Skip to main content
Log in

Responses of Bougainvillea spectabilis to elevated atmospheric CO2 under galaxolide (HHCB) pollution and the mechanisms of its rhizosphere metabolism

  • Soils, Sec 2 • Global Change, Environ Risk Assess, Sustainable Land Use • Research Article
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Purpose

Due to the discovery of synthetic musks in soil and the gradual increase in atmospheric carbon dioxide (CO2), it is important to reveal the potential implications of these compounds for bioremediation systems. Hence, this study was conducted to investigate the combined influence of galaxolide (HHCB) and elevated CO2 on an ornamental remediation plant.

Materials and methods

We conducted pot experiments with Bougainvillea spectabilis, an ornamental remediation plant, in which the biomass, HHCB and chlorophyll contents, and rhizosphere metabolism of the plants were analyzed.

Results and discussion

We showed that B. spectabilis exhibited high tolerance under combined HHCB and elevated CO2 stresses. The addition of HHCB alone to the soil did not significantly reduce the biomass components of B. spectabilis, whereas the presence of elevated CO2 (750 μL L−1) alone showed a relatively strong ability to increase plant biomass, especially that of the leaves. An elevated CO2 concentration stimulated the absorption of low doses of HHCB by the roots. Regarding the root metabolites of B. spectabilis, carbohydrates and organic acids were highly correlated with HHCB concentration, and amino acids were well correlated with CO2 concentration.

Conclusions

Our study indicates that B. spectabilis may be well suited to remove HHCB from contaminated soil under elevated CO2 levels, and the root metabolism of this plant provides information about HHCB contamination and elevated CO2 conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abe H, Yoshikawa N, Sarower MG, Okada S (2005) Physiological function and metabolism of free D-alanine in aquatic animals. Biol Pharm Bull 28(9):1571–1577

    Article  CAS  Google Scholar 

  • Aguirre-Rubí JR, Luna-Acosta A, Etxebarría N, Soto M, Espinoza F, Ahrens MJ, Marigómez I (2018) Chemical contamination assessment in mangrove-lined Caribbean coastal systems using the oyster Crassostrea rhizophorae as biomonitor species. Environ Sci Pollut Res Int 25:13396–13415

    Article  CAS  Google Scholar 

  • Asif M, Yilmaz O, Ozturk L (2017) Potassium deficiency impedes elevated carbon dioxide-induced biomass enhancement in well watered or drought-stressed bread wheat. J Plant Nutr Soil 180(4):474–481

    Article  CAS  Google Scholar 

  • Barbosa GB, Jayasinghe NS, Natera SHA, Inutan ED, Peteros NP, Roessner U (2017) From common to rare Zingiberaceae plants—a metabolomics study using GC-MS. Phytochemistry 140:141–150

    Article  CAS  Google Scholar 

  • Burgess P, Huang B (2014) Root protein metabolism in association with improved root growth and drought tolerance by elevated carbon dioxide in creeping bentgrass. Field Crops Res 165(3):80–91

    Article  Google Scholar 

  • Carrillo Y, Dijkstra FA, Pendall E, LeCain D, Tucker C (2014) Plant rhizosphere influence on microbial C metabolism: the role of elevated CO2, N availability and root stoichiometry. Biogeochemistry 117(2–3):229–240

    Article  CAS  Google Scholar 

  • Che JS, Yu RP, Song QJ, Wang LP, Wu SF (2011) Determination of synthetic musks in the sediment of the Taihu lake by using accelerated solvent extraction (ASE) and GC/MS. J Environ Anal Chem 91(4):387–399

    Article  CAS  Google Scholar 

  • Chen C, Cai Z (2015) Physiological and antioxidant responses in wheat (Triticum aestivum) to HHCB in soil. Bull Environ Contam Toxicol 95(2):272–277

    Article  CAS  Google Scholar 

  • Chen CH, Zhou QX, Cai Z, Wang YY (2010) Effects of soil polycyclic musk and cadmium on pollutant uptake and biochemical responses of wheat (Triticum aestivum). Arch Environ Contam Toxicol 59(4):564–573

