Skip to main content
Log in

Pentachlorophenol dissipation and ferrous iron accumulation in flooded paddy soils with contrasting organic matter contents and incorporation of legume green manures

  • Soils, Sec 1 • Soil Organic Matter Dynamics and Nutrient Cycling • Research Article
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Purpose

The effects of different amendment rates (1 and 3%) of Chinese milk vetch (Astragalus sinicus L.) and bird vetch (Vicia cracca L.) on the dissipation of extractable pentachlorophenol (PCP) residues were investigated in two flooded paddy soils with contrasting soil organic matter (SOM) contents. Following incorporation of the legume green manures, whether acetate-extractable ferrous iron [Fe(II)NaOAc] is useful for revealing the reductive dechlorination mechanism of PCP in flooded paddy soils was verified.

Materials and methods

The kinetic parameters of PCP dissipation and Fe(II)NaOAc accumulation were estimated using logistic curve fitting. Correlation and regression analyses were performed on PCP, Fe(II)NaOAc, water-soluble organic carbon (WSOC), pH, and oxidation-reduction potential data.

Results and discussion

The kinetic parameters of PCP dissipation and Fe(II)NaOAc accumulation varied significantly with the amendment rate of legume green manure. The changes in pH value and WSOC content varied significantly with the level of SOM and with the amendment rate of legume green manure. At a low amendment rate of green manure, the pH increase and WSOC consumption greatly enhanced Fe(II)NaOAc accumulation and contributed to PCP dissipation. The rate of PCP dissipation decreased with decreasing pH and WSOC accumulation, especially in the high-SOM soil amended with the higher rate of green manure. Legume green manure species had no effect on PCP dissipation.

Conclusions

In terms of soil chemistry, Fe(II)NaOAc was found to be the key variable that could explain the mechanisms involved in the reductive dissipation of PCP in flooded paddy soils with contrasting SOM contents and incorporation of legume green manures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alvarez PJJ, Illman WA (2006) Geochemical attenuation mechanisms. In: Alvarez PJJ, Illman WA (eds) Bioremediation and natural attenuation: process fundamentals and mathematical models. John Wiley & Sons, Ltd, Hoboken, pp 25–48

    Google Scholar 

  • Boero V, Schwertmann U (1987) Occurrence and transformations of iron and manganese in a colluvial terra rossa toposequence of northern Italy. Catena 14:519–531

    Article  CAS  Google Scholar 

  • Bolan NS, Baskaran S, Thiagarajan S (1996) An evaluation of the methods of measurement of dissolved organic carbon in soils, manures, sludges, and stream water. Commun Soil Sci Plant Anal 27:2723–2737

    Article  CAS  Google Scholar 

  • Chen MJ, Shih K, Hu M, Li FB, Liu CS, Wu WJ, Tong H (2012) Biostimulation of indigenous microbial communities for anaerobic transformation of pentachlorophenol in paddy soils of southern China. J Agric Food Chem 60:2967–2975

    Article  CAS  Google Scholar 

  • Chen MJ, Tao L, Li FB, Lan Q (2014) Reductions of Fe(III) and pentachlorophenol linked with geochemical properties of soils from Pearl River Delta. Geoderma 217–218:201–211

    Article  CAS  Google Scholar 

  • Cory RM, McKnight DM (2005) Fluorescence spectroscopy reveals ubiquitous presence of oxidized and reduced quinones in dissolved organic matter. Environ Sci Technol 39:8142–8149

    Article  CAS  Google Scholar 

  • Crosby DG (1981) Environmental chemistry of pentachlorophenol. Pure Appl Chem 53:1051–1080

    Article  Google Scholar 

  • Crosby HA, Johnson CM, Roden EE, Beard BL (2005) Coupled Fe(II)-Fe(III) electron and atom exchange as a mechanism for Fe isotope fractionation during dissimilatory iron oxide reduction. Environ Sci Technol 39:6698–6704

    Article  CAS  Google Scholar 

  • D’Angelo EM, Reddy KR (2000) Aerobic and anaerobic transformations of pentachlorophenol in wetland soils. Soil Sci Soc Am J 64:933–943

    Article  Google Scholar 

  • Daud AM, McDonald S, Oldham CE (2015) Dissolved organic carbon characteristics in an acidified groundwater-dependent ecosystem. Mar Freshw Res 66:582–595

    Article  CAS  Google Scholar 

  • Diagboya PN, Olu-Owolabi BI, Adebowale KO (2016) Distribution and interactions of pentachlorophenol in soils: the roles of soil iron oxides and organic matter. J Contam Hydrol 191:99–106

    Article  CAS  Google Scholar 

  • Ferreira J, Raghu K (1981) Decontamination of hexachlorocyclohexane isomers in soil by green manure application. Environ Technol Lett 2:357–364

    Article  CAS  Google Scholar 

  • He Y, Xu JM, Wang HZ, Wu YP (2007) Generalized models for prediction of pentachlorophenol dissipation dynamics in soils. Environ Pollut 147:343–349

