Skip to main content
Log in

RelA-mediated signaling connects adaptation to chronic cardiomyocyte stress with myocardial and systemic inflammation in the ADCY8 model of accelerated aging

  • ORIGINAL ARTICLE
  • Published:
GeroScience Aims and scope Submit manuscript

Abstract

Mice with cardiac-specific overexpression of adenylyl cyclase (AC) type 8 (TGAC8) are under a constant state of severe myocardial stress. They have a remarkable ability to adapt to this stress, but they eventually develop accelerated cardiac aging and experience reduced longevity. We have previously demonstrated through bioinformatics that constitutive adenylyl cyclase activation in TGAC8 mice is associated with the activation of inflammation-related signaling pathways. However, the immune response associated with chronic myocardial stress in the TGAC8 mouse remains unexplored. Here we demonstrate that chronic activation of adenylyl cyclase in cardiomyocytes of TGAC8 mice results in activation of cell-autonomous RelA-mediated NF-κB signaling. This is associated with non-cell-autonomous activation of proinflammatory and age-associated signaling in myocardial endothelial cells and myocardial smooth muscle cells, expansion of myocardial immune cells, increase in serum levels of inflammatory cytokines, and changes in the size or composition of lymphoid organs. All these changes precede the appearance of cardiac fibrosis. We provide evidence indicating that RelA activation in cardiomyocytes with chronic activation of adenylyl cyclase is mediated by calcium-protein Kinase A (PKA) signaling. Using a model of chronic cardiomyocyte stress and accelerated aging, we highlight a novel, calcium/PKA/RelA-dependent connection between cardiomyocyte stress, myocardial inflammation, and systemic inflammation. These findings suggest that RelA-mediated signaling in cardiomyocytes might be an adaptive response to stress that, when chronically activated, ultimately contributes to both cardiac and systemic aging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Any data not already reported in the manuscript or the supplementary material is available from the corresponding authors upon reasonable request.

References

  1. Lohse MJ, Engelhardt S, Eschenhagen T. What is the role of β-adrenergic signaling in heart failure? Circ Res. 2003. https://doi.org/10.1161/01.res.0000102042.83024.ca.

    Article  PubMed  Google Scholar 

  2. Moen JM, Matt MG, Ramirez C, Tarasov KV, Chakir K, Tarasova YS, et al. Overexpression of a neuronal type adenylyl cyclase (type 8) in sinoatrial node markedly impacts heart rate and rhythm. Front Neurosci. 2019. https://doi.org/10.3389/fnins.2019.00615.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Tarasov KV, Chakir K, Riordon DR, Lyashkov AE, Ahmet I, Perino MG, Silvester AJ, Zhang J, Wang M, Lukyanenko YO, Qu JH. A remarkable adaptive paradigm of heart performance and protection emerges in response to marked cardiac-specific overexpression of ADCY8. Elife. 2022. https://doi.org/10.7554/eLife.80949.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Lucia CD, Eguchi A, Koch WJ. New insights in cardiac β-adrenergic signaling during heart failure and aging. Front Pharmacol. 2018. https://doi.org/10.3389/fphar.2018.00904.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Hanoune J, Pouille Y, Tzavara E, Shen T, Lipskaya L, Miyamoto N, Suzuki Y, Defer N. Adenylyl cyclases: structure, regulation and function in an enzyme superfamily. Mol Cell Endocrinol. 1997. https://doi.org/10.1016/S0303-7207(97)04013-6.

    Article  PubMed  Google Scholar 

  6. Roth DM, Gao MH, Lai NC, Drumm J, Dalton N, Zhou JY, Zhu J, Entrikin D, Hammond HK. Cardiac-directed adenylyl cyclase expression improves heart function in murine cardiomyopathy. Circulation. 1999. https://doi.org/10.1161/01.CIR.99.24.3099.

    Article  PubMed  Google Scholar 

  7. Lipskaia L, Defer N, Esposito G, Hajar I, Garel MC, Rockman HA, Hanoune J. Enhanced cardiac function in transgenic mice expressing a Ca2+-stimulated adenylyl cyclase. Circ Res. 2000. https://doi.org/10.1161/01.RES.86.7.795.

