Skip to main content

Advertisement

Log in

In search of indicators to assess the environmental impact of diets

  • POLICIES AND SUPPORT IN RELATION TO LCA
  • Published:
The International Journal of Life Cycle Assessment Aims and scope Submit manuscript

Abstract

Purpose

The aim of this paper is to identify a set of crucial indicators to assess the most pressing environmental impacts of diets.

Methods

Based on a literature review, 55 potential assessment methods were selected and their distinctive indicators identified. The methods were classified according to their position in the DPSIR framework [chain of Drivers, Pressures, State (changes), Impacts, and Responses], and into 15 environmental issues at three levels. The selection was narrowed down to eight, based on the availability of reliable methods, their relevance to agri-food systems, their frequent application for diets, and their recommendation by international bodies.

Results and discussion

(1) At the global (supra) level, the planetary boundaries approach addresses the current global environmental (change in) state and helps to prioritize the most pressing issues related to the agri-food system as a driver. These issues are climate change, nitrogen and phosphorus cycle disruption, land-use change, and freshwater use. (2) At the national (macro) level, the footprints approach is used to identify indicators. This footprint family includes ecological, land, carbon, energy, and water footprints. International bodies support these key indicators, but they recommend complementary assessment methods for nitrogen and phosphorus flows, soil health, and pesticide use. (3) At the product (micro) level, life cycle assessment includes 11 pressure indicators. Of the latter, greenhouse gas emissions (GHGEs) and land use (LU) are the most frequently used indicators in diet studies.

Conclusions

We conclude that GHGEs and LU fulfill the selection criteria and address most of the environmental impact of diets well. In the future, these indicators should be supplemented with an indicator addressing the nitrogen and phosphorous efficiency of food products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abaza H, Bisset R, Sadler B (2004) Environmental impact assessment and strategic environmental assessment: towards an integrated approach. UNEP, Geneva

    Google Scholar 

  • Aiking H (2014) Protein production: planet, profit, plus people? Am J Clin Nutr 100:483S–489S

    Article  CAS  Google Scholar 

  • Auestad N, Fulgoni VL (2015) What current literature tells us about sustainable diets: emerging research linking dietary patterns, environmental sustainability, and economics. Adv Nutr 6:19–36

    Article  CAS  Google Scholar 

  • Bauer SE, Tsigaridis K, Miller R (2016) Significant atmospheric aerosol pollution caused by world food cultivation. Geophys Res Lett 43:5394–5400

    Article  Google Scholar 

  • Benziger CP, Roth GA, Moran AE (2016) The global burden of disease study and the preventable burden of NCD. Glob Heart 11:393–397

    Article  Google Scholar 

  • Bjørn A, Hauschild MZ (2015) Introducing carrying capacity-based normalisation in LCA: framework and development of references at midpoint level. Int J Life Cycle Assess 20:1005–1018

    Article  CAS  Google Scholar 

  • Bjørn A, Diamond M, Owsianiak M, Verzat B, Hauschild MZ (2015) Strengthening the link between life cycle assessment and indicators for absolute sustainability to support development within planetary boundaries. Environ Sci Technol 49:6370–6371

  • Bonhommeau S, Dubroca L, Le Pape O, Barde J, Kaplan DM, Chassot E, Nieblas A-E (2013) Eating up the world’s food web and the human trophic level. Proc Natl Acad Sci 110:20617–20620

    Article  CAS  Google Scholar 

  • Bossel H (1996) Deriving indicators of sustainable development. Environ Model Assess 1:193–218

    Article  Google Scholar 

  • Brundtland GH (1987) Our common future, United Nations World Commission on Environment and Development. Oxford University Press, Oxford

    Google Scholar 

  • Carlsson-Kanyama A, Gonzalez AD (2009) Potential contributions of food consumption patterns to climate change. Am J Clin Nutr 89:1704S–11709