    Article  CAS  Google Scholar 

  • Heron G, Crouzet C, Bourg ACM, Christensen TH (1994) Speciation of Fe(II) and Fe(III) in contaminated aquifer sediments using chemical extraction techniques. Environ Sci Technol 28:1698–1705

    Article  CAS  Google Scholar 

  • Hunt JF, Ohno T (2007) Characterization of fresh and decomposed dissolved organic matter using excitation-emission matrix fluorescence spectroscopy and multiway analysis. J Agric Food Chem 55:2121–2128

    Article  CAS  Google Scholar 

  • Ide A, Niki Y, Sakamoto F, Watanabe I, Watanabe H (1972) Decomposition of pentachlorophenol in paddy soil. Agric Biol Chem 36:1937–1944

    Article  CAS  Google Scholar 

  • Kalbitz K, Solinger S, Park JH, Michalzik B, Matzner E (2000) Controls on the dynamics of dissolved organic matter in soils: a review. Soil Sci 165:277–304

    Article  CAS  Google Scholar 

  • Kale SP, Raghu K (1994) Fate of 14C-nitrofen in soils. Bull Environ Contam Toxicol 53:298–302

    Article  CAS  Google Scholar 

  • Khodadoust AP, Suidan MT, Acheson CM, Brenner RC (1999) Solvent extraction of pentachlorophenol from contaminated soils using water-ethanol mixtures. Chemosphere 38:2681–2693

    Article  CAS  Google Scholar 

  • Klausen J, Troeber SP, Haderlein SB, Schwarzenbach RP (1995) Reduction of substituted nitrobenzenes by Fe(II) in aqueous mineral suspensions. Environ Sci Technol 29:2396–2404

    Article  CAS  Google Scholar 

  • Lanthier M, Villemur R, Lépine F, Bisaillon JG, Beaudet R (2000) Monitoring of Desulfitobacterium frappieri PCP-1 in pentachlorophenol-degrading anaerobic soil slurry reactors. Environ Microbiol 2:703–708

    Article  CAS  Google Scholar 

  • Li FB, Wang XG, Li YT, Liu CS, Zeng F, Zhang LJ, Hao MD, Ruan HD (2008a) Enhancement of the reductive transformation of pentachlorophenol by polycarboxylic acids at the iron oxide-water interface. J Colloid Interface Sci 321:332–341

    Article  CAS  Google Scholar 

  • Li FB, Wang XG, Liu CS, Li YT, Zeng F, Liu L (2008b) Reductive transformation of pentachlorophenol on the interface of subtropical soil colloids and water. Geoderma 148:70–78

    Article  CAS  Google Scholar 

  • Li XM, Li YT, Li FB, Zhou SG, Feng CH, Liu TX (2009) Interactively interfacial reaction of iron-reducing bacterium and goethite for reductive dechlorination of chlorinated organic compounds. Chin Sci Bull 54:2800–2804

    CAS  Google Scholar 

  • Lin JJ, He Y, Xu JM, Chen ZL, Brookes PC (2014) Vertical profiles of pentachlorophenol and the microbial community in a paddy soil: influence of electron donors and acceptors. J Agric Food Chem 62:9974–9981

    Article  CAS  Google Scholar 

  • Liu ZG, Yu TR (1984) Depolarization of a platinum electrode in soils and its utilization for the measurement of redox potential. J Soil Sci 35:469–479

    Article  CAS  Google Scholar 

  • Liu Y, Li FB, Xia W, Xu JM, Yu XS (2013) Association between ferrous iron accumulation and pentachlorophenol degradation at the paddy soil–water interface in the presence of exogenous low-molecular-weight dissolved organic carbon. Chemosphere 91:1547–1555

    Article  CAS  Google Scholar 

  • Liu Y, Lou J, Li FB, Xu JM, Yu XS, Zhu LA, Wang F (2014) Evaluating oxidation-reduction properties of dissolved organic matter from Chinese milk vetch (Astragalus sinicus L.): a comprehensive multi-parametric study. Environ Technol 35:1916–1927

    Article  CAS  Google Scholar 

  • Lovely DR (1995) Microbial reduction of iron, manganese, and other metals. Adv Agron 54:175–231

    Article  Google Scholar 

  • Lovley DR, Holmes DE, Nevin KP (2004) Dissimilatory Fe(III) and Mn(IV) reduction. Adv Microb Physiol 49:219–286

    Article  CAS  Google Scholar 

  • Lu RK (2000) Analytical methods of soil agrochemistry. China Agricultural Science and Technology Press, Beijing

    Google Scholar 

  • Mitra J, Raghu K (1988) Influence of green manuring on the persistence of DDT in soil. Environ Technol Lett 9:847–852

    Article  CAS  Google Scholar 

  • Petruzzelli L, Celi L, Ajmone-Marsan F (2005) Effects of soil organic fractions on iron oxide biodissolution under anaerobic conditions. Soil Sci 170:102–109

    Article  CAS  Google Scholar 

  • Roden EE, Lovley DR (1993) Evaluation of 55Fe as a tracer of Fe(III) reduction in aquatic sediments. Geomicrobiol J 11:49–56