    Article  PubMed  Google Scholar 

  8. Mougenot N, Mika D, Czibik G, Marcos E, Abid S, Houssaini A, Vallin B, Guellich A, Mehel H, Sawaki D, Vandecasteele G. Cardiac adenylyl cyclase overexpression precipitates and aggravates age-related myocardial dysfunction. Cardiovasc Res. 2019. https://doi.org/10.1093/cvr/cvy306.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Barcena ML, Aslam M, Pozdniakova S, Norman K, Ladilov Y. Cardiovascular inflammaging: mechanisms and translational aspects. Cells. 2022. https://doi.org/10.3390/cells11061010.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Raker VK, Becker C, Steinbrink K. The cAMP pathway as therapeutic target in autoimmune and inflammatory diseases. Front Immunol. 2016. https://doi.org/10.3389/fimmu.2016.00123.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Wehbi VL, Taskén K. Molecular mechanisms for cAMP-mediated immunoregulation in T cells–role of anchored protein kinase a signaling units. Front Immunol. 2016. https://doi.org/10.3389/fimmu.2016.00222.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Carrillo-Salinas FJ, Ngwenyama N, Anastasiou M, Kaur K, Alcaide P. Heart inflammation: immune cell roles and roads to the heart. Am J Pathol. 2019. https://doi.org/10.1016/j.ajpath.2019.04.009.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Steffens S, Nahrendorf M, Madonna R. Immune cells in cardiac homeostasis and disease: emerging insights from novel technologies. Eur Heart J. 2022. https://doi.org/10.1093/eurheartj/ehab842.

    Article  PubMed  Google Scholar 

  14. Svedberg FR, Guilliams M. Cellular origin of human cardiac macrophage populations. Nat Med. 2018. https://doi.org/10.1038/s41591-018-0143-2.

    Article  PubMed  Google Scholar 

  15. Bajpai G, Schneider C, Wong N, Bredemeyer A, Hulsmans M, Nahrendorf M, Epelman S, Kreisel D, Liu Y, Itoh A, Shankar TS. The human heart contains distinct macrophage subsets with divergent origins and functions. Nat Med. 2018. https://doi.org/10.1038/s41591-018-0059-x.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ianevski A, Giri AK, Aittokallio T. Fully-automated and ultra-fast cell-type identification using specific marker combinations from single-cell transcriptomic data. Nat Commun. 2022. https://doi.org/10.1038/s41467-022-28803-w.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Song LS, Guia A, Muth JN, Rubio M, Wang SQ, Xiao RP, Josephson IR, Lakatta EG, Schwartz A, Cheng H. Ca2+ signaling in cardiac myocytes overexpressing the α1 subunit of L-type Ca2+ channel. Circ Res. 2002. https://doi.org/10.1161/hh0202.103230.

    Article  PubMed  Google Scholar 

  18. Miyata H, Lakatta EG, Stern MD, Silverman HS. Relation of mitochondrial and cytosolic free calcium to cardiac myocyte recovery after exposure to anoxia. Circ Res. 1992. https://doi.org/10.1161/01.RES.71.3.605.

    Article  PubMed  Google Scholar 

  19. Franceschi C, Garagnani P, Parini P, Giuliani C, Santoro A. Inflammaging: a new immune–metabolic viewpoint for age-related diseases. Nat Rev Endocrinol. 2018. https://doi.org/10.1038/s41574-018-0059-4.

    Article  PubMed  Google Scholar 

  20. Ramos GC, van den Berg A, Nunes-Silva V, Weirather J, Peters L, Burkard M, Friedrich M, Pinnecker J, Abeßer M, Heinze KG, Schuh K. Myocardial aging as a T-cell–mediated phenomenon. PNAS. 2017. https://doi.org/10.1073/pnas.1621047114.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Medzhitov R. Origin and physiological roles of inflammation. Nature. 2008;454(7203):428–35. https://doi.org/10.1038/nature07201.

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Brandes RP, Fleming I, Busse R. Endothelial aging. Cardiovasc Res. 2005. https://doi.org/10.1016/j.cardiores.2004.12.027.

    Article  PubMed  Google Scholar 

  23. Rog-Zielinska EA, Norris RA, Kohl P, Markwald R. The living scar–cardiac fibroblasts and the injured heart. Trends Mol Med. 2016;22(2):99–114. https://doi.org/10.1016/j.molmed.2015.12.006.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Adamo L, Rocha-Resende C, Lin CY, Evans S, Williams J, Dun H, Li W, Mpoy C, Andhey PS, Rogers BE, Lavine K. Myocardial B cells are a subset of circulating lymphocytes with delayed transit through the heart. JCI Insight. 2020. https://doi.org/10.1172/jci.insight.134700.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Leuschner F, Rauch PJ, Ueno T, Gorbatov R, Marinelli B, Lee WW, Dutta P, Wei Y, Robbins C, Iwamoto Y, Sena B. Rapid monocyte kinetics in acute myocardial infarction are sustained by extramedullary monocytopoiesis. J Exp Med. 2012;209(1):123–37. https://doi.org/10.1084/jem.20111009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Heinrichs M, Ashour D, Siegel J, Büchner L, Wedekind G, Heinze KG, Arampatzi P, Saliba AE, Cochain C, Hofmann U, Frantz S. The healing myocardium mobilizes a distinct B-cell subset through a CXCL13-CXCR5-dependent mechanism. Cardiovasc Res. 2021. https://doi.org/10.1093/cvr/cvab181.

