Skip to main content

Advertisement

Log in

The effect of aperiodic components in distinguishing Alzheimer’s disease from frontotemporal dementia

  • ORIGINAL ARTICLE
  • Published:
GeroScience Aims and scope Submit manuscript

Abstract

Distinguishing between Alzheimer’s disease (AD) and frontotemporal dementia (FTD) presents a clinical challenge. Inexpensive and accessible techniques such as electroencephalography (EEG) are increasingly being used to address this challenge. In particular, the potential relevance between aperiodic components of EEG activity and these disorders has gained interest as our understanding evolves. This study aims to determine the differences in aperiodic activity between AD and FTD and evaluate its potential for distinguishing between the two disorders. A total of 88 participants, including 36 patients with AD, 23 patients with FTD, and 29 healthy controls (CN) underwent cognitive assessment and scalp EEG acquisition. Neuronal power spectra were parameterized to decompose the EEG spectrum, enabling comparison of group differences in different components. A support vector machine was employed to assess the impact of aperiodic parameters on the differential diagnosis. Compared with the CN group, both the AD and FTD groups showed varying degrees of increased alpha power (both periodic and raw power) and theta alpha power ratio. At the channel level, theta power (both periodic and raw power) in the frontal regions was higher in the AD group compared to the FTD group, and aperiodic parameters (both exponents and offsets) in the frontal, temporal, central, and parietal regions were higher in the AD group than in the FTD group. Importantly, the inclusion of aperiodic parameters led to improved performance in distinguishing between the two disorders. These findings highlight the significance of aperiodic components in discriminating dementia-related diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets analyzed during the current study are available in the ds004504 repository, https://github.com/OpenNeuroDatasets/ds004504. The custom codes used for the current study are available at https://github.com/dcgggg/ds004504_Aperdiodic.

Abbreviations

AD :

Alzheimer’s disease

ANOVA :

Analysis of variance

AUC :

Area under curve

CN :

Healthy controls

EEG :

Electroencephalography

E/I :

Excitation/inhibition

FDR :

False discovery rate

FTD :

Frontotemporal dementia

MMSE :

Mini-Mental State Examination

NFTs :

Neurofibrillary tangles

PSD :

Power spectral density

SMOTE :

Synthetic Minority Oversampling Technique

SVM :

Support vector machine

TAR :

Theta alpha power ratio

References

  1. Lattante S, Ciura S, Rouleau GA, Kabashi E. Defining the genetic connection linking amyotrophic lateral sclerosis (ALS) with frontotemporal dementia (FTD). Trends Genet. 2015;31:263–73. https://doi.org/10.1016/j.tig.2015.03.005.

    Article  CAS  PubMed  Google Scholar 

  2. Mendez MF, Perryman KM, Miller BL, Cummings JL. Behavioral differences between frontotemporal dementia and Alzheimer’s disease: a comparison on the BEHAVE-AD rating scale. Int Psychogeriatr. 1998;10:155–62. https://doi.org/10.1017/s1041610298005262.

    Article  CAS  PubMed  Google Scholar 

  3. Piguet O, Hornberger M, Mioshi E, Hodges JR. Behavioural-variant frontotemporal dementia: diagnosis, clinical staging, and management. Lancet Neurol. 2011;10:162–72. https://doi.org/10.1016/S1474-4422(10)70299-4.

    Article  PubMed  Google Scholar 

  4. Perry RJ, Hodges JR. Differentiating frontal and temporal variant frontotemporal dementia from Alzheimer’s disease. Neurology. 2000;54:2277–84. https://doi.org/10.1212/WNL.54.12.2277.

    Article  CAS  PubMed  Google Scholar 

  5. Reul S, Lohmann H, Wiendl H, Duning T, Johnen A. Can cognitive assessment really discriminate early stages of Alzheimer’s and behavioural variant frontotemporal dementia at initial clinical presentation? Alzheimers Res Ther. 2017;9:61. https://doi.org/10.1186/s13195-017-0287-1.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Minoshima S, Mosci K, Cross D, Thientunyakit T. Brain [F-18]FDG PET for clinical dementia workup: differential diagnosis of Alzheimer’s disease and other types of dementing disorders. Semin Nucl Med. 2021;51:230–40. https://doi.org/10.1053/j.semnuclmed.2021.01.002.

