Skip to main content
Log in

Neuroprotective treatment with the nitrone compound OKN-007 mitigates age-related muscle weakness in aging mice

  • ORIGINAL ARTICLE
  • Published:
GeroScience Aims and scope Submit manuscript

Abstract

Despite the universal impact of sarcopenia on compromised health and quality of life in the elderly, promising pharmaceutical approaches that can effectively mitigate loss of muscle and function during aging have been limited. Our group and others have reported impairments in peripheral motor neurons and loss of muscle innervation as initiating factors in sarcopenia, contributing to mitochondrial dysfunction and elevated oxidative stress in muscle. We recently reported a reduction in α motor neuron loss in aging mice in response to the compound OKN-007, a proposed antioxidant and anti-inflammatory agent. In the current study, we asked whether OKN-007 treatment in wildtype male mice for 8–9 months beginning at 16 months of age can also protect muscle mass and function. At 25 months of age, we observed a reduction in the loss of whole-body lean mass, a reduced loss of innervation at the neuromuscular junction and well-preserved neuromuscular junction morphology in OKN-007 treated mice versus age matched wildtype untreated mice. The loss in muscle force generation in aging mice (~ 25%) is significantly improved with OKN-007 treatment. In contrast, OKN-007 treatment provided no protection in loss of muscle mass in aging mice. Mitochondrial function was improved by OKN-007 treatment, consistent with its potential antioxidative properties. Together, these exciting findings are the first to demonstrate that interventions through neuroprotection can be an effective therapy to counter aging-related muscle dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data that support the findings of the study are available in the manuscript and supplementary material of this article. Correspondence and requests for information should be addressed to H.V.R.

Abbreviations

NMJ:

Neuromuscular junction

ACHR:

Acetylcholine receptor

BSCB:

Blood-spinal cord barrier

OCR:

Oxygen consumption rate

ROS:

Reactive oxygen species

EDL:

Extensor digitorum longus

SERCA:

Sarcoplasmic/Endoplasmic Reticulum Calcium ATPase

References

  1. Piekarz KM, et al. Molecular changes associated with spinal cord aging. Geroscience. 2020;42(2):765–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zhou M, et al. Aging process of the human lumbar spinal cord: A morphometric analysis. Neuropathology. 1996;16(2):106–11.

    Article  Google Scholar 

  3. Drey M, et al. Motoneuron loss is associated with sarcopenia. J Am Med Dir Assoc. 2014;15(6):435–9.

    Article  PubMed  Google Scholar 

  4. Piasecki M, et al. Age-related neuromuscular changes affecting human vastus lateralis. J Physiol. 2016;594(16):4525–36.

    Article  CAS  PubMed  Google Scholar 

  5. Xu H, et al. Muscle mitochondrial catalase expression prevents neuromuscular junction disruption, atrophy, and weakness in a mouse model of accelerated sarcopenia. J Cachexia Sarcopenia Muscle. 2021;12(6):1582–96.

  6. Bhaskaran S, et al. Neuron-specific deletion of CuZnSOD leads to an advanced sarcopenic phenotype in older mice. Aging Cell. 2020;19(10):e13225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sataranatarajan K, et al. Neuron specific reduction in CuZnSOD is not sufficient to initiate a full sarcopenia phenotype. Redox Biol. 2015;5:140–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sakellariou GK, et al. Neuron-specific expression of CuZnSOD prevents the loss of muscle mass and function that occurs in homozygous CuZnSOD-knockout mice. FASEB J. 2014;28(4):1666–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jang YC, et al. Dietary restriction attenuates age-associated muscle atrophy by lowering oxidative stress in mice even in complete absence of CuZnSOD. Aging Cell. 2012;11(5):770–82.

    Article  CAS  PubMed  Google Scholar 

  10. Floyd RA, et al. Nitrone-based therapeutics for neurodegenerative diseases: their use alone or in combination with lanthionines. Free Radic Biol Med. 2013;62:145–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Towner RA, et al. OKN-007 Increases temozolomide (TMZ) sensitivity and suppresses TMZ-resistant glioblastoma (GBM) tumor growth. Transl Oncol. 2019;12(2):320–35.