    Article  CAS  Google Scholar 

  • Chen G, Jiang R, Qiu J, Cai S, Zhu F, Ouyang G (2015) Environmental fates of synthetic musks in animal and plant: an in vivo study. Chemosphere 138:584–591

    Article  CAS  Google Scholar 

  • Dale M, Causton D (1992) Use of the chlorophyll a/b ratio as a bioassay for the light environment of a plant. Funct Ecol 6(2):190–196

    Article  Google Scholar 

  • Diwan H, Ahmad A, Iqbal M (2012) Chromium-induced alterations in photosynthesis and associated attributes in Indian mustard. J Environ Biol 33(2):239–244

    CAS  Google Scholar 

  • Domínguez Solís JR, López Martín MC, Ager FJ, Ynsa MD, Romero LC, Gotor C (2004) Increased cysteine availability is essential for cadmium tolerance and accumulation in Arabidopsis thaliana. Plant Biotechnol J 2(6):469–476

    Article  CAS  Google Scholar 

  • Drake JE, Macdonald CA, Tjoelker MG, Crous KY, Gimeno TE, Singh BK, Reich PB, Anderson IC, Ellsworth DS (2016) Short-term carbon cycling responses of a mature eucalypt woodland to gradual stepwise enrichment of atmospheric CO2 concentration. Glob Chang Biol 2(1):380–390

    Article  Google Scholar 

  • Fan M, Liu Z, Dyer S, Xia P, Zhang X (2017) Environmental risk assessment of polycyclic musks HHCB and AHTN in consumer product chemicals in China. Sci Total Environ 599-600:771–779

    Article  CAS  Google Scholar 

  • Feng NX, Yu J, Zhao HM, Cheng YT, Mo CH, Cai QY, Li YW, Li H, Wong MH (2017) Efficient phytoremediation of organic contaminants in soils using plant-endophyte partnerships. Sci Total Environ 583:352–368

    Article  CAS  Google Scholar 

  • Franzaring J, Holz I, Fangmeier A (2008) Different responses of Molinia caerulea plants from three origins to CO2 enrichment and nutrient supply. Acta Oecol 33(2):176–187

    Article  Google Scholar 

  • Frew A, Allsopp PG, Gherlenda AN, Johnson SN (2017) Increased root herbivory under elevated atmospheric carbon dioxide concentrations is reversed by silicon-based plant defences. J Appl Ecol 54(5):1310–1319

    Article  CAS  Google Scholar 

  • Fukayama H, Fukuda T, Masumoto C, Taniguchi Y, Sakai H, Cheng W, Hasegawa T, Miyao M (2009) Rice plant response to long term CO2 enrichment: gene expression profiling. Plant Sci 177(3):203–210

    Article  CAS  Google Scholar 

  • Garcia-Sevillano MA, Garcia-Barrera T, Navarro F, Abril N, Pueyo C, Lopez-Barea J, Gomez-Ariza JL (2014) Use of metallomics and metabolomics to assess metal pollution in Doñana National Park (SW Spain). Environ Sci Technol 48(14):7747–7755

    Article  CAS  Google Scholar 

  • Guo J, Zhang W, Zhang M, Zhang L, Bian X (2012) Will elevated CO2 enhance mineral bioavailability in wetland ecosystems? Evidence from a rice ecosystem. Plant Soil 355(1–2):251–263

    Article  CAS  Google Scholar 

  • Guo GH, Wu FC, He HP, Zhang RQ, Li HX (2013) Screening level ecological risk assessment for synthetic musks in surface water of Lake Taihu, China. Stoch Env Res Risk A 27(1):111–119

    Article  Google Scholar 

  • Guo J, Feng R, Ding Y, Wang R (2014) Applying carbon dioxide, plant growth-promoting rhizobacterium and EDTA can enhance the phytoremediation efficiency of ryegrass in a soil polluted with zinc, arsenic, cadmium and lead. J Environ Manage 141:1–8