    Article  CAS  Google Scholar 

  • CIHEAM/FAO (2015) Mediterranean food consumption patterns: diet, environment, society, economy and health. A white paper. Priority 5 of feeding knowledge Programme, expo Milan 2015. CIHEAM-IAMB, FAO, Bari/Rome, Italy

  • de Vries W, Kros J, Kroeze C, Seitzinger SP (2013) Assessing planetary and regional nitrogen boundaries related to food security and adverse environmental impacts. Curr Opin Environ Sustain 5:392–402

    Article  Google Scholar 

  • Eureapa (2004) Netherlands: environmental impact from ecological footprint. One Planet Economy Network. https://www.eureapa.net/explore/?per_person=true&productgroup_id=2&region_id=18&_=1421840752045&impactgroup_id=1. Accessed 24 Feb 2016

  • Ewing BR, Hawkins TR, Wiedmann TO, Galli A, Ertug Ercin A, Weinzettel J, Steen-Olsen K (2012) Integrating ecological and water footprint accounting in a multi-regional input–output framework. Ecol Indic 23:1–8

    Article  Google Scholar 

  • Fang K (2015) Environmental footprints: assessing anthropogenic effects on the planet’s environment. Leiden University, The Netherlands

    Google Scholar 

  • Fang K, Heijungs R (2015a) Investigating the inventory and characterization aspects of footprinting methods: lessons for the classification and integration of footprints. J Clean Prod 108(Part A):1028–1036

    Article  Google Scholar 

  • Fang K, Heijungs R (2015b) Rethinking the relationship between footprints and LCA. Environ Sci Technol 49:10–11

    Article  CAS  Google Scholar 

  • Fang K, Heijungs R, de Snoo GR (2014) Theoretical exploration for the combination of the ecological, energy, carbon, and water footprints: overview of a footprint family. Ecol Indic 36:508–518

    Article  Google Scholar 

  • Fang K, Heijungs R, De Snoo GR (2015) Understanding the complementary linkages between environmental footprints and planetary boundaries in a footprint–boundary environmental sustainability assessment framework. Ecol Econ 114:218–226

    Article  Google Scholar 

  • FAO (2010)Biodiversity and sustainable diets united against hunger. In: International Scientific Symposium, Rome, 3–5. FAO Headquarters, Rome

  • FAOstat (2014) Agri-environmental indicators. FAO. http://faostat.fao.org/site/674/default.aspx

  • Frieden E (1972) The chemical elements of life. Sci Am 227:52–60

    Article  CAS  Google Scholar 

  • Frischknecht R, Braunschweig A, Hofstetter P, Suter P (2000) Modelling human health effects of radioactive releases in life cycle impact assessment. Environ Impact Assess Rev 20:159–189

    Article  Google Scholar 

  • Frischknecht R, Stolz P, Tschümperlin L (2016) National environmental footprints and planetary boundaries: from methodology to policy implementation 59th LCA forum, Swiss Federal Institute of Technology, Zürich, June 12, 2015. Int J Life Cycle Assess 21:601–605

    Article  Google Scholar 

  • Galli A, Wiedmann T, Ercin E, Knoblauch D, Ewing B, Giljum S (2012) Integrating ecological, carbon and water footprint into a “footprint family” of indicators: definition and role in tracking human pressure on the planet. Ecol Indic 16:100–112

    Article  Google Scholar 

  • Galli A, Weinzettel J, Cranston G, Ercin E (2013) A footprint family extended MRIO model to support Europe’s transition to a one planet economy. Sci Total Environ 462:813–818

    Article  CAS  Google Scholar 

  • Galli A et al (2016) Questioning the ecological footprint. Ecol Indic 69:224–232

    Article  Google Scholar 

  • Gerbens-Leenes PW (2006) Natural resource use for food: land, water and energy in production and consumption systems. Groningen, The Netherlands

    Google Scholar 

  • GFN (2009) Ecological Footprint Standards 2009. Available at http://www.footprintnetwork.org/en/index.php/GFN/page/application_standards/ Global Footprint Network, Oakland

