr, Kurokawa A, Neto E, Krüger R (2008) Diversity of soil fungal communities of Cerrado and its closely surrounding agriculture fields. Arch Microbiol 190:129–139

    CAS  Google Scholar 

  • Catao E, Castro AP, Barreto CC, Kruger RH, Kyaw CM (2013) Diversity of archaea in Brazilian savanna soils. Arch Microbiol 195:507–512

    CAS  Google Scholar 

  • Catão EC, Lopes FA, Araújo JF, de Castro AP, Barreto CC, Bustamante MM, Quirino BF, Krüger RH (2014) Soil acidobacterial 16S rRNA gene sequences reveal subgroup level differences between savanna-like Cerrado and Atlantic forest Brazilian biomes. Int J Microbiol 2014:156341

    Google Scholar 

  • Catão ECP, Thion C, Krüger RH, Prosser JI (2017) Ammonia oxidisers in a non-nitrifying Brazilian savannah soil. FEMS Microbiol Ecol 93:11

    Google Scholar 

  • Coelho MR, Carneiro NP, Marriel IE, Seldin L (2009) Molecular detection of nifH gene-containing Paenibacillus in the rhizosphere of sorghum Sorghum bicolor sown in Cerrado soil. Lett Appl Microbiol 48:611–617

    CAS  Google Scholar 

  • Costa FS, Macedo MWFS, Araújo ACM, Rodrigues CA, Kuramae EE, de Barros Alcanfor SK, Pessoa-Filho M, Barreto CC (2019) Assessing nickel tolerance of bacteria isolated from serpentine soils. Braz J Microbiol 50:705–713

    CAS  Google Scholar 

  • Cusack DF, Torn MS, McDowell WH, Silver WL (2010) The response of heterotrophic activity and carbon cycling to nitrogen additions and warming in two tropical soils. Glob ChangeBiol 16:2555–2572

    Google Scholar 

  • da Mota FF, Gomes EA, Marriel IE, Paiva E, Seldin L (2008) Bacterial and fungal communities in bulk soil and rhizospheres of aluminum-tolerant and aluminum-sensitive maize (Zea mays L.) lines cultivated in unlimed and limed Cerrado soil. J Microbiol Biotechnol 18(5):805–814

    Google Scholar 

  • da Silva K, De Meyer SE, Rouws LF, Farias EN, dos Santos MA, O’Hara G, Ardley JK, Willems A, Pitard RM, Zilli JE (2014) Bradyrhizobium ingae sp. nov., isolated from effective nodules of Inga laurina grown in Cerrado soil. Int J Syst Evol Microbiol 64:3395–3401

    Google Scholar 

  • da Silva Junior CA, Teodoro PE, Delgado RC, Teodoro LPR, Lima M, de Andréa PA, Baio FHR, de Azevedo GB, de Oliveira Sousa Azevedo GT, Capristo-Silva GF, Arvor D, Facco CU (2020) Persistent fire foci in all biomes undermine the Paris Agreement in Brazil. Sci Rep 10(1):16246

    Google Scholar 

  • Daniel R (2005) The metagenomics of soil. Nat Rev Microbiol 3:470–478

    CAS  Google Scholar 

  • de Araujo AS, Bezerra WM, Dos Santos VM, Nunes LA, de Lyra MD, do Vale Barreto Figueiredo M, Melo VM (2017a) Fungal diversity in soils across a gradient of preserved Brazilian Cerrado. J Microbiol 55:273–279

    Google Scholar 

  • de Araujo AS, Bezerra WM, Dos Santos VM, Rocha SM, Carvalho ND, de Lyra MD, Figueiredo MD, de Almeida Lopes ÂC, Melo VM (2017b) Distinct bacterial communities across a gradient of vegetation from a preserved Brazilian Cerrado. Antonie Van Leeuwenhoek 110:457–469

    Google Scholar 

  • de Araujo AS, Mendes LW, Bezerra WM, Nunes LAPL, Lyra MDCCP, Figueiredo MDVB, Melo VMM (2018) Archaea diversity in vegetation gradients from the Brazilian Cerrado. Braz J Microbiol 49:522–528

    Google Scholar 

  • de Azeredo LA, Castilho LR, Leite SG, Coelho RR, Freire D (2003) Protease production by Streptomyces sp. isolated from Brazilian Cerrado soil: optimization of culture medium employing statistical experimental design. Appl Biochem Biotechnol 105-108:749–755

    Google Scholar 

  • de Boer W, Gunnewiek PJ, Veenhuis M, Bock E, Laanbroek HJ (1991) Nitrification at low pH by aggregated chemolithotrophic bacteria. Appl Environ Microbiol 57:3600–3604

    Google Scholar 

  • de Castro VH, Schroeder LF, Quirino BF, Kruger RH, Barreto CC (2013) Acidobacteria from oligotrophic soil from the Cerrado can grow in a wide range of carbon source concentrations. Can J Microbiol 59:746–753

    Google Scholar 

  • de Castro AP, Sartori da Silva MR, Quirino BF, da Cunha Bustamante MM, Krüger RH, Thompson FL (2016) Microbial diversity in Cerrado biome (neotropical savanna) soils. PLoS One 11(2):e0148785

  • de Figueiredo CC, de Oliveira AD, Dos Santos IL, Ferreira EAB, Malaquias JV, de Sá MAC, de Carvalho AM, Dos Santos JDG Jr (2018) Relationships between soil organic matter pools and nitrous oxide emissions of agroecosystems in the Brazilian Cerrado. Sci Total Environ 618:1572–1582