    Article  CAS  Google Scholar 

  • Havranek I, Coutris C, Norli HR, Rivier P-A, Joner EJ (2017) Uptake and elimination kinetics of the biocide triclosan and the synthetic musks galaxolide and tonalide in the earthworm Dendrobaena veneta when exposed to sewage sludge. Environ Toxicol Chem 36(8):2068–2073

    Article  CAS  Google Scholar 

  • Homem V, Silva JA, Ratola N, Santos L, Alves A (2015) Long lasting perfume—a review of synthetic musks in WWTPs. J Environ Manag 149(1):168–192

    Article  Google Scholar 

  • Hu Z, Shi Y, Niu H, Cai Y, Jiang G, Wu Y (2010) Occurrence of synthetic musk fragrances in human blood from 11 cities in China. Environ Toxicol Chem 29(9):1877–1882

    CAS  Google Scholar 

  • Hu Z, Shi Y, Cai Y (2011) Concentrations, distribution, and bioaccumulation of synthetic musks in the Haihe River of China. Chemosphere 84(11):1630–1635

    Article  CAS  Google Scholar 

  • Hu X, Mu L, Kang J, Lu K, Zhou R, Zhou Q (2014) Humic acid acts as a natural antidote of graphene by regulating nanomaterial translocation and metabolic fluxes in vivo. Environ Sci Technol 48(12):6919–6927

    Article  CAS  Google Scholar 

  • Hurtado C, Domínguez C, Pérez-Babace L, Cañameras N, Comas J, Bayona JM (2016) Estimate of uptake and translocation of emerging organic contaminants from irrigation water concentration in lettuce grown under controlled conditions. J Hazard Mater 305:139–148

    Article  CAS  Google Scholar 

  • Janssens IA, Crookshanks M, Taylor G, Ceulemans R (1998) Elevated atmospheric CO2 increases fine root production, respiration, rhizosphere respiration and soil CO2 efflux in Scots pine seedlings. Glob Chang Biol 4(8):871–878

    Article  Google Scholar 

  • Jia Y, Tang S, Wang R, Ju X, Ding Y, Tu S, Smith DL (2010) Effects of elevated CO2 on growth, photosynthesis, elemental composition, antioxidant level, and phytochelatin concentration in Lolium mutiforum and Lolium perenne under Cd stress. J Hazard Mater 180(1–3):384–394

    Article  CAS  Google Scholar 

  • Jia Y, Ju X, Liao S, Song Z, Li Z (2011) Phytochelatin synthesis in response to elevated CO2 under cadmium stress in Lolium perenne L. J. Plant Physiol. 168(15):1723–1728

  • Jia X, Zhao YH, Liu T, He YH (2017) Leaf defense system of Robinia pseudoacacia L. seedlings exposed to 3 years of elevated atmospheric CO2 and Cd-contaminated soils. Sci Total Environ 605-606:48–57

    Article  CAS  Google Scholar 

  • Jiao L, Ding H, Wang L, Zhou Q, Huang X (2017) Bisphenol A effects on the chlorophyll contents in soybean at different growth stages. Environ Pollut 223:426–434

    Article  CAS  Google Scholar 

  • Kim S, Kang H (2011) Effects of Elevated CO2 and Pb on Phytoextraction and Enzyme Activity. Water Air Soil Poll 219(1-4):365–375

  • Kim JK, Park S, Lim S, Yeo Y, Cho H, Ha S (2013) Comparative metabolic profiling of pigmented rice (Oryza sativa L.) cultivars reveals primary metabolites are correlated with secondary metabolites. J Cereal Sci 57(1):14–20

    Article  CAS  Google Scholar 

  • Kimball BA, Kobayashi K, Bindi M (2002) Responses of agricultural crops to free-air CO2 enrichment. In: Sparks DL (ed) Advance in Agronomy. Academic Press, Cambridge, pp 293–368

    Google Scholar 

  • King A, Selak MA, Gottlieb E (2006) Succinate dehydrogenase and fumarate hydratase: linking mitochondrial dysfunction and cancer. Oncogene 25(34):4675–4682