    Article  PubMed  Google Scholar 

  7. Talbot PR, Snowden JS, Lloyd JJ, Neary D, Testa HJ. The contribution of single photon emission tomography to the clinical differentiation of degenerative cortical brain disorders. J Neurol. 1995;242:579–86. https://doi.org/10.1007/BF00868810.

    Article  CAS  PubMed  Google Scholar 

  8. Yu Q, Mai Y, Ruan Y, Luo Y, Zhao L, Fang W, et al. An MRI-based strategy for differentiation of frontotemporal dementia and Alzheimer’s disease. Alzheimers Res Ther. 2021;13:23. https://doi.org/10.1186/s13195-020-00757-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nardone R, Sebastianelli L, Versace V, Saltuari L, Lochner P, Frey V, et al. Usefulness of EEG techniques in distinguishing frontotemporal dementia from Alzheimer’s disease and other dementias. Dis Markers. 2018;2018:6581490. https://doi.org/10.1155/2018/6581490.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Huang C, Wahlund L, Dierks T, Julin P, Winblad B, Jelic V. Discrimination of Alzheimer’s disease and mild cognitive impairment by equivalent EEG sources: a cross-sectional and longitudinal study. Clin Neurophysiol. 2000;111:1961–7. https://doi.org/10.1016/s1388-2457(00)00454-5.

    Article  CAS  PubMed  Google Scholar 

  11. Jiao B, Li R, Zhou H, Qing K, Liu H, Pan H, et al. Neural biomarker diagnosis and prediction to mild cognitive impairment and Alzheimer’s disease using EEG technology. Alzheimers Res Ther. 2023;15:32. https://doi.org/10.1186/s13195-023-01181-1.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Mattia D, Babiloni F, Romigi A, Cincotti F, Bianchi L, Sperli F, et al. Quantitative EEG and dynamic susceptibility contrast MRI in Alzheimer’s disease: a correlative study. Clin Neurophysiol. 2003;114:1210–6. https://doi.org/10.1016/s1388-2457(03)00085-3.

    Article  PubMed  Google Scholar 

  13. Meghdadi AH, StevanovićKarić M, McConnell M, Rupp G, Richard C, Hamilton J, et al. Resting state EEG biomarkers of cognitive decline associated with Alzheimer’s disease and mild cognitive impairment. PLoS ONE. 2021;16:e0244180. https://doi.org/10.1371/journal.pone.0244180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lindau M, Jelic V, Johansson S-E, Andersen C, Wahlund L-O, Almkvist O. Quantitative EEG abnormalities and cognitive dysfunctions in frontotemporal dementia and Alzheimer’s disease. Dement Geriatr Cogn Disord. 2003;15:106–14. https://doi.org/10.1159/000067973.

    Article  CAS  PubMed  Google Scholar 

  15. Passant U, Rosén I, Gustafson L, Englund E. The heterogeneity of frontotemporal dementia with regard to initial symptoms, qEEG and neuropathology. Int J Geriatr Psychiatry. 2005;20:983–8. https://doi.org/10.1002/gps.1388.

    Article  PubMed  Google Scholar 

  16. Milstein J, Mormann F, Fried I, Koch C. Neuronal shot noise and Brownian 1/f2 behavior in the local field potential. PLoS ONE. 2009;4:e4338. https://doi.org/10.1371/journal.pone.0004338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. He BJ. Scale-free brain activity: past, present, and future. Trends Cogn Sci. 2014;18:480–7. https://doi.org/10.1016/j.tics.2014.04.003.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Voytek B, Knight RT. Dynamic network communication as a unifying neural basis for cognition, development, aging, and disease. Biol Psychiatry. 2015;77:1089–97. https://doi.org/10.1016/j.biopsych.2015.04.016.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Gao R. Interpreting the electrophysiological power spectrum. J Neurophysiol. 2016;115:628–30. https://doi.org/10.1152/jn.00722.2015.

