Skip to main content
Log in

Age-related decrease in inter-subject similarity of cortical morphology and task and resting-state functional connectivity

  • ORIGINAL ARTICLE
  • Published:
GeroScience Aims and scope Submit manuscript

Abstract

“All old people are the same” is an unfortunate characterization of the perceived homogeneity in the older age group. This study attempts to debunk this myth in the context of the structural and functional brain. Within older relative to younger age groups, individuals are hypothesized to be more dissimilar to their similar-aged peers—thus demonstrating an age-related divergence. This study analyzed functional connectivity (FC) during multiple fMRI paradigms (2 rest + 5 tasks) and cortical thickness (CT) data from two lifespan datasets (Ntotal = 1161). On average, between-subject FC/CT correlations became weaker in the older age groups. Further analyses ruled out the possibility that more rapid age-related changes in older brains have increased the dissimilarity in these older age groups. Brain-wide analyses revealed significant effects of age-related divergence across most of the brain. Finally, CT similarity between a dyad significantly predicted their FC similarity across multiple fMRI task paradigms—demonstrating a close relationship between brain structure and function even at the between-dyad level. Contrary to the myth that “all old people are the same,” these findings suggest young people are more similar to each other. This study presents major implications in the study of neural fingerprinting and brain-behavior associations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Angus J, Reeve P. Ageism: A Threat to “Aging Well” in the 21st Century. J Appl Gerontol. 2006;25:137–52. https://doi.org/10.1177/0733464805285745.

    Article  Google Scholar 

  2. Linville PW, Fischer GW, Salovey P. Perceived distributions of the characteristics of in-group and out-group members: empirical evidence and a computer simulation. J Pers Soc Psychol. 1989;57:165–88. https://doi.org/10.1037/0022-3514.57.2.165.

    Article  CAS  PubMed  Google Scholar 

  3. Ostrom TM, Sedikides C. Out-group homogeneity effects in natural and minimal groups. Psychol Bull. 1992;112:536–52. https://doi.org/10.1037/0033-2909.112.3.536.

    Article  Google Scholar 

  4. Levy B. Stereotype embodiment: a psychosocial approach to aging. Curr Dir Psychol Sci. 2009;18:332–6. https://doi.org/10.1111/j.1467-8721.2009.01662.x.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Thornton JE. Myths of aging or ageist stereotypes. Educ Gerontol. 2002;28:301–12. https://doi.org/10.1080/036012702753590415.

    Article  Google Scholar 

  6. Tooley UA, Bassett DS, Mackey AP. Environmental influences on the pace of brain development. Nat Rev Neurosci. 2021;22:372–84. https://doi.org/10.1038/s41583-021-00457-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Seghier ML, Price CJ. Interpreting and utilising intersubject variability in brain function. Trends Cogn Sci. 2018;22:517–30. https://doi.org/10.1016/j.tics.2018.03.003.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Chavan CF, Mouthon M, Draganski B, van der Zwaag W, Spierer L. Differential patterns of functional and structural plasticity within and between inferior frontal gyri support training-induced improvements in inhibitory control proficiency. Hum Brain Mapp. 2015;36:2527–43. https://doi.org/10.1002/hbm.22789.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Groussard M, Joie RL, Rauchs G, Landeau B, Chételat G, Viader F, et al. When music and long-term memory interact: effects of musical expertise on functional and structural plasticity in the hippocampus. PLoS One. 2010;5:e13225. https://doi.org/10.1371/journal.pone.0013225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Reuter-Lorenz PA, Cappell KA. Neurocognitive aging and the compensation hypothesis. Curr Dir Psychol Sci. 2008;17:177–82. https://doi.org/10.1111/j.1467-8721.2008.00570.x.

    Article  Google Scholar 

  11. Walker LC. Proteopathic strains and the heterogeneity of neurodegenerative diseases. Annu Rev Genet. 2016;50:329–46. https://doi.org/10.1146/annurev-genet-120215-034943.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Storsve AB, Fjell AM, Tamnes CK, Westlye LT, Overbye K, Aasland HW, et al. Differential longitudinal changes in cortical thickness, surface area and volume across the adult life span: regions of accelerating and decelerating change. J Neurosci. 2014;34:8488–98. https://doi.org/10.1523/JNEUROSCI.0391-14.2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Thambisetty M, Wan J, Carass A, An Y, Prince JL, Resnick SM. Longitudinal changes in cortical thickness associated with normal aging. Neuroimage. 2010;52:1215–23. https://doi.org/10.1016/j.neuroimage.2010.04.258.

    Article  PubMed  Google Scholar 

  14. Nichols E, Steinmetz JD, Vollset SE, Fukutaki K, Chalek J, Abd-Allah F, et al. Estimation of the global prevalence of dementia in 2019 and forecasted prevalence in 2050: an analysis for the Global Burden of Disease Study 2019. Lancet Public Health. 2022;7:e105–25. https://doi.org/10.1016/S2468-2667(21)00249-8.