  • GFN (2010) National Footprint Accounts data tables. Global Footprint Network, Oakland

    Google Scholar 

  • Goedkoop MJ, Heijungs R, Huijbregts M, De Schryver A, Struijs J, Van Zelm R (2013) ReCiPe 2008, a life cycle impact assessment method which comprises harmonised category indicators at the midpoint and the endpoint level; first edition Report I: characterisation. Pré Consultants, Amersfoort

    Google Scholar 

  • Guinée JB, Gorrée M, Heijungs R, Huppes G, Kleijn R, De Koning A, Van Oers L, Wegener Sleeswijk A, Suh S, Udo De Haes HA, De Bruijn JA, Huijbregts MJ (2002) Handbook on life cycle assessment: operational guide to the ISO standards. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Hansen JW (1996) Is agricultural sustainability a useful concept? Agric Syst 50:117–143

    Article  Google Scholar 

  • Hayashi K, Gaillard G, Nemecek T (2006) Life cycle assessment of agricultural production systems: current issues and future perspectives. In: International Seminar on Technology Development for Good Agricultural Practice, Taipei, Taiwan, 2006. Food and Fertilizer Technology Centre, pp 98–110

  • Heijungs R, de Koning A, Guinée JB (2014) Maximizing affluence within the planetary boundaries. Int J Life Cycle Assess 19:1331–1335

    Google Scholar 

  • Herva M, García-Diéguez C, Franco-Uría A, Roca E (2012) New insights on ecological footprinting as environmental indicator for production processes. Ecol Indic 90:84–90

    Article  CAS  Google Scholar 

  • Hitchcock K, Panko J, Scott P (2012) Incorporating chemical footprint reporting into social responsibility reporting. Integr Environ Assess Manag 8:386–388

    Article  Google Scholar 

  • Hoekstra AY (2009) Human appropriation of natural capital: a comparison of ecological footprint and water footprint analysis. Ecol Econ 68:1963–1974

    Article  Google Scholar 

  • Hoekstra AY, Chapagain AK (2004) Water footprints of nations: volume 1: main report, value of water volume 2: appendices. Unesco-IHE, Delft

    Google Scholar 

  • Hoekstra AY, Hung PQ (2002) Virtual water trade, A quantification of virtual water flows between nations in relation to international crop trade. Unesco-IHE, Delft

  • Hoekstra AY, Wiedmann TO (2014) Humanity’s unsustainable environmental footprint. Science 344:1114–1117

    Article  CAS  Google Scholar 

  • Hoekstra AY, Mekonnen MM, Chapagain AK, Mathews RE, Richter BD (2012) Global monthly water scarcity: blue water footprints versus blue water availability. PLoS One 7:e32688

    Article  CAS  Google Scholar 

  • Huysman S, Schaubroeck T, Dewulf J (2014) Quantification of spatially differentiated resource footprints for products and services through a macro-economic and thermodynamic approach. Environ Sci Technol 48:9709–9716

    Article  CAS  Google Scholar 

  • IPCC (2014) Climate change 2014: impacts, adaptation, and vulnerability. vol IPCC WGII AR5 Technical Summary. IPCC, Geneva

  • Jones AD, Hoey L, Blesh J, Miller L, Green A, Shapiro LF (2016) A systematic review of the measurement of sustainable diets. Adv Nutr 7:641–664

    Article  Google Scholar 

  • JRC (2011) ILCD handbook: recommendations for life cycle impact assessment in the European context, First edn. Joint Research Centre—European Commission, Luxemburg

    Google Scholar 

  • Kahiluoto H, Kuisma M, Kuokkanen A, Mikkilä M, Linnanen L (2014) Taking planetary nutrient boundaries seriously: can we feed the people? Glob Food Sec 3:16–21

    Article  Google Scholar 

  • Kristensen P (2004) The DPSIR framework. European Environmental Agency, Copenhagen

    Google Scholar 

  • Leach AM, Galloway JN, Bleeker A, Erisman JW, Kohn R, Kitzes J (2012) A nitrogen footprint model to help consumers understand their role in nitrogen losses to the environment. Env Dev 1:40–66