    Article  PubMed  Google Scholar 

  27. Adamo L, Rocha-Resende C, Prabhu SD, Mann DL. Reappraising the role of inflammation in heart failure. Nat Rev Cardiol. 2020. https://doi.org/10.1038/s41569-019-0315-x.

    Article  PubMed  Google Scholar 

  28. Gordon JW, Shaw JA, Kirshenbaum LA. Multiple facets of NF-κB in the heart: to be or not to NF-κB. Circ Res. 2011. https://doi.org/10.1161/CIRCRESAHA.110.226928.

    Article  PubMed  Google Scholar 

  29. Kumar V, Aneesh KA, Kshemada K, Ajith KG, Binil RS, Deora N, Sanjay G, Jaleel A, Muraleedharan TS, Anandan EM, Mony RS. Amalaki rasayana, a traditional Indian drug enhances cardiac mitochondrial and contractile functions and improves cardiac function in rats with hypertrophy. Sci Rep. 2017. https://doi.org/10.1038/s41598-017-09225-x.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Chawla M, Roy P, Basak S. Role of the NF-κB system in context-specific tuning of the inflammatory gene response. Curr Opin Immunol. 2021. https://doi.org/10.1016/j.coi.2020.08.005.

    Article  PubMed  Google Scholar 

  31. Jurk D, Wilson C, Passos JF, Oakley F, Correia-Melo C, Greaves L, Saretzki G, Fox C, Lawless C, Anderson R, Hewitt G. Chronic inflammation induces telomere dysfunction and accelerates ageing in mice. Nat Commun. 2014. https://doi.org/10.1038/ncomms5172.

    Article  PubMed  Google Scholar 

  32. Zhong H, Voll RE, Ghosh S. Phosphorylation of NF-κB p65 by PKA stimulates transcriptional activity by promoting a novel bivalent interaction with the coactivator CBP/p300. Mol Cell. 1998. https://doi.org/10.1016/S1097-2765(00)80066-0.

    Article  PubMed  Google Scholar 

  33. Terrinoni M, Holmgren J, Lebens M, Larena M. Requirement for cyclic AMP/protein kinase A-dependent canonical NFκB signaling in the adjuvant action of cholera toxin and its non-toxic derivative mmCT. Front Immun. 2019. https://doi.org/10.3389/fimmu.2019.00269.

    Article  Google Scholar 

  34. Lakatta EG. So! What’s aging? Is cardiovascular aging a disease? JMCC. 2015. https://doi.org/10.1016/j.yjmcc.2015.04.005.

    Article  Google Scholar 

  35. Qu JH, Chakir K, Tarasov KV, Riordon DR, Perino MG, Silvester AJ, Lakatta EG. The reprogrammed mouse heart phosphoproteome in response to the chronic stress of markedly high cardiac-specific adenylyl cyclase type 8 overexpression. bioRxiv. 2022, https://doi.org/10.1101/2022.04.29.488779

Download references

Acknowledgements

The authors would like to acknowledge Sylvie Rousseau for her assistance in completing specific experiments. This study was supported by the Intramural Research Program of the NIH, National Institute of Aging (USA), and by NHLBI grants 5K08HLO145108-03 and 1R01HL160716-01 to L.A.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Edward G. Lakatta or Luigi Adamo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

1.Mice expressing transgenic, constitutively active adenylyl cyclase type 8 in cardiomyocytes (TGAC8) are a model to investigate chronic myocardial stress and myocardial aging.

2.Sustained adenylyl cyclase signaling in TGAC8 cardiomyocytes induces RelA-mediated activation of proinflammatory and age-related pathways in myocardial endothelial and smooth muscle cells together with expansion of myocardial immune cells.

3.The activation of RelA signaling in cardiomyocytes is associated with a systemic inflammatory response.

4.Activation of RelA in cardiomyocytes is calcium-PKA dependent.

5.Our findings provide mechanistic insights into the relationship between chronic myocardial stress, cardiac inflammation, and systemic inflammation, and might be relevant to cardiac and systemic aging.

Supplementary Information

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, V., Bermea, K.C., Kumar, D. et al. RelA-mediated signaling connects adaptation to chronic cardiomyocyte stress with myocardial and systemic inflammation in the ADCY8 model of accelerated aging. GeroScience (2024). https://doi.org/10.1007/s11357-024-01121-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11357-024-01121-3

Keywords

Navigation