    Article  PubMed  Google Scholar 

  12. Fan LW, et al. Interleukin-1 beta-Induced brain injury and neurobehavioral dysfunctions in juvenile rats can be attenuated by alpha-Phenyl-N-Tert-Butyl-Nitrone. Neuroscience. 2010;168(1):240–52.

    Article  CAS  PubMed  Google Scholar 

  13. Coutinho de Souza P, et al. OKN-007 decreases free radical levels in a preclinical F98 rat glioma model. Free Radic Biol Med. 2015;87:157–68.

    Article  CAS  PubMed  Google Scholar 

  14. Thomas L, et al. OKlahoma Nitrone-007: novel treatment for diffuse intrinsic pontine glioma. J Transl Med. 2020;18(1):424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Clausen F, et al. The nitrone free radical scavenger NXY-059 is neuroprotective when administered after traumatic brain injury in the rat. J Neurotrauma. 2008;25(12):1449–57.

    Article  PubMed  Google Scholar 

  16. Culot M, et al. Cerebrovascular protection as a possible mechanism for the protective effects of NXY-059 in preclinical models: An in vitro study. Brain Res. 2009;1294:144–52.

    Article  CAS  PubMed  Google Scholar 

  17. Floyd R, Hensley K, Bing G. Evidence for enhanced neuro-inflammatory processes in neurodegenerative diseases and the action of nitrones as potential therapeutics. Adv Res Neurodegen. 2000; 387–414.

  18. Piekarz KM, et al. Pharmacologic treatment with OKN-007 reduces alpha-motor neuron loss in spinal cord of aging mice. Geroscience. 2022;44(1):67–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yan LJ, Levine RL, Sohal RS. Oxidative damage during aging targets mitochondrial aconitase. Proc Natl Acad Sci U S A. 1997;94(21):11168–72.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  20. Battiste JD, et al. Phase Ib clinical trial of OKN-007 in recurrent malignant glioma. J Clin Oncol. 2020;38(15):2538.

  21. Xu H, et al. Age related changes in muscle mass and force generation in the triple transgenic (3xTgAD) mouse model of alzheimer’s disease. Front Aging Neurosci. 2022;14:876816.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Xu H, Ahn B, Van Remmen H. Impact of aging and oxidative stress on specific components of excitation contraction coupling in regulating force generation. Sci Adv. 2022;8(43):eadd7377.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Xu H, et al. Modulation of sarcopenia phenotypes by glutathione peroxidase 4 overexpression in mice. J Physiol. 2023;601(23):5277–93.

    Article  CAS  PubMed  Google Scholar 

  24. Ahn B, et al. Scavenging mitochondrial hydrogen peroxide by peroxiredoxin 3 overexpression attenuates contractile dysfunction and muscle atrophy in a murine model of accelerated sarcopenia. Aging Cell. 2022;21(3):e13569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Qaisar R, et al. Restoration of sarcoplasmic reticulum Ca2+ ATPase (SERCA) activity prevents age-related muscle atrophy and weakness in mice. Int J Mol Sci. 2021;22(1):37.

  26. Krumschnabel G, et al. Simultaneous high-resolution measurement of mitochondrial respiration and hydrogen peroxide production. Methods Mol Biol. 2015;1264:245–61.

    Article  CAS  PubMed  Google Scholar 

  27. Vasilaki A, et al. The effect of lengthening contractions on neuromuscular junction structure in adult and old mice. Age (Dordr). 2016;38(4):259–72.

    Article  PubMed  Google Scholar 

  28. Pratt SJP, et al. Recovery of altered neuromuscular junction morphology and muscle function in mdx mice after injury. Cell Mol Life Sci. 2015;72(1):153–64.

    Article  CAS  PubMed  Google Scholar 

  29. Peterson CM, Johannsen DL, Ravussin E. Skeletal muscle mitochondria and aging: a review. J Aging Res. 2012;2012:194821.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Muller FL, et al. Absence of CuZn superoxide dismutase leads to elevated oxidative stress and acceleration of age-dependent skeletal muscle atrophy. Free Radic Biol Med. 2006;40(11):1993–2004.

