Skip to main content

Advertisement

Log in

Characteristics of permafrost-affected soil in a cliff in the central part of the Polish Baltic coastal zone

  • Soils, Sec 2 • Global Change, Environ Risk Assess, Sustainable Land Use • Research Article
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Purpose

The study aimed to characterise a fossil permafrost-affected (Stagnic Fluvisol Relictiturbic) soil, occurring in a cliff in the central part of the Polish Baltic coastal zone near Orzechowo (54° 35.664′ N, 16° 54.123′ E).

Materials and methods

The soil was sampled at 22 points and analysed using standard procedures in soil science. After standard preparation, disturbed and undisturbed soil samples were made subject to laboratory analyses concerning their physical and chemical properties. Radiocarbon dates and pollen analysis results were also obtained for the selected soil samples.

Results and discussion

The permafrost-affected soil lies beneath a fossil Dystric Histic Stagnosol, which is covered by about 8 m of aeolian deposits. The radiocarbon age of the Dystric Histic Stagnosol was 3061 ± 60 cal. years BP, and that of the Stagnic Fluvisol Relictiturbic 10,161 ± 110 cal. years BP. However, the results of pollen analysis suggest rejuvenation of the obtained dates. The Stagnic Fluvisol Relictiturbic developed in the marginal part of a body of water, from fluvioglacial and aeolian sands deposited on grey glacial till. The mineral substrates of the soil are moderately and poorly sorted sands and silt loam in the bottom part of the profile. This fine-textured material has been moved to the upper parts of the profile due to the impact of the water freezing and thawing cycles in the permafrost active layer. The observed microstructures on quartz grain (0.5–1.0 mm) surfaces, including conchoidal fractures, breakage blocks and v-shaped pits, are typical for periglacial soils. The fossil Stagnic Fluvisol Relictiturbic is poor in total iron. The observed vertical distribution of free iron oxides suggests their displacement in the permafrost active layer. Soil organic matter was found to be moderately or strongly humified, which is not typical for permafrost-affected soils and can suggest its allochthonous, probably alluvial, character.

Conclusions

The studied Stagnic Fluvisol Relictiturbic developed at the close of the Pleistocene in the marginal part of a body of water. It constitutes a sequence of horizons of varied thickness and abundance in organic matter. The influence of a periglacial environment is reflected in morphology of the soil (cryoturbations) and some chemical properties and partially in microstructures observed on quartz grain surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ballantyne CK, Harris C (1994) The periglaciation of Great Britain. Cambridge University Press, Cambridge, p. 330

  • Beug HJ (2004) Leitfagen der Pollenbestimmung für Mitteleuropa und angrenzende Gebiete. München

  • Błaszkiewicz M (2005) Późnoglacjalna i wczesnoholoceńska ewolucja obniżeń jeziornych na Pojezierzu Kociewskim (wschodnia część Pomorza). Prace Geograficzne 201:11–92 (in Polish)

    Google Scholar 

  • Blott SJ, Pye K (2001) Gradistat: a grain size distribution and statistics package for the analysis of unconsolidated sediments. Earth Surf Process Landforms 26:1237–1248

    Article  Google Scholar 

  • Bockheim JG, Everett LR, Hinkel KM, Nelson FF, Brown J (1999) Soil organic carbon storage and distribution in Arctic Tundra, Barrow, Alaska. Soil Sci Soc Am J 63:934–940

    Article  CAS  Google Scholar 

  • Bockheim JG, Tarnocai C (1998) Recognition of cryoturbation for classifying permafrost-affected soils. Geoderma 81:281–293

    Article  Google Scholar 

  • Borne DV (1857) Zur Geognosie der Provinz Pommern. Zeitschrift d Deutsche Geologischen Gesselschaft 9

  • Brodniewicz I (1979) Analiza faunistyczna późnoglacjalnych osadów słodkowodnych z klifu nadbrzeżnego koło Ustki. In: Grocholski W (ed) Od czwartorzędu do prekambru, Poznań, pp. 3–27 (in Polish)

    Google Scholar 

  • Bronk Ramsey C (2009) Bayesian analysis of radiocarbon dates. Radiocarbon 51(1):337–360