    Article  CAS  Google Scholar 

  • Knohl A, Veldkamp E (2011) Global change: indirect feedbacks to rising CO2. Nature 475(7355):177–178

    Article  CAS  Google Scholar 

  • Kukla M, Płociniczak T, Piotrowska-Seget Z (2014) Diversity of endophytic bacteria in Lolium perenne and their potential to degrade petroleum hydrocarbons and promote plant growth. Chemosphere 117(1):40–46

    Article  CAS  Google Scholar 

  • Kuzyakov Y, Siniakina SV, Ruehlmann J, Domanski G, Stahr K (2002) Effect of nitrogen fertilisation on below-ground carbon allocation in lettuce. J Sci Food Agric 82(13):1432–1441

    Article  CAS  Google Scholar 

  • Li T, Tao Q, Han X, Yang X (2013) Effects of elevated CO2 on rhizosphere characteristics of Cd/Zn hyperaccumulator Sedum alfredii. Sci Total Environ 454-455:510–516

    Article  CAS  Google Scholar 

  • Liu X, Zhang L, You L, Yu J, Zhao J, Li L, Wang Q, Li F, Li C, Liu D, Wu H (2011a) Differential toxicological effects induced by mercury in gills from three pedigrees of Manila clam Ruditapes philippinarum by NMR-based metabolomics. Ecotoxicology 20(1):177–186

    Article  CAS  Google Scholar 

  • Liu S, Zhou Q, Wang Y (2011b) Ecotoxicological responses of the earthworm Eisenia fetida exposed to soil contaminated with HHCB. Chemosphere 83(8):1080–1086

    Article  CAS  Google Scholar 

  • Liu J, Xin X, Zhou Q (2018) Phytoremediation of contaminated soils using ornamental plants. Environ Rev 26(1):43–54

    Article  CAS  Google Scholar 

  • Lu Y, Yuan T, Wang W, Kannan K (2011) Concentrations and assessment of exposure to siloxanes and synthetic musks in personal care products from China. Environ Pollut 159(12):3522–3528

    Article  CAS  Google Scholar 

  • Lv Z, Hu X, An J, Wei W (2017) Joint effects of galaxolide and cadmium on soil microbial community function. Biomed Res-India 28:546–551

  • Matysik J, Alia BB, Mohanty P (2002) Molecular mechanisms of quenching of reactive oxygen species by proline under stress in plants. Curr Sci 82(5):525–532

    CAS  Google Scholar 

  • Moscatelli MC, Lagomarsino A, Marinari S, Angelis PD, Grego S (2005) Soil microbial indices as bioindicators of environmental changes in a poplar plantation. Ecol Indic 5(3):171–179

    Article  CAS  Google Scholar 

  • Nguyen C (2003) Rhizodeposition of organic C by plants: mechanisms and controls. Agronomie 23(5–6):375–396

    Article  CAS  Google Scholar 

  • Ouyang S, Hu X, Zhou Q (2015) Envelopment-internalization synergistic effects and metabolic mechanisms of graphene oxide on single-cell chlorella vulgaris are dependent on the nanomaterial particle size. ACS Appl Mater Interfaces 7(32):18104–18112

    Article  CAS  Google Scholar 

  • Pablos MV, Jiménez MÁ, San Segundo L, Martini F, Beltrán E, Fernández C (2016) Effects of dietary exposure of polycyclic musk HHCB on the metamorphosis of Xenopus laevis. Environ Toxicol Chem 35(6):1428–1435

    Article  CAS  Google Scholar 

  • Paterson E, Hall J, Rattray E, Griffiths B, Ritz K, Killham K (1997) Effect of elevated CO2 on rhizosphere carbon flow and soil microbial processes. Glob Chang Biol 3(4):363–377

    Article  Google Scholar 

  • Petrova S, Rezek J, Soudek P, Vanek T (2017) Preliminary study of phytoremediation of brownfield soil contaminated by PAHs. Sci Total Environ 599-600:572–580