    Article  CAS  Google Scholar 

  • Roden E, Zachara JM (1996) Microbial reduction of crystalline iron(III) oxides: influence of oxide surface area and potential for cell growth. Environ Sci Technol 30:1618–1628

    Article  CAS  Google Scholar 

  • Stumm W, Sulzberger B (1992) The cycling of iron in natural environments: considerations based on laboratory studies of heterogeneous redox processes. Geochim Cosmochim Acta 56:3233–3257

    Article  CAS  Google Scholar 

  • Swarup A (1987) Effect of presubmergence and green manuring (Sesbania aculeata) on nutrition and yield of wetland rice (Oryza sativa L.) on a sodic soil. Biol Fertil Soils 5:203–208

    Article  Google Scholar 

  • Tao L, Chen MJ, Zhu ZK, Li FB (2013) Effects of dissolved organic matter on pentachlorophenol reductive transformation in paddy soils. In: Xu JM, Wu JJ, He Y (eds) Functions of natural organic matter in changing environment. Springer, Dordrecht, pp 603–606

    Chapter  Google Scholar 

  • van Bodegom PM, van Reeven J, van der Gon HACD (2003) Prediction of reducible soil iron content from iron extraction data. Biogeochemistry 64:231–245

    Article  Google Scholar 

  • Wang YF, Liu XM, Butterly C, Tang CX, Xu JM (2013) pH change, carbon and nitrogen mineralization in paddy soils as affected by Chinese milk vetch addition and soil water regime. J Soils Sediments 13:654–663

    Article  CAS  Google Scholar 

  • Weishaar JL, Aiken GR, Bergamaschi BA, Fram MS, Fujii R, Mopper K (2003) Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon. Environ Sci Technol 37:4702–4708

    Article  CAS  Google Scholar 

  • Weiss JV, Emerson D, Megonigal JP (2004) Geochemical control of microbial Fe(III) reduction potential in wetlands: comparison of the rhizosphere to non-rhizosphere soil. FEMS Microbiol Ecol 48:89–100

    Article  CAS  Google Scholar 

  • Xu Y, He Y, Feng XL, Liang LY, Xu JM, Brookes PC, Wu JJ (2014) Enhanced abiotic and biotic contributions to dechlorination of pentachlorophenol during Fe(III) reduction by an iron-reducing bacterium Clostridium beijerinckii Z. Sci Total Environ 473-474:215–223

    Article  CAS  Google Scholar 

  • Xu Y, He Y, Zhang Q, Xu J, Crowley D (2015) Coupling between pentachlorophenol dechlorination and soil redox as revealed by stable carbon isotope, microbial community structure, and biogeochemical data. Environ Sci Technol 49:5425–5433

    Article  CAS  Google Scholar 

  • Yu XS, Liu Y, Lou J, Feng XL, Wang HZ, Xu JM (2015) Determination of water-and methanol-extractable pentachlorophenol in soils using vortex-assisted liquid-liquid extraction and gas chromatography. Chin J Anal Chem 43:1389–1394

    Article  CAS  Google Scholar 

  • Yuan Y, Zhou SG, Yuan T, Zhuang L, Li FB (2013) Molecular weight-dependent electron transfer capacities of dissolved organic matter derived from sewage sludge compost. J Soils Sediments 13:56–63

    Article  CAS  Google Scholar 

  • Zelles L, Scheunert I, Korte F (1986) Determination of the effect of pentachlorophenol on the bioactivity of soils by the iron-reduction test. Chemosphere 15:309–315

    Article  CAS  Google Scholar 

  • Zheng WW, Yu H, Wang X, Qu WD (2012) Systematic review of pentachlorophenol occurrence in the environment and in humans in China: not a negligible health risk due to the re-emergence of schistosomiasis. Environ Int 42:105–116

    Article  CAS  Google Scholar 

  • Zhu ZK, Tao L, Li FB (2014) 2-Nitrophenol reduction promoted by S. putrefaciens 200 and biogenic ferrous iron: the role of different size-fractions of dissolved organic matter. J Hazard Mater 279:436–443

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Guangzhou City Science and Technology Plan Project (No. 201510010187), the National Natural Science Foundation of China (Nos. 41471246; 41561074), the Guangdong Provincial Natural Science Foundation of China (No. 2014A030313703), the Guangdong Provincial Science and Technology Plan Project (Nos. 2015A020208009; 2014A020208067; 2014B020206001), and the Hainan Provincial Demonstration and Extension Project on soil reclamation and fertilization techniques (No. HNGDxf2015).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fangbai Li or Jianming Xu.

Additional information

Responsible editor: Gabriele E. Schaumann

Electronic supplementary material

ESM 1

(DOCX 19 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Wang, S., Zhu, L. et al. Pentachlorophenol dissipation and ferrous iron accumulation in flooded paddy soils with contrasting organic matter contents and incorporation of legume green manures. J Soils Sediments 18, 2463–2475 (2018). https://doi.org/10.1007/s11368-018-1952-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-018-1952-0

Keywords

Navigation