    Article  Google Scholar 

  • Cornell RM, Schwertmann U (1979) The influence of organic anions on the crystallization of ferrihydrite. Clay Clay Miner 27:402–410

    Article  CAS  Google Scholar 

  • Dietzel M (2005) Impact of cyclic freezing on precipitation of silica in Me-SiO2-H2O systems and geochemical implications for cryosoils and sediments. Chem Geol 216:79–88

    Article  CAS  Google Scholar 

  • Dillon JS, Sorenson CJ (2007) Relict cryopedogenic features in soils with secondary carbonate horizons, Western Wyoming, USA. Permafr Periglac Process 18:285–299

    Article  Google Scholar 

  • Dylik J (1952) The concept of the periglacial cycle in Middle Poland. Bulletin de la Societe des Sciences et des Lettres de Łodź 3(5)

  • Dylik J (1953) O peryglacjalnym charakterze rzeźby środkowej Polski. Acta Geographica Universitatis Lodziensis 4 (in Polish)

  • Dylik J (1956) Esquisse des problemes périglaciaire en Pologne. Biul Peryglac 4:57–71 (in French)

    Google Scholar 

  • Dylikowa A (1956) Kliny zmarzlinowe w Sławęcinie. Biul Peryglac 3:47–59 (in Polish)

    Google Scholar 

  • Dziadowiec H, Gonet SS, Plichta W (1994) Properties of humic acids of Arctic tundra soils in Spitsbergen. Polish Polar Res 15(1/2):71–81

    Google Scholar 

  • Dżułyński S (1963) Polygonal structures in experiments and their bearing upon some periglacial phenomena. Bull Acad Pol Sc, Ser Sc Geol Geogr 11(3):145–150

    Google Scholar 

  • Faegri K, Iversen J (1989) Textbook of pollen analysis, IV edn. Wiley, Chichester-Singapore

    Google Scholar 

  • FAO (2006) Guidelines for soil description. Food and Agriculture Organization of the United Nations, Rome. 27 pp

  • Folk RL, Ward W (1957) Brazos River bar: a study in the significance of grain size parameters. J Sediment Petrol 27:3–26

    Article  Google Scholar 

  • French HM (2007) The periglacial environment. Third edition. Wiley: Chichester glacial relief of northern Poland. Neth J Geosci Geol Mijnb 91:223–231

    Google Scholar 

  • Gołąb J (1956) Kliny zmarzlinowe jako drogi przewodzące wód gruntowych. Biul Peryglac 3:61–64

    Google Scholar 

  • Gonet SS (1999) Ekstrakcja z gleb i oczyszczanie kwasów huminowych metodami Shnitzera. In: Dziadowiec H, Gonet S (eds) Przewodnik metodyczny do badań materii organicznej gleb. Prace Komisji Naukowych Polskiego Towarzystwa Gleboznawczego 120. Komisja Chemii Gleb, Zespół Materii Organicznej Gleb II/16, Warszawa, pp 42–44. (in Polish)

  • Goździk J (1989) Permafrost evolution and its impact on deposition conditions between 20 and 10 ka BP in Poland. Biul Peryglac 34:53–72

    Google Scholar 

  • Goździk J (1995) Wybrane metody analizy kształtu ziarn piasków dla celów paleogeograficznych i stratygraficznych. In: Mycielska-Dowgiałło E, Rutkowski J (eds) Badania osadów czwartorzędowych. Wybrane metody i interpretacja wyników. Warszawa, pp 115–132. (in Polish)

  • Gruber N, Friedlingstein P, Field CB, Valentini R, Heimann M, Richey JE, Romero-Lankao P, Schulze D, Chen CTA (2004) In: Field C, Raupach M (eds) The vulnerability of the carbon cycle in the 21st century: an assessment of carbon-climate-human interactions in the global carbon cycle: integrating humans, climate, and the natural world. Island Press, Washington, pp. 45–76

    Google Scholar 

  • Hall K, Lautridou JP (1991) Introduction–cryogenic weathering. Permafr Periglac Process 2:269–270