    Google Scholar 

  • de Sales AN, de Souza AC, Moutta RO, Ferreira-Leitão VS, Schwan RF, Dias DR (2017) Use of lignocellulose biomass for endoxylanase production by Streptomyces termitum. Prep Biochem Biotechnol 47:505–512

    Google Scholar 

  • Dedysh SN, Yilmaz P (2018) Refining the taxonomic structure of the phylum Acidobacteria. Int J Syst Evol Microbiol 68:3796–3806

    CAS  Google Scholar 

  • Delgado-Baquerizo M, Oliverio AM, Brewer TE, Benavent-González A, Eldridge DJ, Bardgett RD, Maestre FT, Singh BK, Fierer N (2018) A global atlas of the dominant bacteria found in soil. Science 359:320–325

    CAS  Google Scholar 

  • Delitti WBC, Burger DM (2000) Carbon and mineral nutrient pools in a gallery forest at Mogi Guaçu River. Southeast Brazil Ann Sci For 57:39–48

    Google Scholar 

  • Delitti WBC, Meguro M, Pausas JG (2006) Biomass and mineral mass estimates in a “Cerrado” ecosystem. Braz J Bot 29:531–540

    Google Scholar 

  • Di HJ, Cameron KC, Podolyan A, Robinson A (2014) Effect of soil moisture status and a nitrification inhibitor, dicyandiamide, on ammonia oxidizer and denitrifier growth and nitrous oxide emissions in a grassland soil. Soil Biol Biochem 73:59–68

    CAS  Google Scholar 

  • Dirzo R, Rave PH (2003) Global state of biodiversity and loss. Annu Rev Environ Resour 28:137–167

    Google Scholar 

  • dos Reis FB Jr, Simon MF, Gross E, Boddey RM, Elliott GN, Neto NE, Loureiro Mde F et al (2010) Nodulation and nitrogen fixation by Mimosa spp. in the Cerrado and Caatinga biomes of Brazil. New Phytol 186(4):934–946

    Google Scholar 

  • Egidi E, McMullan-Fisher S, Morgan JW, May T, Zeeman B, Franks AE (2016) Fire regime, not time-since-fire, affects soil fungal community diversity and composition in temperate grasslands. FEMS Microbiol Lett 363:fnw196

    Google Scholar 

  • Eloy L, Schmidt IB, Borges SL, Ferreira MC, Dos Santos TA (2019) Seasonal fire management by traditional cattle ranchers prevents the spread of wildfire in the Brazilian Cerrado. Ambio 48:890–899

    Google Scholar 

  • Estrada-De Los Santos P, Bustillos-Cristales R, Caballero-Mellado J (2001) Burkholderia, a genus rich in plant-associated nitrogen fixers with wide environmental and geographic distribution. Appl Environ Microbiol 67:2790–2798

    CAS  Google Scholar 

  • Estrada-de Los Santos P, Palmer M, Chávez-Ramírez B, Beukes C, Steenkamp ET, Briscoe L, Khan N et al (2018) Whole genome analyses suggests that Burkholderia sensu lato contains two additional novel genera (Mycetohabitans gen. nov., and Trinickia gen. nov.): implications for the evolution of diazotrophy and nodulation in the Burkholderiaceae. Genes 9:389

    Google Scholar 

  • Ferreira MC, Hungria M (2002) Recovery of soybean inoculant strains from uncropped soils in Brazil. Field Crop Res 79(2):139–152

    Google Scholar 

  • Fierer N, Jackson R (2006) The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci U S A 103:626–631

    CAS  Google Scholar 

  • Fierer N, Bradford MA, Jackson RB (2007) Toward an ecological classification of soil bacteria. Ecology 88:1354–1364

    Google Scholar 

  • Fierer N, Leff JW, Adams BJ, Nielsen UN, Bates ST, Lauber CL, Owens S, Gilbert JA, Wall DH, Caporaso JG (2012) Cross-biome metagenomic analyses of soil microbial communities and their functional attributes. Proc Natl Acad Sci U S A 109:21390–21395

    CAS  Google Scholar 

  • Fonseca MB, Peix A, de Faria SM, Mateos PF, Rivera LP, Simões-Araujo JL, França MG, Isaias RM, Cruz C, Velázquez E, Scotti MR, Sprent JI, James EK (2012) Nodulation in Dimorphandra wilsonii Rizz. (Caesalpinioideae), a threatened species native to the Brazilian Cerrado. PLoS One 7:e49520

    CAS  Google Scholar 

  • Forzza RC, Leitman PM, Costa A, Carvalho AA, Peixoto AL, Walter BMT, Bicudo C et al (2010) Catalogo de plantas e fungos do Brasil. Instituto de Pesquisas Jardim Botanico, Rio de Janeiro

    Google Scholar 

  • Frąc M, Hannula SE, Bełka M, Jędryczka M (2018) Fungal biodiversity and their role in soil health. Front Microbiol 9:707

    Google Scholar 

  • Furey PC, Lee SS, Clemans DL (2020) Substratum-associated microbiota. Water Environ Res 92:1629–1648

    CAS  Google Scholar 

  • Gomes RC, Sêmedo LT, Soares RM, Linhares LF, Ulhoa CJ, Alviano CS, Coelho RR (2001) Purification of a thermostable endochitinase from Streptomyces RC1071 isolated from a cerrado soil and its antagonism against phytopathogenic fungi. J Appl Microbiol 90:653–661

    CAS  Google Scholar 

  • Guo J, Muhammad H, Lv X, Wei T, Ren X, Jia H, Atif S, Hua L (2020) Prospects and applications of plant growth promoting rhizobacteria to mitigate soil metal contamination: a review. Chemosphere 246:125823