    Article  PubMed  Google Scholar 

  20. Gao R, Peterson EJ, Voytek B. Inferring synaptic excitation/inhibition balance from field potentials. Neuroimage. 2017;158:70–8. https://doi.org/10.1016/j.neuroimage.2017.06.078.

    Article  PubMed  Google Scholar 

  21. Voytek B, Kramer MA, Case J, Lepage KQ, Tempesta ZR, Knight RT, et al. Age-related changes in 1/f neural electrophysiological noise. J Neurosci. 2015;35:13257–65. https://doi.org/10.1523/JNEUROSCI.2332-14.2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Schaworonkow N, Voytek B. Longitudinal changes in aperiodic and periodic activity in electrophysiological recordings in the first seven months of life. Dev Cogn Neurosci. 2021;47:100895. https://doi.org/10.1016/j.dcn.2020.100895.

    Article  PubMed  Google Scholar 

  23. Miskovic V, MacDonald KJ, Rhodes LJ, Cote KA. Changes in EEG multiscale entropy and power-law frequency scaling during the human sleep cycle. Hum Brain Mapp. 2019;40:538–51. https://doi.org/10.1002/hbm.24393.

    Article  PubMed  Google Scholar 

  24. Lendner JD, Helfrich RF, Mander BA, Romundstad L, Lin JJ, Walker MP, et al. An electrophysiological marker of arousal level in humans. Elife 2020;9. https://doi.org/10.7554/eLife.55092.

  25. Pertermann M, Bluschke A, Roessner V, Beste C. The modulation of neural noise underlies the effectiveness of methylphenidate treatment in attention-deficit/hyperactivity disorder. Biol Psychiatry. 2019;4:743–50. https://doi.org/10.1016/j.bpsc.2019.03.011.

    Article  Google Scholar 

  26. Racz F, Farkas K, Stylianou O, Kaposzta Z, Czoch A, Csukly G, et al. Separating scale-free and oscillatory components of neural activity in schizophrenia. Brain Behav 2021;11. https://doi.org/10.1002/brb3.2047.

  27. Wang Z, Mo Y, Sun Y, Hu K, Peng C, Zhang S, et al. Separating the aperiodic and periodic components of neural activity in Parkinson’s disease. Eur J Neurosci. 2022. https://doi.org/10.1111/ejn.15774.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Ouyang G, Hildebrandt A, Schmitz F, Herrmann CS. Decomposing alpha and 1/f brain activities reveals their differential associations with cognitive processing speed. Neuroimage. 2020;205:116304. https://doi.org/10.1016/j.neuroimage.2019.116304.

    Article  PubMed  Google Scholar 

  29. Cross ZR, Corcoran AW, Schlesewsky M, Kohler MJ, Bornkessel-Schlesewsky I. Oscillatory and aperiodic neural activity jointly predict language learning. J Cogn Neurosci. 2022;1–20. https://doi.org/10.1162/jocn_a_01878.

  30. Donoghue T, Haller M, Peterson EJ, Varma P, Sebastian P, Gao R, et al. Parameterizing neural power spectra into periodic and aperiodic components. Nat Neurosci. 2020;23:1655–65. https://doi.org/10.1038/s41593-020-00744-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Miltiadous A, Tzimourta KD, Afrantou T, Ioannidis P, Grigoriadis N, Tsalikakis DG, et al. A dataset of 88 EEG recordings from: Alzheimer’s disease, frontotemporal dementia and healthy subjects 2023. https://doi.org/10.18112/OPENNEURO.DS004504.V1.0.4.

  32. Miltiadous A, Tzimourta KD, Giannakeas N, Tsipouras MG, Afrantou T, Ioannidis P, et al. Alzheimer’s disease and frontotemporal dementia: a robust classification method of EEG signals and a comparison of validation methods. Diagnostics. 2021;11:1437. https://doi.org/10.3390/diagnostics11081437.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Tzimourta KD, Afrantou T, Ioannidis P, Karatzikou M, Tzallas AT, Giannakeas N, et al. Analysis of electroencephalographic signals complexity regarding Alzheimer’s disease. Comput Electr Eng. 2019;76:198–212. https://doi.org/10.1016/j.compeleceng.2019.03.018.