    Article  Google Scholar 

  • Leip A, Weiss F, Lesschen JP, Westhoek H (2014) The nitrogen footprint of food products in the European Union. JAS 152:20–33

    Google Scholar 

  • Lenzen M, Borgstrom Hansson C, Bond S (2007) On the bioproductivity and land-disturbance metrics of the ecological footprint. Ecol Econ 61:6–10

    Article  Google Scholar 

  • Lenzen M, Kanemoto K, Moran D, Geschke A (2012) Mapping the structure of the world economy. Environ Sci Technol 46:8374–8381

    Article  CAS  Google Scholar 

  • Lewis SL (2012) We must set planetary boundaries wisely. Nature 485

  • Liu C, Kroeze C, Hoekstra AY, Gerbens-Leenes W (2012) Past and future trends in grey water footprints of anthropogenic nitrogen and phosphorus inputs to major world rivers. Ecol Indic 18:42–49

    Article  CAS  Google Scholar 

  • Machovina B, Feeley KJ, Ripple WJ (2015) Biodiversity conservation: the key is reducing meat consumption. Sci Total Environ 536:419–431

    Article  CAS  Google Scholar 

  • Marinussen M, Kramer G, Pluimers J, Blonk H (2012) The environmental impact of our food an analysis based on the food consumption survey 2007–2010 (in Dutch). Blonk Consultants, Gouda

    Google Scholar 

  • Mason M, Zeitoun M (2013) Questioning environmental security. Geogr J 179:294–297

    Article  Google Scholar 

  • Mekonnen MM, Hoekstra AY (2011) National water footprint accounts: the green, blue and grey water footprint of production and consumption. UNESCO-IHE Institute for Water Education, Delft

  • Milà i Canals L, Bauer C, Depestele J, Dubreuil A, Freiermuth Knuchel R, Gaillard G, Michelsen O, Müller-Wenk R, Rydgren B (2007) Key elements in a framework for land use impact assessment within LCA (11 pp). Int J Life Cycle Assess 12:5–15

    Article  Google Scholar 

  • Moran DD, Lenzen M, Kanemoto K, Geschke A (2013) Does ecologically unequal exchange occur? Ecol Econ 89:177–186

    Article  Google Scholar 

  • OECD (2013) OECD compendium of agri-environmental indicators. OECD Publishing. doi:10.1787/9789264186217-en

  • Ott WR (1978) Environmental indices: theory and practice. Ann Arbor Science Publishers, Inc., Michigan

    Google Scholar 

  • Pereira HM et al (2010) Scenarios for global biodiversity in the 21st century. Science 10:1503–1509

    Google Scholar 

  • Peters GP (2010) Carbon footprints and embodied carbon at multiple scales. Curr Opin Envir Sustain 2:245–250

    Article  Google Scholar 

  • Pimentel D et al (2004) Water resources: agricultural and environmental issues. Bioscience 54:909–918

    Article  Google Scholar 

  • Pizzol M, Weidema B, Brandão M, Osset P (2015) Monetary valuation in life cycle assessment: a review. J Clean Prod 86:170–179

    Article  Google Scholar 

  • Posch M, Seppälä J, Hettelingh J-P, Johansson M, Margni M, Jolliet O (2008) The role of atmospheric dispersion models and ecosystem sensitivity in the determination of characterisation factors for acidifying and eutrophying emissions in LCIA. Int J Life Cycle Assess 13:477

    Article  CAS  Google Scholar 

  • Prud’Homme M (2010) World phosphate rock flows, losses and uses. In: Phosphates 2010 International Conference, Brussels, Belgium, 22–24 March 2010. International Fertiliser Industry Association

  • Rabl A, Spadaro JV (2004) The RiskPoll software, version is 1.051 (dated August 2004) www.arirabl.com

  • Rees WE (1992) Ecological footprints and appropriated carrying capacity: what urban economics leaves out. Environ Urban 4:121–130