    Article  Google Scholar 

  • Helland PE, Huang PH, Diffendal RF Jr (1997) SEM analysis of quartz sand grain surface textures indicates alluvial/colluvial origin of the Quaternary “Glacial” boulder clays at Huangshan (Yellow Mountain), East-Central China. Quaternary Res 48:177–186

    Article  CAS  Google Scholar 

  • Hill DE, Tedrow JCF (1961) Weathering and soil formation in the arctic environment. American J Sci 259:84–101

    Article  Google Scholar 

  • Hinman WC (1970) Effects of freezing and thawing on some chemical properties of three soils. Can J Soil Sci 50:179–182

    Article  CAS  Google Scholar 

  • Hugelius G, Kuhry P, Tarnocai C, Virtanen T (2010) Soil organic carbon pools in a periglacial landscape: a case study from the Central Canadian Arctic. Permafr Periglac Process 21:16–29

    Article  Google Scholar 

  • IUSS Working Group - FAO (2014) WRB - World Reference Base for soil resources 2014. World Soil Resources Report No. 106 FAO, Rome

  • Jahn A (1951) Zjawiska krioturbacyjne współczesnej i plejstoceńskiej strefy peryglacjalnej. Acta Geol Polonica 2(1–2):159–290 (in Polish)

    Google Scholar 

  • Jahn A (1975) Problems of periglacial zone. PWN, Warszawa

    Google Scholar 

  • Jahn A (1997) Strefowość zjawisk peryglacjalnych (the zonality of the periglacial phenomena). Prace i Studia Geograficzne UW 19:15–22

    Google Scholar 

  • Jasiewicz J (2005) Stratygrafia glin morenowych i struktura glacitektoniczna gardnieńskiej moreny czołowej. Prace Komisji Geograficzno-Geologicznej Poznańskiego Towarzystwa Przyjaciół Nauk, 37, Poznań

  • Jasiewicz J, Czerniawska J, Krzyszkowski D (2005) Stratygrafia osadów glacjalnych fazy gardzieńskiej (Pobrzeże Słowińskie) na podstawie kryterium petrograficznego. In: Borówka RK (ed) Plejstoceńskie i holoceńskie przemiany środowiska przyrodniczego Polski, Szczecin

  • Jefferson IF, Jefferson BQ, Assallay AM, Smalley IJ (1997) Crashing of quartz sand to produce soil particles. Naturwissenschaften 84:148–149

    Article  CAS  Google Scholar 

  • Kaiser C, Meyer H, Biasi C, Rusalimova O, Barsukov P, Richter A (2007) Conservation of soil organic matter through cryoturbation in arctic soils in Siberia. J Geophys Res 112:G02017. doi:10.1029/2006JG000258

    Article  Google Scholar 

  • Klatka T (1956) Plejstoceńskie żyły zmarzlinowe na górze Skała. Biul Peryglac 3:65–72 (in Polish)

    Google Scholar 

  • Klaus M, Becher M, Klaminder J (2013) Cryogenic soil activity along bioclimatic gradients in Northern Sweden: insights from eight different proxies. Permafr Periglac Process 24:210–223

    Article  Google Scholar 

  • Kokelj SV, Burn CR (2005) Geochemistry of the active layer and near-surface permafrost, Mackenzie delta region, Northwest Territories, Canada. Can J Earth Sci 42:37–48

    Article  CAS  Google Scholar 

  • Konishchev NV, Rogov VV (1993) Investigations of cryogenic weathering in Europe and Northern Asia. Permafr Periglac Process 4:49–64

    Article  Google Scholar 

  • Konishchev VN (2003) A criolithogenic method for estimating paleotemperature conditions during formation of the ice complex and subaerial periglacial sediments. Earth’s Cryosphere, pp 59–64

  • Konishchev VN, Lebedeva-Verba MP, Rogov VV, Stalina EE (2005) Cryogenesis of modern and Late Pleistocene deposits Altai and periglacial region of Europa. GEOS, Moscow (in Russian)

    Google Scholar 

  • Konishev VN (1982) Characteristics of cryogenic weathering in the permafrost zone of the European USSR. Arctic, Anthartic Alpine Res 14:261–265