    Article  Google Scholar 

  34. Miltiadous A, Tzimourta KD, Afrantou T, Ioannidis P, Grigoriadis N, Tsalikakis DG, et al. A dataset of scalp EEG recordings of Alzheimer’s disease, frontotemporal dementia and healthy subjects from routine EEG. Data. 2023;8:95. https://doi.org/10.3390/data8060095.

    Article  Google Scholar 

  35. Delorme A, Makeig S. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods. 2004;134:9–21. https://doi.org/10.1016/j.jneumeth.2003.10.009.

    Article  PubMed  Google Scholar 

  36. Chang C-Y, Hsu S-H, Pion-Tonachini L, Jung T-P. Evaluation of artifact subspace reconstruction for automatic artifact components removal in multi-channel EEG recordings. IEEE Trans Biomed Eng. 2020;67:1114–21. https://doi.org/10.1109/TBME.2019.2930186.

    Article  PubMed  Google Scholar 

  37. Winkler I, Haufe S, Tangermann M. Automatic classification of artifactual ICA-components for artifact removal in EEG signals. Behav Brain Funct. 2011;7:30. https://doi.org/10.1186/1744-9081-7-30.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Chang C-C, Lin C-J. LIBSVM: A library for support vector machines. ACM Trans Intell Syst Technol. 2011;2:27:1-27:27. https://doi.org/10.1145/1961189.1961199.

    Article  Google Scholar 

  39. Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP. SMOTE: synthetic minority over-sampling technique. J Artif Intell Res. 2002;16:321–57. https://doi.org/10.1613/jair.953.

    Article  Google Scholar 

  40. Donoghue T, Dominguez J, Voytek B. Electrophysiological frequency band ratio measures conflate periodic and aperiodic neural activity. eNeuro 2020;7. https://doi.org/10.1523/ENEURO.0192-20.2020.

  41. Caso F, Cursi M, Magnani G, Fanelli G, Falautano M, Comi G, et al. Quantitative EEG and LORETA: valuable tools in discerning FTD from AD? Neurobiol Aging. 2012;33:2343–56. https://doi.org/10.1016/j.neurobiolaging.2011.12.011.

    Article  PubMed  Google Scholar 

  42. Ma C, M N, M B, O G, S C, M R, et al. The spectral exponent of the resting EEG indexes the presence of consciousness during unresponsiveness induced by propofol, xenon, and ketamine. NeuroImage 2019;189. https://doi.org/10.1016/j.neuroimage.2019.01.024.

  43. Zsido RG, Molloy EN, Cesnaite E, Zheleva G, Beinhölzl N, Scharrer U, et al. One-week escitalopram intake alters the excitation-inhibition balance in the healthy female brain. Hum Brain Mapp. 2022. https://doi.org/10.1002/hbm.25760.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Maestú F, de Haan W, Busche MA, DeFelipe J. Neuronal excitation/inhibition imbalance: core element of a translational perspective on Alzheimer pathophysiology. Ageing Res Rev. 2021;69:101372. https://doi.org/10.1016/j.arr.2021.101372.

    Article  CAS  PubMed  Google Scholar 

  45. Ghosh I, Liu CS, Swardfager W, Lanctôt KL, Anderson ND. The potential roles of excitatory-inhibitory imbalances and the repressor element-1 silencing transcription factor in aging and aging-associated diseases. Mol Cell Neurosci. 2021;117:103683. https://doi.org/10.1016/j.mcn.2021.103683.

    Article  CAS  PubMed  Google Scholar 

  46. Merkin A, Sghirripa S, Graetz L, Smith AE, Hordacre B, Harris R, et al. Do age-related differences in aperiodic neural activity explain differences in resting EEG alpha? Neurobiol Aging. 2022. https://doi.org/10.1016/j.neurobiolaging.2022.09.003.