    CAS  Google Scholar 

  • Han YN, Wei M, Han F, Fang C, Wang D, Zhong YJ, Guo CL, Shi XY, Xie ZK, Li FM (2020) Greater biofilm formation and increased biodegradation of polyethylene film by a microbial consortium of Arthrobacter sp. and Streptomyces sp. Microorganisms 8(12):1979

    CAS  Google Scholar 

  • Hannula SE, de Boer W, van Veen JA (2010) In situ dynamics of soil fungal communities under different genotypes of potato, including a genetically modified cultivar. Soil Biol Biochem 42:2211–2223

    CAS  Google Scholar 

  • Haridasan M (2001) Nutrient cycling as a function of landscape and biotic characteristics. In: McClain ME, Victoria RL, Richey JR (eds) The Cerrados of Central Brazil. The biochemistry of the Amazon Basin. Oxford University Press, New York

    Google Scholar 

  • Harman GE, Howell CR, Viterbo A, Chet I, Lorito M (2004) Trichoderma species--opportunistic, avirulent plant symbionts. Nat Rev Microbiol 2:43–56

    CAS  Google Scholar 

  • Hayatsu M, Tago K, Saito M (2008) Various players in the nitrogen cycle: diversity and functions of the microorganisms involved in nitrification and denitrification. Soil Sci Plant Nutr 54:33–45

    CAS  Google Scholar 

  • Hedin LO, Brookshire ENJ, Menge DNL, Barron AR (2009) The nitrogen paradox in tropical forest ecosystems. Annu Rev Ecol Evol Syst 40:613–635

    Google Scholar 

  • Hietz P, Turner BL, Wanek W, Richter A, Nock CA, Wright SJ (2011) Long-term change in the nitrogen cycle of tropical forests. Science. 334:664–666

    CAS  Google Scholar 

  • Houlton BZ, Bai E (2009) Imprint of denitrifying bacteria on the global terrestrial biosphere. Proc Natl Acad Sci U S A 106:21713–21716

    CAS  Google Scholar 

  • Huber KJ, Geppert AM, Wanner G, Fösel BU, Wüst PK, Overmann J (2016) The first representative of the globally widespread subdivision Acidobacteria, Vicinamibacter silvestris gen. nov., sp. nov., isolated from subtropical savannah soil. Int J Syst Evol Microbiol 66:2971–2979

    CAS  Google Scholar 

  • Hyder S, Inam-ul-Haq M, Bibi S, Humayun A, Ghuffar S, Iqbal S (2017) Novel potential of Trichoderma spp. as biocontrol agent. J Entomol Zool Stud 5:214–222

    Google Scholar 

  • Istvan P, Souza AA, Garay AV, Dos Santos DFK, de Oliveira GM, Santana RH, Lopes FAC, de Freitas SM, Barbosa JARG, Krüger RH (2018) Structural and functional characterization of a novel lipolytic enzyme from a Brazilian Cerrado soil metagenomic library. Biotechnol Lett 40:1395–1406

    CAS  Google Scholar 

  • Janssen PH (2006) Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. Appl Environ Microbiol 72(3):1719–1728

    CAS  Google Scholar 

  • Jansson JK, Hofmockel KS (2020) Soil microbiomes and climate change. Nat Rev Microbiol 18:35–46

    CAS  Google Scholar 

  • Jones RT, Robeson MS, Lauber CL, Hamady M, Knight R, Fierer N (2009) A comprehensive survey of soil acidobacterial diversity using pyrosequencing and clone library analyses. ISME J 3:442–453

    CAS  Google Scholar 

  • Khan MAW, Bohannan BJM, Nüsslein K, Tiedje JM, Tringe SG, Parlade E, Barberán A, Rodrigues JLM (2019) Deforestation impacts network co-occurrence patterns of microbial communities in Amazon soils. FEMS Microbiol Ecol 95:fiy230

    CAS  Google Scholar 

  • Kielak AM, Castellane TC, Campanharo JC, Colnago LA, Costa OY, Corradi da Silva ML, van Veen JA, Lemos EG, Kuramae EE (2017) Characterization of novel Acidobacteria exopolysaccharides with potential industrial and ecological applications. Sci Rep 7:41193

    CAS  Google Scholar 

  • Köhl J, Kolnaar R, Ravensberg WJ (2019) Mode of action of microbial biological control agents against plant diseases: relevance beyond efficacy. Front Plant Sci 10:845

    Google Scholar 

  • Kozovits AR, Bustamante MMC, Garofalo CR, Bucci S, Franco AC, Goldstein G, Meinzer FC (2007) Nutrient resorption and patterns of litter production and decomposition in a Neotropical Savanna. Funct Ecol 21:1034–1043

    Google Scholar 

  • Kumar M, Kumar P, Das P, Solanki R, Kapur MK (2020) Potential applications of extracellular enzymes from Streptomyces spp. in various industries. Arch Microbiol 202:1597–1615

    CAS  Google Scholar 

  • Lambin EF, Geist HJ, Lepers E (2003) Dynamics of land-use and land-cover change in tropical regions. Annu Rev Environ Resour 28:205–241

    Google Scholar 

  • Lehmann CE, Parr CL (2016) Tropical grassy biomes: linking ecology, human use and conservation. Philos Trans R Soc Lond Ser B Biol Sci 371:20160329

    Google Scholar 

  • Lehmann CE, Archibald SA, Hoffmann WA, Bond WJ (2011) Deciphering the distribution of the savannah biome. New Phytol 191:197–209

    Google Scholar 

  • Lehmann CE, Anderson TM, Sankaran M, Higgins SI, Archibald S, Hoffmann WA, Hanan NP et al (2014) Savannah vegetation-fire-climate relationships differ among continents. Science 343:548–552