    Article  Google Scholar 

  • Kovács J, Fábián SA, Schweitzer F, Varga G (2007) A relict sand-wedge polygon site in north-central Hungary. Permafr Periglac Process 18:379–384

    Article  Google Scholar 

  • Kowalkowski A (1984) Surface texture of quartz grains from tundra soils under electron microscope. Quatern Stud Pol 5:75–79

    Google Scholar 

  • Kowalkowski A (1988) Textural features of the surface of quartz sand grains in acid and alkaline silos of the cold climate. In: Mycielska-Dowgiałło E (ed) Geneza osadów i gleb w świetle badań w mikroskopie elektronowym. Wydawnictwa UW, Warszawa, pp. 87–99 (summary in English)

    Google Scholar 

  • Kowalkowski A, Degórski M (2008) Wskaźniki dawnych i aktualnych środowisk kształtujących cechy teksturalne powierzchni ziaren piasku kwarcowego przy zastosowaniu skaningowej mikroskopii elektronowej. Soil Sci Annu 59(3/4):160–174

    Google Scholar 

  • Kowalkowski A, Kocoń J (1991) Weathering processes in Spitsbergen on the ground of the scanning electron microscope investigation. In: Kostrzewski A (ed) Geneza, litologia i stratygrafia utworów czwartorzędowych. Adam Mickiewicz University Press, Poznań, pp. 77–104

    Google Scholar 

  • Kowalkowski A, Mycielska-Dowgiałło E (1980) Soil forming processes in the tundra and arid steppe of the Khangai mountains on the basis of quartz grain analysis with electron microscope. Pol J Soil Sci 13:59–63

    Google Scholar 

  • Kowalkowski A, Mycielska-Dowgiałło E (1985) Weathering of quartz grain in the liquefied horizon of permafrost solonchaks in the arid steppe zone, Central Mongolia. Catena 12:179–190

    Article  Google Scholar 

  • Kozarski S (1995) Deglacjacja północno-zachodniej Polski: warunki środowiska i transformacja geosystemu (∼20 ka → ∼10 ka BP). Dokumentacja Geograficzna 1, IGiPZ PAN, Warszawa (in Polish)

  • Krumbein WC (1941) Measurment and geological significance of shape and roundness of sedimentary particles. J Sediment Petrol 11:64–72

    Article  CAS  Google Scholar 

  • Latałowa M (2002) Ewolucja środowiska przyrodniczego w rynnie jeziora Żarnowieckiego na otaczających ją wysoczyznach w ciągu ostatnich około 11 tys. 14C lat BP. Geologia regionu gdańskiego. Przewodnik LXXIII Zjazdu Polskiego Towarzystwa Geologicznego. PIG, Gdańsk, pp 49–57

  • Mahaney WC (2015) Pedological iron/Al extracts, clast analysis, and coleoptera from Antarctic Paleosol 831: evidence of a Middle Miocene or earlier climatic optimum. J Geol 123(2):113–132

    Article  CAS  Google Scholar 

  • Marsz A, Tobolski K (1972) The Orzechowo-Ustka cliff. Characteristcs of the cliff and its overlying dunes. Guide Book of Excursions. INQUA Subcommission on Shorelines of Northwestern Europe, International Conference, Sopot, pp 41–44

  • Marsz A, Tobolski K (1993) Osady późnoglacjalne i holoceńskie w klifie między Ustką a ujściem Potoku Orzechowskiego. In: Florek W (ed) Geologia i geomorfologia środkowego Pobrzeża i południowego Bałtyku 1. Słupsk, pp 201–250

  • Mehra O, Jackson J (1960) Iron oxide removal from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate. Clay Clay Miner 5:317–327

    Google Scholar 

  • Nalepka D, Walanus A (2003) Data processing in pollen analysis. Acta Palaeobotanica 43(1):125–134

    Google Scholar 

  • Olchowik-Kolasińska J (1955) Struktury kongeliflukcyjne w okolicach Łodzi. Biul Peryglac 2:109–115 (in Polish)