    Article  Google Scholar 

  • Rees WE (1996) Revisiting carrying capacity: area-based indicators of sustainability. Popul Environ 17:195–215

    Article  Google Scholar 

  • Reytar K, Hanson C, Henninger N (2014) Indicators of sustainable agriculture: a scoping analysis, Working paper edn. World Resource Institute, Washington

    Google Scholar 

  • Ridoutt BG, Pfister S (2010) A revised approach to water footprinting to make transparent the impacts of consumption and production on global freshwater scarcity. Glob Environ Change 20:113–120

    Article  Google Scholar 

  • RIVM (2011) NEVO-table: Dutch food nutrients database (in Dutch). RIVM, Bilthoven

    Google Scholar 

  • Rockström J et al (2009) A safe operating space for humanity. Nature 461:472–475

    Article  CAS  Google Scholar 

  • Rosenbaum RK, Bachmann TM, Gold LS, Huijbregts MJ, Jolliet O, Juraske R, Koehler A, Larsen HF, Macleod M, Margni M, Mckone TE, Payet J, Schuhmacher M, Van De Meent D, Hauschild MZ (2008) USEtox—the UNEP-SETAC toxicity model: recommended characterisation factors for human toxicity and freshwater ecotoxicity in life cycle impact assessment. Int J Life Cycle Assess 13:532

    Article  CAS  Google Scholar 

  • Sabaté J, Sranacharoenpong K, Harwatt H, Wien M, Soret S (2015) The environmental cost of protein food choices. PHN 18:2067–2073

    Article  Google Scholar 

  • Sala OE et al (2000) Global biodiversity scenarios for the year 2100. Science 287:1770–1774

    Article  CAS  Google Scholar 

  • Schader C, Grenz J, Meier MS, Stolze M (2014) Scope and precision of sustainability assessment approaches to food systems. Ecol Soc 19(3):42

    Article  Google Scholar 

  • Seppälä J, Posch M, Johansson M, Hettelingh J-P (2006) Country-dependent characterisation factors for acidification and terrestrial eutrophication based on accumulated exceedance as an impact category indicator (14 pp). Int J Life Cycle Assess 11:403–416

    Article  CAS  Google Scholar 

  • Sevenster MN, Blonk H, Svd F (2010) Environmental analysis foods and food losses for priority streams chain-oriented waste policy (in Dutch). CE Delft/Blonk Milieu Advies, Delft

    Google Scholar 

  • Smeets E, Weterings R (1999) Environmental indicators: typology and overview. European Environmental Agency, Copenhagen

    Google Scholar 

  • Steffen W, Crutzen J, McNeill JR (2007) The Anthropocene: are humans now overwhelming the great forces of nature? Ambio 36:614–621

    Article  CAS  Google Scholar 

  • Steffen W et al (2015) Planetary boundaries: guiding human development on a changing planet. Science. doi:10.1126/science.1259855

  • Stöglehner G (2003) Ecological footprint—a tool for assessing sustainable energy supplies. J Clean Prod 11:267–277

    Article  Google Scholar 

  • Sutton MA, Van Grinsven H (2011) European nitrogen assessment (ENA). Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Tunstall D (1992) Developing environmental indicators: definitions, framework and issues. World Resources Institute, Washington

  • Tuomisto HL, Hodge ID, Riordan P, Macdonald DW (2012) Exploring a safe operating approach to weighting in life cycle impact assessment—a case study of organic, conventional and integrated farming systems. J Clean Prod 37:147–153

    Article  Google Scholar 

  • Turner K, Georgiou S, Clark R, Brouwer R, Burke J (2004) Economic valuation of water resources in agriculture, in: FAO Water Reports 27. FAO, Rome

    Google Scholar 

  • Tyszler M, Kramer G, Blonk H (2016) Just eating healthier is not enough: studying the environmental impact of different diet scenarios for Dutch women (31–50 years old) by linear programming. Int J Life Cycle Assess 21:701–709