    Article  Google Scholar 

  15. Saccà V, Sarica A, Quattrone A, Rocca F, Quattrone A, Novellino F. Aging effect on head motion: a machine learning study on resting state fMRI data. J Neurosci Methods. 2021;352:109084. https://doi.org/10.1016/j.jneumeth.2021.109084.

    Article  PubMed  Google Scholar 

  16. Bradshaw PJ, Stobie P, Knuiman MW, Briffa TG, Hobbs MST. Trends in the incidence and prevalence of cardiac pacemaker insertions in an ageing population. Open Heart. 2014;1:e000177. https://doi.org/10.1136/openhrt-2014-000177.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Bookheimer SY, Salat DH, Terpstra M, Ances BM, Barch DM, Buckner RL, et al. The lifespan Human Connectome Project in aging: an overview. Neuroimage. 2019;185:335–48. https://doi.org/10.1016/j.neuroimage.2018.10.009.

    Article  PubMed  Google Scholar 

  18. Harms MP, Somerville LH, Ances BM, Andersson J, Barch DM, Bastiani M, et al. Extending the Human Connectome Project across ages: imaging protocols for the lifespan development and aging projects. Neuroimage. 2018;183:972–84. https://doi.org/10.1016/j.neuroimage.2018.09.060.

    Article  PubMed  Google Scholar 

  19. Ances BM, Liang CL, Leontiev O, Perthen JE, Fleisher AS, Lansing AE, et al. Effects of aging on cerebral blood flow, oxygen metabolism, and blood oxygenation level dependent responses to visual stimulation. Hum Brain Mapp. 2009;30:1120–32. https://doi.org/10.1002/hbm.20574.

    Article  PubMed  Google Scholar 

  20. Somerville LH, Bookheimer SY, Buckner RL, Burgess GC, Curtiss SW, Dapretto M, et al. The lifespan Human Connectome Project in development: a large-scale study of brain connectivity development in 5–21 year olds. Neuroimage. 2018;183:456–68. https://doi.org/10.1016/j.neuroimage.2018.08.050.

    Article  PubMed  Google Scholar 

  21. Sperling RA, Bates JF, Cocchiarella AJ, Schacter DL, Rosen BR, Albert MS. Encoding novel face-name associations: a functional MRI study. Hum Brain Mapp. 2001;14:129–39. https://doi.org/10.1002/hbm.1047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hasson U, Malach R, Heeger DJ. Reliability of cortical activity during natural stimulation. Trends Cogn Sci. 2010;14:40–8. https://doi.org/10.1016/j.tics.2009.10.011.

    Article  PubMed  Google Scholar 

  23. Glasser MF, Sotiropoulos SN, Wilson JA, Coalson TS, Fischl B, Andersson JL, et al. The minimal preprocessing pipelines for the Human Connectome Project. Neuroimage. 2013;80:105–24. https://doi.org/10.1016/j.neuroimage.2013.04.127.

    Article  PubMed  Google Scholar 

  24. Robinson EC, Garcia K, Glasser MF, Chen Z, Coalson TS, Makropoulos A, et al. Multimodal surface matching with higher-order smoothness constraints. Neuroimage. 2018;167:453–65. https://doi.org/10.1016/j.neuroimage.2017.10.037.

    Article  PubMed  Google Scholar 

  25. Pham DD, Muschelli J, Mejia AF. ciftiTools: A package for reading, writing, visualizing, and manipulating CIFTI files in R. Neuroimage. 2022;250:118877. https://doi.org/10.1016/j.neuroimage.2022.118877.

    Article  PubMed  Google Scholar 

  26. Schaefer A, Kong R, Gordon EM, Laumann TO, Zuo X-N, Holmes AJ, et al. Local-global parcellation of the human cerebral cortex from intrinsic functional connectivity MRI. Cereb Cortex N Y N. 1991;2018(28):3095–114. https://doi.org/10.1093/cercor/bhx179.

    Article  Google Scholar 

  27. Fischl B, Salat DH, Busa E, Albert M, Dieterich M, Haselgrove C, et al. Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron. 2002;33:341–55. https://doi.org/10.1016/S0896-6273(02)00569-X.

    Article  CAS  PubMed  Google Scholar 

  28. Esteban O, Markiewicz CJ, Blair RW, Moodie CA, Isik AI, Erramuzpe A, et al. fMRIPrep: a robust preprocessing pipeline for functional MRI. Nat Methods. 2019;16:111–6. https://doi.org/10.1038/s41592-018-0235-4.

    Article  CAS  PubMed  Google Scholar 

  29. Cox RW. AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Comput Biomed Res. 1996;29:162–73. https://doi.org/10.1006/cbmr.1996.0014.

    Article  CAS  PubMed  Google Scholar 

  30. Jenkinson M, Bannister P, Brady M, Smith S. Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage. 2002;17:825–41. https://doi.org/10.1006/nimg.2002.1132.

    Article  PubMed  Google Scholar 

  31. Greve DN, Fischl B. Accurate and robust brain image alignment using boundary-based registration. Neuroimage. 2009;48:63–72.

