Skip to main content

Advertisement

Log in

Amyloid beta accumulation in TgF344-AD rats is associated with reduced cerebral capillary endothelial Kir2.1 expression and neurovascular uncoupling

  • ORIGINAL ARTICLE
  • Published:
GeroScience Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) exerts a tremendous socio-economic burden worldwide. Although reduced cerebral blood flow is an early and persistent symptom that precedes the loss of cognitive function in AD, the underlying molecular and cellular mechanisms remain unclear. The present study investigated whether capillary endothelial inward rectifier potassium 2 (Kir2.1) expression is reduced in TgF344-AD (AD) rats and contributes to neurovascular uncoupling and cognitive deficits in AD. Three- to fourteen-month-old AD rats expressing mutant human APP and PS1 and age-matched wild-type (WT) F344 rats were studied. AD rats exhibited higher amyloid beta (Aβ) expression in the brain as early as 3 months of age and amyloid plaques by 4 months of age. Functional hyperemic responses induced by whisker stimulation were impaired at 4 months of age, which were exacerbated in 6-month- and 14-month-old AD rats. The expression of Kir2.1 protein was significantly lower in the brains of 6-month-old AD versus WT rats, and Kir2.1 coverage was lower in the cerebral microvasculature of AD than in WT rats. Aβ1–42 reduced the Kir2.1 expression in cultured capillary endothelial cells. Cerebral parenchymal arterioles with attached capillaries exhibited a reduced vasodilator in response to 10 mM K+ applied to capillaries, and constricted less following administration of a Kir2.1 channel blocker, compared to WT vessels. These results indicate that capillary endothelial Kir2.1 expression is reduced and contributes to impaired functional hyperemia in AD rats at early ages, perhaps secondary to elevated Aβ expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Gaugler J, James B, Johnson T, Reimer J, Solis M, Weuve J. 2022 Alzheimer’s disease facts and figures. Alzheimers Dement. 2022;18:700–89. https://doi.org/10.1002/alz.12638.

    Article  Google Scholar 

  2. Dhapola R, Hota SS, Sarma P, Bhattacharyya A, Medhi B, Reddy DH. Recent advances in molecular pathways and therapeutic implications targeting neuroinflammation for Alzheimer’s disease. Inflammopharmacology. 2021;29:1669–81. https://doi.org/10.1007/s10787-021-00889-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Iturria-Medina Y, Sotero RC, Toussaint PJ, Mateos-Pérez JM, Evans AC. Early role of vascular dysregulation on late-onset Alzheimer’s disease based on multifactorial data-driven analysis. Nat Commun. 2016;7:11934. https://doi.org/10.1038/ncomms11934.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Korte N, Nortley R, Attwell D. Cerebral blood flow decrease as an early pathological mechanism in Alzheimer’s disease. Acta Neuropathol. 2020;140:793–810. https://doi.org/10.1007/s00401-020-02215-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bracko O, Cruz Hernández JC, Park L, Nishimura N, Schaffer CB. Causes and consequences of baseline cerebral blood flow reductions in Alzheimer’s disease. J Cereb Blood Flow Metab. 2021;41:1501–16. https://doi.org/10.1177/0271678x20982383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Fang X, Zhang J, Roman RJ, Fan F. From 1901 to 2022, how far are we from truly understanding the pathogenesis of age-related dementia? GeroScience. 2022;44:1879–83. https://doi.org/10.1007/s11357-022-00591-7.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Fang X, Crumpler RF, Thomas KN, Mazique JN, Roman RJ and Fan F. Contribution of cerebral microvascular mechanisms to age-related cognitive impairment and dementia. Physiol Int. 2022. https://doi.org/10.1556/2060.2022.00020.

  8. Tarantini S, Fulop GA, Kiss T, Farkas E, Zölei-Szénási D, Galvan V, Toth P, Csiszar A, Ungvari Z, Yabluchanskiy A. Demonstration of impaired neurovascular coupling responses in TG2576 mouse model of Alzheimer’s disease using functional laser speckle contrast imaging. Geroscience. 2017;39:465–73. https://doi.org/10.1007/s11357-017-9980-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Niwa K, Younkin L, Ebeling C, Turner SK, Westaway D, Younkin S, Ashe KH, Carlson GA, Iadecola C. Abeta 1–40-related reduction in functional hyperemia in mouse neocortex during somatosensory activation. Proc Natl Acad Sci U S A. 2000;97:9735–40. https://doi.org/10.1073/pnas.97.17.9735.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Li L, Tong XK, Hosseini Kahnouei M, Vallerand D, Hamel E, Girouard H. Impaired hippocampal neurovascular coupling in a mouse model of Alzheimer’s disease. Front Physiol. 2021;12:715446. https://doi.org/10.3389/fphys.2021.715446.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Iadecola C. Neurovascular regulation in the normal brain and in Alzheimer’s disease. Nat Rev Neurosci. 2004;5:347–60. https://doi.org/10.1038/nrn1387.