    Article  Google Scholar 

  • van den Bergh JCJM, Verbruggen H (1999) Spatial sustainability, trade and indicators: an evaluation of the ‘ecological footprint’. Ecol Econ 29:61–72

    Article  Google Scholar 

  • van Dooren C (2016) Proposing the nutrient density unit as the functional unit in LCAs of foods (International Conference on Life Cycle Assessment of Food, Dublin 2016)

  • van Dooren C, Bosschaert T (2013) Developing and disseminating a foodprint tool to raise awareness about healthy and environmentally conscious food choices. Sustainability: Science, Practice, & Policy 9:70–82

  • van Dooren C, Douma A, Aiking H, Vellinga P (2017) Proposing a novel index reflecting both climate impact and nutritional impact of food products. Ecol Econ 131:389–398

    Article  Google Scholar 

  • Van Zelm R, Huijbregts MJ, Den Hollander HA, Van Jaarsveld HA, Sauter FJ, Struijs J, Van Wijnen HJ, Van De Meent D (2008) European characterization factors for human health damage of PM10 and ozone in life cycle impact assessment. Atmos Environ 42:441–453

    Article  CAS  Google Scholar 

  • Vitousek PM, Mooney HA, Lubchenco J, Melillo JM (1997) Human domination of Earth’s ecosystems. Science 277:494–499. doi:10.1126/science.277.5325.494

    Article  CAS  Google Scholar 

  • Vringer K, Benders R, Wilting H, Brink C, Drissen E, Nijdam D, Hoogervorst N (2010) A hybrid multi-region method (HMR) for assessing the environmental impact of private consumption. Ecol Econ 69:2510–2516

    Article  Google Scholar 

  • Wackernagel M, Rees W (1996) Our ecological footprint, reducing human impact on the earth. New Society Publishers, Gabriola Island

    Google Scholar 

  • Wang F, Sims JT, Ma L, Ma W, Dou Z, Zhang F (2011) The phosphorus footprint of China’s food chain: implications for food security, natural resource management, and environmental quality. J Environ Qual 40:1081–1089

    Article  CAS  Google Scholar 

  • Wegener Sleeswijk A, Kleijn R, Meeusen van Onna MJG, Leneman H, Sengers HHWJM, van Zeijts H, Reus JAWA (1996) Application of LCA to agricultural products. 1. Core methodological issues. 2. Supplement to the LCA guide. 3. Methodological background. Centre of Environmental Science (CML), Leiden University, Leiden

  • Weidema BP (2009) Using the budget constraint to monetarise impact assessment results. Ecol Econ 68:1591–1598

    Article  Google Scholar 

  • Weinzettel J, Hertwich EG, Peters GP, Steen-Olsen K, Galli A (2013) Affluence drives the global displacement of land use. Glob Environ Change 23:433–438

    Article  Google Scholar 

  • Westhoek H et al (2015) Nitrogen on the table: the influence of food choices on nitrogen emissions and the European environment. Centre for Ecology & Hydrology, Edinburgh

    Google Scholar 

  • Westhoek H, Ingram J, Van Berkum S, Özay L, Hajer M (2016) Food systems and natural resources. A Report of the Working Group on Food Systems of the International Resource Panel. UNEP, Nairobi

  • Wiedmann T, Minx J (2008) A definition of ‘carbon footprint’. Ecological economics research trends: chapter 1. Nova Science Publishers, Hauppage

  • Wiedmann TO, Schandl H, Lenzen M, Moran D, Suh S, West J, Kanemoto K (2015) The material footprint of nations. Proc Natl Acad Sci 112:6271–6276

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Corné van Dooren.

Additional information

Responsible editor: Niels Jungbluth

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van Dooren, C., Aiking, H. & Vellinga, P. In search of indicators to assess the environmental impact of diets. Int J Life Cycle Assess 23, 1297–1314 (2018). https://doi.org/10.1007/s11367-017-1371-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11367-017-1371-2

Keywords

Navigation