    Article  PubMed  Google Scholar 

  47. Knafo S, Alonso-Nanclares L, Gonzalez-Soriano J, Merino-Serrais P, Fernaud-Espinosa I, Ferrer I, et al. Widespread changes in dendritic spines in a model of Alzheimer’s disease. Cereb Cortex. 2009;19:586–92. https://doi.org/10.1093/cercor/bhn111.

    Article  CAS  PubMed  Google Scholar 

  48. León-Espinosa G, DeFelipe J, Muñoz A. Effects of amyloid-β plaque proximity on the axon initial segment of pyramidal cells. J Alzheimers Dis. 2012;29:841–52. https://doi.org/10.3233/JAD-2012-112036.

    Article  CAS  PubMed  Google Scholar 

  49. Garcia-Marin V. Diminished perisomatic GABAergic terminals on cortical neurons adjacent to amyloid plaques. Front Neuroanat 2009;3. https://doi.org/10.3389/neuro.05.028.2009.

  50. Merino-Serrais P, Benavides-Piccione R, Blazquez-Llorca L, Kastanauskaite A, Rábano A, Avila J, et al. The influence of phospho-tau on dendritic spines of cortical pyramidal neurons in patients with Alzheimer’s disease. Brain. 2013;136:1913–28. https://doi.org/10.1093/brain/awt088.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Bang J, Spina S, Miller BL. Frontotemporal dementia. Lancet. 2015;386:1672–82. https://doi.org/10.1016/S0140-6736(15)00461-4.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Lendner JD, Harler U, Daume J, Engel AK, Zöllner C, Schneider TR, et al. Oscillatory and aperiodic neuronal activity in working memory following anesthesia. Clin Neurophysiol. 2023;150:79–88. https://doi.org/10.1016/j.clinph.2023.03.005.

    Article  PubMed  Google Scholar 

  53. Garn H, Waser M, Deistler M, Schmidt R, Dal-Bianco P, Ransmayr G, et al. Quantitative EEG in Alzheimer’s disease: cognitive state, resting state and association with disease severity. Int J Psychophysiol Off J Int Organ Psychophysiol. 2014;93:390–7. https://doi.org/10.1016/j.ijpsycho.2014.06.003.

    Article  Google Scholar 

  54. Ibarra Chaoul A, Siegel M. Cortical correlation structure of aperiodic neuronal population activity. Neuroimage. 2021;245:118672. https://doi.org/10.1016/j.neuroimage.2021.118672.

    Article  PubMed  Google Scholar 

  55. Ranjan B, Sun W, Park J, Mishra K, Schmidt F, Xie R, et al. DUBStepR is a scalable correlation-based feature selection method for accurately clustering single-cell data. Nat Commun. 2021;12:5849. https://doi.org/10.1038/s41467-021-26085-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge the support of the 2nd Department of Neurology of AHEPA General University Hospital of Thessaloniki for graciously sharing the datasets. All the participants who volunteered for this study deserve our gratitude. We also thank ChatGPT (version 3.5, Open AI, San Francisco, CA, USA) for its assistance in the visualization of the results.

Author information

Authors and Affiliations

Authors

Contributions

Z.W. and W.Z. provided the concept and design; Z.W., A.L., J.Y., P.W., and Y.B. analyzed and explained the data; J.Z. and S.X. guided the data processing in this study; Z.W. and W.Z. wrote the main manuscript; W.Z., B.G., and J.Z. supervised the study. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Jiajun Zhang, Hongbo Guo or Wangming Zhang.

Ethics declarations

Ethical approval

Ethical approval was already approved for data acquisition in the previous work [32, 33].

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 81 KB)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Liu, A., Yu, J. et al. The effect of aperiodic components in distinguishing Alzheimer’s disease from frontotemporal dementia. GeroScience 46, 751–768 (2024). https://doi.org/10.1007/s11357-023-01041-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-023-01041-8

Keywords

Navigation