    CAS  Google Scholar 

  • Leininger S, Urich T, Schloter M, Schwark L, Qi J, Nicol GW, Prosser JI, Schuster SC, Schleper C (2006) Archaea predominateamong ammonia-oxidizing prokaryotes in soils. Nature 442:806–809

    CAS  Google Scholar 

  • Lilienfein J, Wilcke W, Ayarza MA, Vilela L, Lima SC, Zech W (2000) Chemical fractionation of phosphorus, sulphur, and molybdenum in Brazilian savannah Oxisols under different land use. Geoderma:1–46

  • Limpiyakorn T, Fürhacker M, Haberl R, Chodanon T, Srithep P, Sonthiphand P (2013) amoA-encoding archaea in wastewater treatment plants: a review. Appl Microbiol Biotechnol 97:1425–1439

    CAS  Google Scholar 

  • Liu XJJ, Mosier AR, Halvorson AD, Reule CA, Zhang FS (2007) Dinitrogen and N2O emissions in arable soils: effect of tillage, N source and soil moisture. Soil Biol Biochem 39:2362–2370

    CAS  Google Scholar 

  • Lopes FA, Steindorff AS, Geraldine AM, Brandão RS, Monteiro VN, Lobo M Jr, Coelho AS, Ulhoa CJ, Silva RN (2012) Biochemical and metabolic profiles of Trichoderma strains isolated from common bean crops in the Brazilian Cerrado, and potential antagonism against Sclerotinia sclerotiorum. Fungal Biol 116:815–824

    CAS  Google Scholar 

  • Lopes MR, Lara CA, Moura MEF, Uetanabaro APT, Morais PB, Vital MJS, Rosa CA (2018) Characterisation of the diversity and physiology of cellobiose-fermenting yeasts isolated from rotting wood in Brazilian ecosystems. Fungal Biol 122:668–676

    CAS  Google Scholar 

  • Lourenço KS, Cassman NA, Pijl AS, van Veen JA, Cantarella H, Kuramae EE (2018) Nitrosospira sp. govern nitrous oxide emissions in a tropical soil amended with residues of bioenergy crop. Front Microbiol 10(9):674

    Google Scholar 

  • Lutzoni F, Pagem M, Reeb V (2011) Major fungal lineages are derived from lichen symbiotic ancestors. Nature 411:937–940

    Google Scholar 

  • Ma A, Zhuang X, Wu J, Cui M, Lv D, Liu C (2013) Ascomycota members dominate fungal communities during straw residue decomposition in arable soil. PLoS One 8:e66146

    CAS  Google Scholar 

  • Ma B, Dai Z, Wang H, Dsouza M, Liu X, He Y, Wu J, Rodrigues JL, Gilbert JA, Brookes PC, Xu J (2017) Distinct biogeographic patterns for Archaea, Bacteria, and Fungi along the vegetation gradient at the continental scale in Eastern China. Msystems 2:e00174–e00116

    CAS  Google Scholar 

  • Maia M, Capão A, Procópio L (2019) Biosurfactant produced by oil-degrading Pseudomonas putida AM-b1 strain with potential for microbial enhanced oil recovery. Bioremediat J 23:302–310

    CAS  Google Scholar 

  • Manoeli L, Suleiman AKA, Jacques RJS, Antoniolli ZI, de Siqueira FA, Kuramae EE, Roesch LFW (2014) Network topology reveals high connectance levels and few key microbial genera within soils. Front Environ Sci 2:1–10

    Google Scholar 

  • Marquina S, Pérez T, Donoso L, Giuliante A, Rasse R, Herrera F (2015) NO, N2O and CO2 soil emissions from Venezuelan corn fields under tillage and no-tillage agriculture. Nutr Cycl Agroecosyst 101:123–137

    CAS  Google Scholar 

  • Mendes LW, Kuramae EE, Navarrete AA, van Veen JA, Tsai SM (2014) Taxonomical and functional microbial community selection in soybean rhizosphere. ISME J 8:1577–1587

    CAS  Google Scholar 

  • Midgley DJ, Saleeba JA, Stewart MI, McGee PA (2007) Novel soil lineages of Archaea are present in semi-arid soils of eastern Australia. Can J Microbiol 53:129–138

    CAS  Google Scholar 

  • Muller C, Laughlin RJ, Spott O, Rutting T (2014) Quantification of N2O emission pathways via a N-15 tracing model. Soil Biol Biochem 72:44–54

    CAS  Google Scholar 

  • Mullis MM, Rambo IM, Baker BJ, Reese BK (2019) Diversity, ecology, and prevalence of antimicrobials in nature. Front Microbiol 10:2518

    Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GA, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858

    CAS  Google Scholar 

  • Nadeem SM, Ahmad M, Zahir ZA, Javaid A, Ashraf M (2014) The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnol Adv 32:429–448

    Google Scholar 

  • Nardoto GB, Bustamante MMC (2003) Effects of fire on soil nitrogen dynamics and microbial biomass in savannahs of Central Brazil. Pesq Agrop Brasileira 38:955–962

    Google Scholar 

  • Nardoto GB, Bustamante MMC, Pinto AS, Klink CA (2006) Nutrient use efficiency at ecosystem and species level in savannah areas of Central Brazil and impacts of fire. J Trop Ecol 22:191–201

    Google Scholar 

  • Nascimento RP, d’Avila-Levy CM, Souza RF, Branquinha MH, Bon EP, Pereira N Jr, Coelho RR (2005) Production and partial characterization of extracellular proteinases from Streptomyces malaysiensis, isolated from a Brazilian cerrado soil. Arch Microbiol 184:194–198