    Article  CAS  PubMed  Google Scholar 

  31. Larsson L, et al. Sarcopenia: aging-related loss of muscle mass and function. Physiol Rev. 2019;99(1):427–511.

    Article  PubMed  Google Scholar 

  32. Batsis JA, Villareal DT. Sarcopenic obesity in older adults: aetiology, epidemiology and treatment strategies. Nat Rev Endocrinol. 2018;14(9):513–37.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Barreiro E, et al. Both oxidative and nitrosative stress are associated with muscle wasting in tumour-bearing rats. FEBS Lett. 2005;579(7):1646–52.

    Article  CAS  PubMed  Google Scholar 

  34. Chugh D, et al. Neuromuscular junction transmission failure is a late phenotype in aging mice. Neurobiol Aging. 2020;86:182–90.

    Article  PubMed  Google Scholar 

  35. Anagnostou ME, Hepple RT. Mitochondrial mechanisms of neuromuscular junction degeneration with aging. Cells. 2020;9(1):197.

  36. Pollock N, et al. Neuromuscular junction structure and redox status of skeletal muscle fiber: effect on schwann cells. Faseb J. 2019;33(S1):593.4.

  37. Deepa SS, et al. Accelerated sarcopenia in Cu/Zn superoxide dismutase knockout mice. Free Radic Biol Med. 2019;132:19–23.

    Article  CAS  PubMed  Google Scholar 

  38. Li ZW, et al. Blocking the EGFR/p38/NF-kappaB signaling pathway alleviates disruption of BSCB and subsequent inflammation after spinal cord injury. Neurochem Int. 2021;150:105190.

    Article  CAS  PubMed  Google Scholar 

  39. Tang RZ, et al. The Inhibition of inflammatory signaling pathway by secretory leukocyte protease inhibitor can improve spinal cord injury. Cell Mol Neurobiol. 2020;40(7):1067–73.

    Article  CAS  PubMed  Google Scholar 

  40. Zhang YQ, et al. CuZnSOD gene deletion targeted to skeletal muscle leads to loss of contractile force but does not cause muscle atrophy in adult mice. FASEB J. 2013;27(9):3536–48.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  41. Jang YC, et al. Increased superoxide accelerates age-associated muscle atrophy through mitochondrial dysfunction and neuromuscular junction degeneration. FASEB J. 2010;24(5):1376–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bravo-Sagua R, et al. Calcium transport and signaling in mitochondria. Compr Physiol. 2017;7(2):623–34.

    Article  PubMed  Google Scholar 

  43. Xu H, Van Remmen H. The SarcoEndoplasmic Reticulum Calcium ATPase (SERCA) pump: a potential target for intervention in aging and skeletal muscle pathologies. Skelet Muscle. 2021;11(1):25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the VA pilot grant (I21 BX005619), and P01 grant (P01 AG051442) from NIA, and also the VA Senior Research Career Scientist award (IK6 BX005234) to Dr. Holly Van Remmen. Dr. Jacob L. Brown is currently supported by a VA Career Development Award (1 IK2 BX005620-01A1).

Author information

Authors and Affiliations

Authors

Contributions

H.X., K.M.P., S.B., J.L.B. and H.V.R. contributed in the conception and design of the research; H.X., K.M.P., S.B., J.L.B. performed the experiments and analyzed the data; H.X., K.M.P., S.B., J.L.B. and H.V.R. interpreted the results of the experiments; H.X. and H.V.R. prepared the figures and drafted the manuscript; H.X., S.B., J.L.B. and H.V.R. edited and revised the manuscript. All authors approved the final version of the manuscript, contributed to the article, and approved the submitted version.

Corresponding author

Correspondence to Holly Van Remmen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, H., Piekarz, K.M., Brown, J.L. et al. Neuroprotective treatment with the nitrone compound OKN-007 mitigates age-related muscle weakness in aging mice. GeroScience (2024). https://doi.org/10.1007/s11357-024-01134-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11357-024-01134-y

Keywords

Navigation