    Article  CAS  Google Scholar 

  • Qiao Y, Miao S, Han X, Yue S, Tang C (2017) Improving soil nutrient availability increases carbon rhizodeposition under maize and soybean in Mollisols. Sci Total Environ 603-604:416–424

    Article  CAS  Google Scholar 

  • Ramadan Z, Jacobs D, Grigorov M, Kochhar S (2006) Metabolic profiling using principal component analysis, discriminant partial least squares, and genetic algorithms. Talanta 68(5):1683–1691

    Article  CAS  Google Scholar 

  • Ramírez N, Marcé RM, Borrull F (2011) Development of a stir bar sorptive extraction and thermal desorption–gas chromatography–mass spectrometry method for determining synthetic musks in water samples. J Chromatogr A 1218(1):156–161

    Article  CAS  Google Scholar 

  • Reyesfox M, Steltzer H, Trlica MJ, Mcmaster GS, Andales AA, Lecain DR, Morgan JA (2014) Elevated CO2 further lengthens growing season under warming conditions. Nature 510(7504):259–262

    Article  CAS  Google Scholar 

  • Roosens L, Covaci A, Neels H (2007) Concentrations of synthetic musk compounds in personal care and sanitation products and human exposure profiles through dermal application. Chemosphere 69(10):1540–1547

    Article  CAS  Google Scholar 

  • Sandermann H Jr (1994) Higher plant metabolism of xenobiotics: the ‘green liver’ concept. Pharmacogenet Genomics 4(5):225–241

    Article  CAS  Google Scholar 

  • Sharma SS, Dietz KJ (2006) The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress. J Exp Bot 57(4):711–726

    Article  CAS  Google Scholar 

  • Shen Y, Li J, Gu R, Yue L, Zhan X, Xing B (2017) Phenanthrene-triggered chlorosis is caused by elevated chlorophyll degradation and leaf moisture. Environ Pollut 220(Pt B):1311–1321

    Article  CAS  Google Scholar 

  • Song N, Ma Y, Zhao Y, Tang S (2015) Elevated ambient carbon dioxide and Trichoderma inoculum could enhance cadmium uptake of Lolium perenne explained by changes of soil pH, cadmium availability and microbial biomass. Appl Soil Ecol 85:56–64

    Article  Google Scholar 

  • Suseela V, Tharayil N (2018) Decoupling the direct and indirect effects of climate on plant litter decomposition: accounting for stress-induced modifications in plant chemistry. Glob Chang Biol 24:1428–1451

    Article  Google Scholar 

  • Tripathi V, Fraceto LF, Abhilash PC (2015) Sustainable clean-up technologies for soils contaminated with multiple pollutants: plant-microbe-pollutant and climate nexus. Ecol Eng 82:330–335

    Article  Google Scholar 

  • Wang X, Liu Z, Wang W, Zhang C, Chen L (2015) Derivation of predicted no effect concentration (PNEC) for HHCB to terrestrial species (plants and invertebrates). Sci Total Environ 508:122–127

    Article  CAS  Google Scholar 

  • Wei S, Zhou Q, Koval PV (2006) Flowering stage characteristics of cadmium hyperaccumulator Solanum nigrum L. and their significance to phytoremediation. Sci Total Environ 369(1–3):441–446

    Article  CAS  Google Scholar 

  • Yadav S, Mishra A, Jha B (2017) Elevated CO2 leads to carbon sequestration by modulating C4 photosynthesis pathway enzyme (PPDK) in Suaeda monoica and S. fruticosa. J Photochem Photobiol B 178:310–315

    Article  CAS  Google Scholar 

  • Yan L, Tao Y, Hu JY, Wang WH (2010) Seasonal occurrence and behavior of synthetic musks (SMs) during wastewater treatment process in Shanghai, China. Sci Total Environ 408(19):4170–4176