    CAS  Google Scholar 

  • Nunes HB, Goto BT, Coimbra JL, Oliveira JS, Tavares DG, Rocha MS, Silva FL, Soares ACF (2019) Is arbuscular mycorrhizal fungal species community affected by cotton growth management systems in the Brazilian Cerrado? An Acad Bras Cienc 91:e20180695

    CAS  Google Scholar 

  • Ochoa-Hueso R, Collins SL, Delgado-Baquerizo M, Hamonts K, Pockman WT, Sinsabaugh RL, Smith MD, Knapp AK, Power SA (2018) Drought consistently alters the composition of soil fungal and bacterial communities in grasslands from two continents. Glob Chang Biol 24:2818–2827

    Google Scholar 

  • Oliveira CA, Alves VMC, Marriel IE, Gomes EA, Sscotti MR, Carneiro NP, Guimaraes CT, Schaffert RE, Sá NMH (2009) Phosphate solubilizing microorganisms isolated from rhizosphere of maize cultivated in an oxisol of the Brazilian Cerrado Biome. Soil Biol Biochem 41:1782–1787

    CAS  Google Scholar 

  • Oliveira-Filho A, Ratter JA (2001) Vegetation physiognomies and woody flora of the Cerrado biome. In: Oliveira PS, Marquis RJ (eds) The Cerrados of Brazil: ecology and natural history of a neotropical savannah, Columbia edn. University Press, New York, pp 91–120

    Google Scholar 

  • Ormeño-Orrillo E, Gomes DF, Del Cerro P, Vasconcelos AT, Canchaya C, Almeida LG, Mercante FM, Ollero FJ, Megías M, Hungria M (2016) Genome of Rhizobium leucaenae strains CFN 299(T) and CPAO 29.8: searching for genes related to a successful symbiotic performance under stressful conditions. BMC Genomics 17:534

    Google Scholar 

  • Pajares S, Bohannan BJ (2016) Ecology of nitrogen fixing, nitrifying, and denitrifying microorganisms in tropical forest soils. Front Microbiol 7:1045

    Google Scholar 

  • Palacio M, Robledo GL, Reck MA, Grassi E, Góes-Neto A, Drechsler-Santos ER (2017) Decrypting the Polyporus dictyopus complex: recovery of Atroporus ryvarden and segregation of Neodictyopus gen. nov. (Polyporales, Basidiomyocta). PLoS One 12:e0186183

    Google Scholar 

  • Panth M, Hassler SC, Baysal-Gurel F (2020) Methods for management of soilborne diseases in crop production. Agriculture 10:16

    CAS  Google Scholar 

  • Paulitsch F, Dall’Agnol RF, Delamuta JRM, Ribeiro RA, da Silva Batista JS, Hungria M (2019a) Paraburkholderia guartelaensis sp. nov., a nitrogen-fixing species isolated from nodules of Mimosa gymnas in an ecotone considered as a hotspot of biodiversity in Brazil. Arch Microbiol 201:1435–1446

    CAS  Google Scholar 

  • Paulitsch F, Klepa MS, da Silva AR, do Carmo MRB, Dall’Agnol RF, Delamuta JRM, Hungria M, da Silva Batista JS (2019b) Phylogenetic diversity of rhizobia nodulating native Mimosa gymnas grown in a South Brazilian ecotone. Mol Biol Rep 46:529–540

    CAS  Google Scholar 

  • Pennington RT, Lehmann CER, Rowland LM (2018) Tropical savannahs and dry forests. Curr Biol 28:R541–R545

    CAS  Google Scholar 

  • Pereira JL, Queiroz RM, Charneau SO, Felix CR, Ricart CA, da Silva FL, Steindorff AS, Ulhoa CJ, Noronha EF (2014) Analysis of Phaseolus vulgaris response to its association with Trichoderma harzianum (ALL-42) in the presence or absence of the phytopathogenic fungi Rhizoctonia solani and Fusarium solani. PLoS One 9:e98234

    Google Scholar 

  • Pereira PHF, Macrae A, Reinert F, de Souza RF, Coelho RRR, Pötter G, Klenk HP, Labeda DP (2017) Streptomyces odonnellii sp. nov., a proteolytic streptomycete isolated from soil under cerrado (savanna) vegetation cover. Int J Syst Evol Microbiol 67:5211–5215

    CAS  Google Scholar 

  • Pessoa-Filho M, Barreto CC, dos Reis Junior FB, Fragoso RR, Costa FS, de Carvalho MI, de Andrade LR (2015) Microbiological functioning, diversity, and structure of bacterial communities in ultramafic soils from a tropical savanna. Antonie Van Leeuwenhoek 107:935–949

    CAS  Google Scholar 

  • Petinate SD, Branquinha MH, Coelho RR, Vermelho AB, Giovanni-De-Simone S (1999) Purification and partial characterization of an extracellular serine-proteinase of Streptomyces cyaneus isolated from Brazilian cerrado soil. J Appl Microbiol 87:557–563

    CAS  Google Scholar 

  • Philippot L, Hallin S, Schloter M (2007) Ecology of denitrifying prokaryotes in agricultural soil. Adv Agron 96:249–305

    CAS  Google Scholar 

  • Philippot L, Bru D, Saby NP, Cuhel J, Arrouays D, Simek M, Hallin S (2009) Spatial patterns of bacterial taxa in nature reflect ecological traits of deep branches of the 16S rRNA bacterial tree. Environ Microbiol 11:3096–3104