    Google Scholar 

  • Olszak IJ, Florek W, Mystkowska A (2012) Stratygrafia i litologia osadów czwartorzędowych we wschodniej części klifu orzechowskiego i ich implikacje paleogeograficzne. In: Florek W (ed) Geologia i geomorfologia Pobrzeża i południowego Bałtyku 9, Słupsk, pp 45–56

  • Olszak IJ, Florek W, Seul C, Majewski M (2008) Stratygrafia i litologia mineralnych osadów występujących w klifach środkowej części polskiego wybrzeża Bałtyku. Landform Anal 7:113–118

    Google Scholar 

  • Pawelec H, Drewnik M, Żyła M (2015) Paleoenvironmental interpretation based on macro- and microstructure analysis of Pleistocene slope covers: a case study from the Miechów

  • Petelski K (1975) O budowie geologicznej gardzieńskiej moreny czołowej w odsłonięciach klifu pomiędzy Dębiną a Poddębiem na Pobrzeżu Zachodniopomorskim. Zeszyty Naukowe Wydziału BiNoZ Uniwersytetu Gdańskiego, Geografia 5:169–180

    Google Scholar 

  • Petelski K (1985) Budowa geologiczna moreny czołowej i niecki końcowej lobu gardzieńskiego. Biuletyn Instytutu Geologicznego 348:89–121

    Google Scholar 

  • Petelski K (2005) Szczegółowa Mapa Geologiczna Polski w skali 1:50 000, arkusz Smołdzino, Państwowy Instytut Geologiczny, Warszawa

  • Ping CL, Bockheim JG, Kimble JM, Michaelson GJ, Walker DA (1998) Characteristics of cryogenic soils along a latitudinal transect in arctic Alaska. J Geoph Res 103:28917–28928

    Article  CAS  Google Scholar 

  • Ping CL, Clark MH, Kimble JM, Michaelson GJ, Shur Y, Stiles CA (2013) Sampling protocols for permafrost-affected soils. Soil Horizons 54(1):13–19

    Article  Google Scholar 

  • Ping CL, Jastrow JD, Jorgenson MT, Michaelson GC, Shur YL (2015) Permafrost soils and carbon cycling. Soil 1:147–171

    Article  Google Scholar 

  • PTG (2009) Klasyfikacja uziarnienia gleb i utworów mineralnych – PTG 2008. Roczniki Gleboznawcze 60(2):5–17 (in Polish)

    Google Scholar 

  • Reimer PJ, Bard E, Bayliss A, Beck JW, Blackwell PG, Bronk Ramsey C, Buck CE, Cheng H, Edwards RL, Friedrich M, Grootes PM, Guilderson TP, Haflidason H, Hajdas I, Hatté C, Heaton TJ, Hoffmann DL, Hogg AG, Hughen KA, Kaiser KF, Kromer B, Manning SW, Niu M, Reimer RW, Richards DA, Scott EM, Southon JR, Staff RA, Turney CSM, van der Plicht J (2013) IntCal13 and Marine13 radiocarbon age calibration curves 0-50,000 years cal BP. Radiocarbon 55(4):1869–1887

    Article  CAS  Google Scholar 

  • Rodionov A, Flessa H, Grabe M, Kazansky OA, Shibistova O, Guggenberger G (2007) Organic carbon and total nitrogen variability in permafrost-affected soils in a forest tundra ecotone. Europ J Soil Sci 58:1260–1272

    Article  CAS  Google Scholar 

  • Rotnicki K, Borówka RK (1994) Stratigraphy, paleogeography and dating of the North Polish Stage in the Gardno-Łeba Coastal Plain. In: Rotnicki K (ed) Changes in the Polish Coastal Zone. Wydawnictwo Uniwersytetu Adama Mickiewicza, Poznań, pp. 84–88

    Google Scholar 

  • Schwamborn G, Meyer H, Fedorov G, Schirrmeister L, Hubberten HW (2006) Ground ice and slope sediments archiving late Quaternary paleoenvironment and paleoclimate signals at the margins of El’gygytgyn Impact Crater, NE Siberia. Quat Res 66:259–277