    Article  CAS  Google Scholar 

  • Yu J, Du H, Xu M, Huang B (2012) Metabolic responses to heat stress under elevated atmospheric CO2 concentration in a cool-season grass species. J Am Soc Hortic Sci 137(4):221–228

    Article  CAS  Google Scholar 

  • Yu J, Li R, Fan N, Yang Z, Huang B (2017) Metabolic pathways involved in carbon dioxide enhanced heat tolerance in Bermudagrass. Front Plant Sci 8:1506–1527

    Article  Google Scholar 

  • Zahra J, Nazim H, Cai S, Han Y, Wu D, Zhang B, Haider SI, Zhang G (2014) The influence of salinity on cell ultrastructures and photosynthetic apparatus of barley genotypes differing in salt stress tolerance. Acta Physiol Plant 36(5):1261–1269

    Article  CAS  Google Scholar 

  • Zeng X, Sheng G, Gui H, Chen D, Shao W, Fu J (2007) Preliminary study on the occurrence and distribution of polycyclic musks in a wastewater treatment plant in Guandong, China. Chemosphere 69(8):1305–1311

    Article  CAS  Google Scholar 

  • Zeng X, Mai B, Sheng G, Luo X, Shao W, An T, Fu J (2008) Distribution of polycyclic musks in surface sediments from the Pearl River Delta and Macao coastal region, South China. Environ Toxicol Chem 27(1):18–23

    Article  CAS  Google Scholar 

  • Zhang X, Yao Y, Zeng X, Qian G, Guo Y, Wu M, Sheng G, Fu J (2008) Synthetic musks in the aquatic environment and personal care products in Shanghai, China. Chemosphere 72(10):1553–1558

    Article  CAS  Google Scholar 

  • Zhang T, Shen Z, Xu P, Zhu J, Lu Q, Shen Y, Wang Y, Yao C, Li J, Wang Y (2012) Analysis of photosynthetic pigments and chlorophyll fluorescence characteristics of different strains of Porphyra yezoensis. J Appl Phycol 24(4):881–886

    Article  CAS  Google Scholar 

  • Zhang C, Feng Y, Liu Y-w, Chang H-q, Li Z-j, Xue J-m (2017a) Uptake and translocation of organic pollutants in plants: a review. J Integr Agric 16(8):1659–1668

    Article  CAS  Google Scholar 

  • Zhang D, He S, Ming T, Lu C, Zhou J, Su X (2017b) A metabonomic analysis on the response of Enterobacter cloacae from coastal outfall for land-based pollutant under phoxim stress. Arch Microbiol 199(8):1165–1173

    Article  CAS  Google Scholar 

  • Zhao L, Huang Y, Hu J, Zhou H, Adeleye AS, Keller AA (2016) (1)H NMR and GC-MS based metabolomics reveal defense and detoxification mechanism of cucumber plant under nano-Cu stress. Environ Sci Technol 50(4):2000–2010

    Article  CAS  Google Scholar 

  • Zhou H, Huang X, Gao M, Wang X, Wen X (2009) Distribution and elimination of polycyclic musks in three sewage treatment plants of Beijing, China. J Environ Sci 21(5):561–567

    Article  CAS  Google Scholar 

  • Zhou J, Zeng X, Zheng K, Zhu X, Ma L, Xu Q, Zhang X, Yu Y, Sheng G, Fu J (2012) Musks and organochlorine pesticides in breast milk from Shanghai, China: levels, temporal trends and exposure assessment. Ecotoxicol Environ Saf 84:325–333

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the National Natural Foundation of Science (No. 31770547, 41471411) and the Tianjin Municipal Science and Technology Commission (Grant 16JCZDJC39200).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianv Liu.

Additional information

Responsible editor: Zhihong Xu

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Liu, J., Wang, W. et al. Responses of Bougainvillea spectabilis to elevated atmospheric CO2 under galaxolide (HHCB) pollution and the mechanisms of its rhizosphere metabolism. J Soils Sediments 19, 159–170 (2019). https://doi.org/10.1007/s11368-018-2050-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-018-2050-z

Keywords

Navigation