    CAS  Google Scholar 

  • Philippot L, Andersson SG, Battin TJ, Prosser JI, Schimel JP, Whitman WB, Hallin S (2010) The ecological coherence of high bacterial taxonomic ranks. Nat Rev Microbiol 8:523–529

    CAS  Google Scholar 

  • Pinto OHB, Costa FS, Rodrigues GR, da Costa RA, da Rocha FG, Júnior ORP, Barreto CC (2020) Soil acidobacteria strain AB23 resistance to oxidative stress through production of carotenoids. Microb Ecol:1–11

  • Placella SA, Brodie EL, Firestone MK (2012) Rainfall-induced carbon dioxide pulses result from sequential resuscitation of phylogenetically clustered microbial groups. Proc Natl Acad Sci U S A 109:10931–10936

    CAS  Google Scholar 

  • Poelchau MF, Coates BS, Childers CP, Peréz de León AA, Evans JD, Hackett K, Shoemaker D (2016) Agricultural applications of insect ecological genomics. Curr Opin Insect Sci 13:61–69

    Google Scholar 

  • Procópio L (2020a) Changes in microbial community in the presence of oil and chemical dispersant and their effects on the corrosion of API 5L steel coupons in a marine-simulated microcosm. Appl Microbiol Biotechnol 104:6397–6411

    Google Scholar 

  • Procópio L (2020b) The era of ‘omics’ technologies in the study of microbiologically influenced corrosion. Biotechnol Lett 42:341–356

    Google Scholar 

  • Procópio L, Macrae A, van Elsas JD, Seldin L (2013) The putative α/β-hydrolases of Dietzia cinnamea P4 strain as potential enzymes for biocatalytic applications. Antonie Van Leeuwenhoek 103:635–646

    Google Scholar 

  • Quecine MC, Araujo WL, Marcon J, Gai CS, Azevedo JL, Pizzirani-Kleiner AA (2008) Chitinolytic activity of endophytic Streptomyces and potential for biocontrol. Lett Appl Microbiol 47:486–491

    CAS  Google Scholar 

  • Quirino BF, Pappas GJ, Tagliaferro AC, Collevatti RG, Neto EL, da Silva MR, Bustamante MM, Krüger RH (2009) Molecular phylogenetic diversity of bacteria associated with soil of the savanna-like Cerrado vegetation. Microbiol Res 164(1):59–70

    CAS  Google Scholar 

  • Rachid CT, Santos AL, Piccolo MC, Balieiro FC, Coutinho HL, Peixoto RS, Tiedje JM, Rosado AS (2013) Effect of sugarcane burning or green harvest methods on the Brazilian Cerrado soil bacterial community structure. PLoS One 8:e59342

    CAS  Google Scholar 

  • Ramos-Neto MB, Pivello VR (2000) Lightning fires in a Brazilian savannah national park: rethinking management strategies. Environ Manag 26:675–684

    CAS  Google Scholar 

  • Rampelotto PH, de Siqueira FA, Barboza AD, Roesch LF (2013) Changes in diversity, abundance, and structure of soil bacterial communities in Brazilian savannah under different land use systems. Microb Ecol 66:593–607

    Google Scholar 

  • Resende J (2001) A ciclagem de nutrientes ern cireas de Cerrado e a influencia de queimadas conlroladas. PhD thesis, University of Brasilia, Brasilia-Brazil.

  • Resende JCF, Markewitz D, Klink CA, Bustamante MMC, Davidson EA (2010) Phosphorus cycling in a small watershed in the Brazilian Cerrado: impacts of frequent burning. Biogeochemistry 105:105–118

    Google Scholar 

  • Ribeiro J, Walter BMT (2008) As Principais Fitofisionomias do Bioma Cerrado. In: Sano SM, Almeida SP, Riberio JF (eds) Cerrado: ecologia e flora, 1rd edn. EMBRAPA-Cerrados, Brasília, pp 152–212

    Google Scholar 

  • Ribeiro RA, Rogel MA, López-López A, Ormeño-Orrillo E, Barcellos FG, Martínez J, Thompson FL, Martínez-Romero E, Hungria M (2012) Reclassification of Rhizobium tropici type A strains as Rhizobium leucaenae sp. nov. Int J Syst Evol Microbiol 6:1179–1184

    Google Scholar 

  • Rocha SMB, Antunes JEL, Araujo FF, Mendes LW, Sousa RS, Araujo ASF (2019) Soil microbial C:N:P ratio across physiognomies of Brazilian Cerrado Soil microbial biomass across a gradient of preserved native Cerrado. An Acad Bras Cienc 91:e20190049

    Google Scholar 

  • Rodrigues GR, Pinto OHB, Schroeder LF, Fernandes GDR, Costa OYA, Quirino BF, Kuramae EE, Barreto CC (2020) Unraveling the xylanolytic potential of Acidobacteria bacterium AB60 from Cerrado soils. FEMS Microbiol Lett 367:fnaa149

    Google Scholar 

  • Rodríguez-Echeverría S, Teixeira H, Correia M, Timóteo S, Heleno R, Öpik M, Moora M (2017) Arbuscular mycorrhizal fungi communities from tropical Africa reveal strong ecological structure. New Phytol 213:380–390

    Google Scholar 

  • Rolim L, Santiago TR, Dos Reis Junior FB, de Carvalho MI, do Vale HMM, Hungria M, Silva LP (2019) Identification of soybean Bradyrhizobium strains used in commercial inoculants in Brazil by MALDI-TOF mass spectrometry. Braz J Microbiol 50:905–914