    Article  PubMed  Google Scholar 

  32. Liu W, Kohn N, Fernández G. Intersubject similarity of personality is associated with intersubject similarity of brain connectivity patterns. Neuroimage. 2019;186:56–69. https://doi.org/10.1016/j.neuroimage.2018.10.062.

    Article  PubMed  Google Scholar 

  33. Sun X, Liu J, Ma Q, Duan J, Wang X, Xu Y, et al. Disrupted intersubject variability architecture in functional connectomes in schizophrenia. Schizophr Bull. 2021;47:837–48.

    Article  PubMed  Google Scholar 

  34. Gracia-Tabuenca Z, Alcauter S. NBR: network-based R-statistics for (unbalanced) longitudinal samples 2020;2020.11.07.373019. https://doi.org/10.1101/2020.11.07.373019.

  35. Larivière S, Bayrak Ş, Vos de Wael R, Benkarim O, Herholz P, Rodriguez-Cruces R, et al. BrainStat: a toolbox for brain-wide statistics and multimodal feature associations. NeuroImage. 2023;266:119807. https://doi.org/10.1016/j.neuroimage.2022.119807.

    Article  PubMed  Google Scholar 

  36. Brett M, Penny W, Kiebel S. Introduction to random field theory. Hum Brain Funct. 2003;2:867–79.

    Google Scholar 

  37. Bates D, Mächler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. J Stat Softw. 2015;67:1–48. https://doi.org/10.18637/jss.v067.i01.

    Article  Google Scholar 

  38. Ma L, Tian L, Hu T, Jiang T, Zuo N. Development of individual variability in brain functional connectivity and capability across the adult lifespan. Cereb Cortex. 2021;31:3925–38. https://doi.org/10.1093/cercor/bhab059.

    Article  PubMed  Google Scholar 

  39. St-Onge F, Javanray M, PichetBinette A, Strikwerda-Brown C, Remz J, Spreng RN, et al. Functional connectome fingerprinting across the lifespan. Netw Neurosci. 2023;1–55. https://doi.org/10.1162/netn_a_00320.

  40. Goh JO, An Y, Resnick SM. Differential trajectories of age-related changes in components of executive and memory processes. Psychol Aging. 2012;27:707–19. https://doi.org/10.1037/a0026715.

    Article  PubMed  Google Scholar 

  41. Meunier D, Stamatakis EA, Tyler LK. Age-related functional reorganization, structural changes, and preserved cognition. Neurobiol Aging. 2014;35:42–54. https://doi.org/10.1016/j.neurobiolaging.2013.07.003.

    Article  PubMed  Google Scholar 

  42. Li H-J, Hou X-H, Liu H-H, Yue C-L, Lu G-M, Zuo X-N. Putting age-related task activation into large-scale brain networks: a meta-analysis of 114 fMRI studies on healthy aging. Neurosci Biobehav Rev. 2015;57:156–74. https://doi.org/10.1016/j.neubiorev.2015.08.013.

    Article  PubMed  Google Scholar 

  43. Sele S, Liem F, Mérillat S, Jäncke L. Age-related decline in the brain: a longitudinal study on inter-individual variability of cortical thickness, area, volume, and cognition. Neuroimage. 2021;240:118370. https://doi.org/10.1016/j.neuroimage.2021.118370.

    Article  PubMed  Google Scholar 

  44. Damoiseaux JS, Greicius MD. Greater than the sum of its parts: a review of studies combining structural connectivity and resting-state functional connectivity. Brain Struct Funct. 2009;213:525–33. https://doi.org/10.1007/s00429-009-0208-6.

    Article  PubMed  Google Scholar 

  45. Yu J, Fischer NL. Asymmetric generalizability of multimodal brain-behavior associations across age-groups. Hum Brain Mapp. 2022;43:5593–604. https://doi.org/10.1002/hbm.26035.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Junhong Yu is supported by the Nanyang Assistant Professorship (Award no. 021080–00001). The HCP-Aging data used in the preparation of this manuscript were obtained from the National Institute of Mental Health (NIMH) Data Archive (NDA). NDA is a collaborative informatics system created by the National Institutes of Health to provide a national resource to support and accelerate research in mental health. Dataset identifier(s): https://doi.org/10.15154/6faj-nf83. This manuscript reflects the views of the authors and may not reflect the opinions or views of the NIH or of the Submitters submitting original data to NDA. The HCP-Aging study was supported by the National Institute On Aging of the National Institutes of Health under Award Number U01AG052564 and by funds provided by the McDonnell Center for Systems Neuroscience at Washington University in St. Louis. The HCP-Aging 2.0 Release data used in this report came from https://doi.org/10.15154/1520707. Data collection and sharing for the CAM-CAN dataset was funded by the UK Biotechnology and Biological Sciences Research Council (grant number BB/H008217/1), together with support from the UK Medical Research Council and the University of Cambridge, UK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junhong Yu.

Ethics declarations

Conflict of interest

The author declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 13329 KB)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, J. Age-related decrease in inter-subject similarity of cortical morphology and task and resting-state functional connectivity. GeroScience 46, 697–711 (2024). https://doi.org/10.1007/s11357-023-01008-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-023-01008-9

Keywords

Navigation