    Article  Google Scholar 

  • Smith BJ, Wright JS, Whalley WB (2002) Sources of non-glacial, loess-size quartz silt and the origins of ‘desert loess. Earth Sci Rev 59:1–26

    Article  CAS  Google Scholar 

  • Stonehouse HB, Arnaud RJ (1971) Distribution of iron, clay and extractable aluminum in some Saskatchewan soils. Can J Soil Sci 51:283–292

    Article  CAS  Google Scholar 

  • Tarnocai C (1972) Some characteristics of cryic organic soils in northern Manitoba. Can J Soil Sci 52:485–496

    Article  CAS  Google Scholar 

  • Tedrow JCF, Douglas LA (1964) Soil investigations on Banks Island. Soil Sci 98:53–65

    Article  Google Scholar 

  • Tedrow JCF, Thompson CC (1969) Chemical composotion of polar soils. Biul Peryglac 18:169–181

    Google Scholar 

  • Tobolski K (1987) Holocene vegetational development based on the Kluki reference side in the Gardno-Łeba Plain. Acta Paleobotanica 27(1):179–222

    Google Scholar 

  • Tomczak A (1993) Datowane metodą 14C wychodnie utworów organicznych na brzegu morskim między Rowami a jeziorem Kopań. In: Florek W (ed) Geologia i geomorfologia środkowego Pobrzeża i południowego Bałtyku, Słupsk, pp 187–199

  • van Geel B (2001) Non-pollen palynomorphs. In: Smol JP, Birks HJB, Last WM (eds) Tracking environmental change using lake sediments, Terrestrial, algal and silicaceous, vol 3. Kluwer, Dordrecht, pp. 99–119

    Chapter  Google Scholar 

  • Van Loon A, Błaszkiewicz M, Degórski M (2012) The role of permafrost in shaping the Late Glacial relief of northern Poland. Neth J Geosci Geol Mijnb 91:223–231

    Article  Google Scholar 

  • Van Reeuwijk L (1995) Procedures for soil analysis. Technical Paper 9, International Soil Reference and Information Centre, Rome

  • Vandenberghe J (1988) Cryoturbations. In: Clark M (ed) International perspectives in periglacial research. Wiley, Chichester, pp. 179–198

    Google Scholar 

  • Vandenberghe J, Van den Broek P (1982) Weichselian convolution phenomena and processes in fine sediments. Boreas 11:299–315

    Article  Google Scholar 

  • Wojciechowski A (2012) Malakofauna późnoglacjalnych osadów słodkowowdnych z klifu w Orzechowie. In: Florek W (ed) Geologia i geomorfologia Pobrzeża i południowego Bałtyku 9, Słupsk, pp 219–229

  • Woronko B, Hoch M (2011) The development of frost-weathering microstructures on sand-sized quartz grains: examples from Poland and Mongolia. Permafr Periglac Process 22(3):214–227

    Google Scholar 

  • Woronko B, Pisarska-Jamroży M (2016) Micro-scale frost weathering of sand-sized quartz grains. Permafr Periglac Process 27(1):109–122

    Article  Google Scholar 

  • Woronko B, Zieliński A (2006) Freeze-thaw of quartz sand grains as a mechanism of quartz silt production in laboratory simulations. In Nickling WG, Turner S, Gillies JA, Puddister MJ (eds) Sixth International Conference on Aeolian Research, July 24–28 2006. University of Guelph, Guelph, p 166

  • Worsley P (2000) Late-Quaternary cryostratigraphy of a coastal cliff at Martha Point, southwest Banks Island, western Canadian Arctic. The Holocene 10:395–400

    Article  Google Scholar 

  • Wright JS (2000) The spalling of overgrowths during experimental freeze–thaw of quartz sandstone as mechanism of quartz silt production. Micron 31:631–638

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bogusława Kruczkowska.

Additional information

Responsible editor: Fabio Scarciglia

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kruczkowska, B., Jonczak, J. & Gadziszewska, J. Characteristics of permafrost-affected soil in a cliff in the central part of the Polish Baltic coastal zone. J Soils Sediments 17, 960–973 (2017). https://doi.org/10.1007/s11368-016-1581-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-016-1581-4

Keywords

Navigation