    CAS  Google Scholar 

  • Rughöft S, Herrmann M, Lazar CS, Cesarz S, Levick SR, Trumbore SE, Küsel K (2016) Community composition and abundance of bacterial, archaeal and nitrifying populations in savannah soils on contrasting bedrock material in Kruger National Park, South Africa. Front Microbiol 7:1638

    Google Scholar 

  • Santos IL, Oliveira AD, Figueiredo CC, Malaquias JV, Santos Júnior JDDG, Ferreira EAB, Sá MAC, Carvalho AM (2016) Soil N2O emissions from long-term agroecosystems: interactive effects of rainfall seasonality and crop rotation in the Brazilian Cerrado. Agric Ecosyst Environ 233:111–120

    Google Scholar 

  • Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, Levesque CA, Chen W (2012) Fungal Barcoding Consortium; Fungal Barcoding Consortium Author List. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc Natl Acad Sci U S A 109:6241–6246

    CAS  Google Scholar 

  • Searchinger TD, Estes L, Thornton PK, Beringer T, Notenbaert A, Rubenstein D, Heimlich R, Licker R, Herrero M (2015) High carbon and biodiversity costs from converting Africa’s wet savannahs to cropland. Nat Clim Chang 5:481–486

    Google Scholar 

  • Shary S, Ralph SA, Hammel KE (2007) New insights into the ligninolytic capability of a wood decay ascomycete. Appl Environ Microbiol 73:6691–6694

    CAS  Google Scholar 

  • Shen JP, Chen CR, Lewis T (2016) Long term repeated fire disturbance alters soil bacterial diversity but not the abundance in an Australian wet sclerophyll forest. Sci Rep 6:19639

    CAS  Google Scholar 

  • Silva IR, Mendonça ES (2007) Matéria orgânica do solo. In: Novais RF, Alvarez VH, Barros NF, Ferreira RL, Cantarutti RB, Neves JCL (eds) Fertilidade do solo, edn. Sociedade Brasileira de Ciência do Solo, Viçosa, pp 275–374

    Google Scholar 

  • Silva DML, Camargo PB, Mcdowell WH, Vieira I, Salomão MSMB, Martinelli LA (2012) Influence of land use changes on water chemistry in streams in the State of São Paulo, southeast Brazil. Anais Acad Bras Ciências 84:919–930

    CAS  Google Scholar 

  • Silva MRS, Castro AP, Krüger RH, Bustamante M (2019) Soil bacterial communities in the Brazilian Cerrado: response to vegetation type and management. Acta Oecol 100:103463

    Google Scholar 

  • Soares JR, Cassman NA, Kielak AM, Pijl A, Carmo JB, Lourenço KS, Laanbroek HJ, Cantarella H, Kuramae EE (2016) Nitrous oxide emission related to ammonia-oxidizing bacteria and mitigation options from N fertilization in a tropical soil. Sci Rep 6:30349

    CAS  Google Scholar 

  • Sood M, Kapoor D, Kumar V, Sheteiwy MS, Ramakrishnan M, Landi M, Araniti F, Sharma A (2020) Trichoderma: the “secrets” of a multitalented biocontrol agent. Plants 9:E762

    Google Scholar 

  • Souza AC, Carvalho FP, Silva e Batista CF, Schwan RF, Dias DR (2013a) Sugarcane bagasse hydrolysis using yeast cellulolytic enzymes. J Microbiol Biotechnol 23:1403–1412

    Google Scholar 

  • Souza RC, Cantão ME, Vasconcelos ATR, Nogueira MA, Hungria M (2013b) Soil metagenomics reveals differences under conventional and no-tillage with crop rotation or succession. Appl Soil Ecol 72:49–61

    Google Scholar 

  • Souza RC, Mendes IC, Reis-Junior FB, Carvalho FM, Nogueira MA, Vasconcelos AT, Vicente VA, Hungria M (2016) Shifts in taxonomic and functional microbial diversity with agriculture: How fragile is the Brazilian Cerrado? BMC Microbiol 16:42

    Google Scholar 

  • Souza MS, de Baura VA, Santos SA, Fernandes-Júnior PI, Reis Junior FB, Marques MR, Paggi GM, da Silva BM (2017a) Azospirillum spp. from native forage grasses in Brazilian Pantanal floodplain: biodiversity and plant growth promotion potential. World J Microbiol Biotechnol 33:81

    Google Scholar 

  • Souza MS, de Baura VA, Santos SA, Fernandes-Júnior PI, Reis Junior FB, Marques MR, Paggi GM, da Silva BM (2017b) Azospirillum spp. from native forage grasses in Brazilian Pantanal floodplain: biodiversity and plant growth promotion potential. World J Microbiol Biotechnol 33(4):81. https://doi.org/10.1007/s11274-017-2251-2254

    Article  Google Scholar 

  • Sperandio EM, Martins do Vale HM, Moreira GAM (2015) Yeasts from native Brazilian Cerrado plants: occurrence, diversity and use in the biocontrol of citrus green mould. Fungal Biol 119:984–993

    Google Scholar 

  • Suárez-Moreno Z, Caballero-Mellado J, Coutinho B, Mendonça-Previato L, James E, Venturi V (2012) Common features of environmental and potentially beneficial plant-associated Burkholderia. Microb Ecol 63:249–266

    Google Scholar 

  • Subbarao GV, Nakahara K, Hurtado MP, Ono H, Moreta DE, Salcedo AF, Yoshihashi AT et al (2009) Evidence for biological nitrification inhibition in Brachiaria pastures. Version 2. Proc Natl Acad Sci U S A 106:17302–17307

    CAS  Google Scholar 

  • Suela MS, Naves Sales A, Teixeira Magalhães-Guedes K, Ribeiro Dias D, Schwan RF (2013) Brazilian Cerrado soil Actinobacteria ecology. Biomed Res Int 2013:503805

    Google Scholar 

  • Sun JM, Irzykowski W, Jędryczka M, Han FX (2005) Analysis of the genetic structure of Sclerotinia sclerotiorum (Lib.) de Bary populations from different regions and host plants by random amplified polymorphic DNA markers. J Integr Plant Biol 47:385–395

    CAS  Google Scholar 

  • Townsend AR, Asner GP, Cleveland CC (2008) The biogeochemical heterogeneity of tropical forests. Trends Ecol Evol 23:424–431

    Google Scholar 

  • Trichez D, Steindorff AS, Soares CEVF, Formighieri EF, Almeida JRM (2019) Physiological and comparative genomic analysis of new isolated yeasts Spathaspora sp. JA1 and Meyerozyma caribbica JA9 reveal insights into xylitol production. FEMS Yeast Res 19:foz034.

  • US-EPA (2012) Global anthropogenic non-CO2 greenhouse gas emissions: 1990–2030. Washington, U.S. https://www.epa.gov/global-mitigation-non-co2-greenhousegases/global-anthropogenic-non-co2-greenhouse-gas-emissions, .

  • van der Heijden MGA, Bardgett RD, Van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11:296–310

    Google Scholar 

  • van der Meij A, Worsley SF, Hutchings MI, van Wezel GP (2017) Chemical ecology of antibiotic production by actinomycetes. FEMS Microbiol Rev 41:392–416

    Google Scholar 

  • Vargas Hoyos HA, Santos SN, Padilla G, Melo IS (2019) Genome sequence of Streptomyces cavourensis 1AS2a, a rhizobacterium isolated from the Brazilian Cerrado biome. Microbiol Resour Announc 8:e00065–e00019

    Google Scholar 

  • Vieira CK, Borges LGA, Marconatto L, Giongo A, Stürmera SL (2018) Microbiome of a revegetated iron-mining site and pristine ecosystems from the Brazilian Cerrado. Appl Soil Ecol 131:55–65

    Google Scholar 

  • Vinale F, Nicoletti R, Lacatena F, Marra R, Sacco A, Lombardi N, d’Errico G, Digilio MC, Lorito M, Woo SL (2017) Secondary metabolites from the endophytic fungus Talaromyces pinophilus. Nat Prod Res 31:1778–1785

    CAS  Google Scholar 

  • Vitorino LC, Silva FOD, Cruvinel BG, Bessa LA, Rosa M, Souchie EL, Silva FG (2020) Biocontrol potential of Sclerotinia sclerotiorum and physiological changes in soybean in response to Butia archeri palm Rhizobacteria. Plants 9:64

    CAS  Google Scholar 

  • von der Weid I, Paiva E, Nóbrega A, van Elsas JD, Seldin L (2000) Diversity of Paenibacillus polymyxa strains isolated from the rhizosphere of maize planted in Cerrado soil. Res Microbiol 151(5):369–381. https://doi.org/10.1016/s0923-2508(00)00160-1

    Article  Google Scholar 

  • von der Weid I, Duarte GF, van Elsas JD, Seldin L (2002) Paenibacillus brasilensis sp. nov., a novel nitrogen-fixing species isolated from the maize rhizosphere in Brazil. Int J Syst Evol Microbiol 52:2147–2153

    Google Scholar 

  • Wang K, Zhang Y, Tang Z, Shangguan Z, Chang F, Jia F, Chen Y, He X, Shi W, Deng L (2019) Effects of grassland afforestation on structure and function of soil bacterial and fungal communities. Sci Total Environ 676:396–406

    CAS  Google Scholar 

  • Wang GH, Berdy BM, Velasquez O, Jovanovic N, Alkhalifa S, Minbiole KPC, Brucker RM (2020a) Changes in microbiome confer multigenerational host resistance after sub-toxic pesticide exposure. Cell Host Microbe 27:213–224.e7

    CAS  Google Scholar 

  • Wang Y, Liu Y, Zhan W, Zheng K, Wang J, Zhang C, Chen R (2020b) Stabilization of heavy metal-contaminated soils by biochar: Challenges and recommendations. Sci Total Environ 729:139060

    CAS  Google Scholar 

  • Ward NL, Challacombe JF, Janssen PH, Henrissat B, Coutinho PM, Wu M, Xie G, Haft DH et al (2009) Three genomes from the phylum Acidobacteria provide insight into the lifestyles of these microorganisms in soils. Appl Environ Microbiol 75:2046–2056

    CAS  Google Scholar 

  • Wüst PK, Foesel BU, Geppert A, Huber KJ, Luckner M, Wanner G, Overmann J (2016) Brevitalea aridisoli, B. deliciosa and Arenimicrobium luteum, three novel species of Acidobacteria subdivision 4 (class Blastocatellia) isolated from savannah soil and description of the novel family Pyrinomonadaceae. Int J Syst Evol Microbiol 66:3355–3366

    Google Scholar 

  • Žifcáková L, Vetrovský T, Howe A, Baldrian P (2016) Microbial activity in forest soil reflects the changes in ecosystem properties between summer and winter. Environ Microbiol 18:288–230

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors declare that both contributed equally to the writing of the manuscript and the design of the figures.

Corresponding author

Correspondence to Luciano Procópio.

Ethics declarations

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent to publish

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible editor: Yuan Ge

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Procópio, L., Barreto, C. The soil microbiomes of the Brazilian Cerrado. J Soils Sediments 21, 2327–2342 (2021). https://doi.org/10.1007/s11368-021-02936-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-021-02936-9

Keywords

Navigation