    Article  CAS  PubMed  Google Scholar 

  12. Tong XK, Lecrux C, Rosa-Neto P, Hamel E. Age-dependent rescue by simvastatin of Alzheimer’s disease cerebrovascular and memory deficits. J Neurosci. 2012;32:4705–15. https://doi.org/10.1523/jneurosci.0169-12.2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Joo IL, Lam WW, Oakden W, Hill ME, Koletar MM, Morrone CD, Stanisz GJ, McLaurin J, Stefanovic B. Early alterations in brain glucose metabolism and vascular function in a transgenic rat model of Alzheimer’s disease. Prog Neurobiol. 2022;217:102327. https://doi.org/10.1016/j.pneurobio.2022.102327.

    Article  CAS  PubMed  Google Scholar 

  14. Paulson OB, Newman EA. Does the release of potassium from astrocyte endfeet regulate cerebral blood flow? Science. 1987;237:896–8. https://doi.org/10.1126/science.3616619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Girouard H, Bonev AD, Hannah RM, Meredith A, Aldrich RW, Nelson MT. Astrocytic endfoot Ca2+ and BK channels determine both arteriolar dilation and constriction. Proc Natl Acad Sci U S A. 2010;107:3811–6. https://doi.org/10.1073/pnas.0914722107.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Straub AC, Zeigler AC, Isakson BE. The myoendothelial junction: connections that deliver the message. Physiology (Bethesda). 2014;29:242–9. https://doi.org/10.1152/physiol.00042.2013.

    Article  CAS  PubMed  Google Scholar 

  17. Longden TA, Dabertrand F, Koide M, Gonzales AL, Tykocki NR, Brayden JE, Hill-Eubanks D, Nelson MT. Capillary K+-sensing initiates retrograde hyperpolarization to increase local cerebral blood flow. Nat Neurosci. 2017;20:717–26. https://doi.org/10.1038/nn.4533.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Longden TA, Nelson MT. Vascular inward rectifier K+ channels as external K+ sensors in the control of cerebral blood flow. Microcirculation. 2015;22:183–96. https://doi.org/10.1111/micc.12190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Harraz OF, Longden TA, Dabertrand F, Hill-Eubanks D, Nelson MT. Endothelial GqPCR activity controls capillary electrical signaling and brain blood flow through PIP2 depletion. Proc Natl Acad Sci U S A. 2018;115:E3569-e3577. https://doi.org/10.1073/pnas.1800201115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Moshkforoush A, Ashenagar B, Harraz OF, Dabertrand F, Longden TA, Nelson MT, Tsoukias NM. The capillary Kir channel as sensor and amplifier of neuronal signals: modeling insights on K+-mediated neurovascular communication. Proc Natl Acad Sci U S A. 2020;117:16626–37. https://doi.org/10.1073/pnas.2000151117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sackheim AM, Villalba N, Sancho M, Harraz OF, Bonev AD, D'Alessandro A, Nemkov T, Nelson MT and Freeman K. Traumatic brain injury impairs systemic vascular function through disruption of inward-rectifier potassium channels. Function (Oxf). 2021;2. https://doi.org/10.1093/function/zqab018.

  22. Lacalle-Aurioles M, Trigiani LJ, Bourourou M, Lecrux C, Hamel E. Alzheimer’s disease and cerebrovascular pathology alter inward rectifier potassium (KIR 2.1) channels in endothelium of mouse cerebral arteries. Br J Pharmacol. 2022;179:2259–74. https://doi.org/10.1111/bph.15751.

    Article  CAS  PubMed  Google Scholar 

  23. Taylor JL, Pritchard HAT, Walsh KR, Strangward P, White C, Hill-Eubanks D, Alakrawi M, Hennig GW, Allan SM, Nelson MT, Greenstein AS. Functionally linked potassium channel activity in cerebral endothelial and smooth muscle cells is compromised in Alzheimer’s disease. Proc Natl Acad Sci U S A. 2022;119:e2204581119. https://doi.org/10.1073/pnas.2204581119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mughal A, Harraz OF, Gonzales AL, Hill-Eubanks D, Nelson MT. PIP2 improves cerebral blood flow in a mouse model of Alzheimer’s disease. Function (Oxf). 2021;2:zqab010. https://doi.org/10.1093/function/zqab010.

    Article  PubMed  Google Scholar 

  25. Hibino H, Inanobe A, Furutani K, Murakami S, Findlay I, Kurachi Y. Inwardly rectifying potassium channels: their structure, function, and physiological roles. Physiol Rev. 2010;90:291–366. https://doi.org/10.1152/physrev.00021.2009.

    Article  CAS  PubMed  Google Scholar 

  26. Cohen RM, Rezai-Zadeh K, Weitz TM, Rentsendorj A, Gate D, Spivak I, Bholat Y, Vasilevko V, Glabe CG, Breunig JJ, Rakic P, Davtyan H, Agadjanyan MG, Kepe V, Barrio JR, Bannykh S, Szekely CA, Pechnick RN, Town T. A transgenic Alzheimer rat with plaques, tau pathology, behavioral impairment, oligomeric abeta, and frank neuronal loss. J Neurosci. 2013;33:6245–56. https://doi.org/10.1523/JNEUROSCI.3672-12.2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Fang X, Tang C, Zhang H, Border JJ, Liu Y, Shin SM, Yu H, Roman RJ, Fan F. Longitudinal characterization of cerebral hemodynamics in the TgF344-AD rat model of Alzheimer’s disease. Geroscience. 2023. https://doi.org/10.1007/s11357-023-00773-x.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Nakagawa S, Deli MA, Nakao S, Honda M, Hayashi K, Nakaoke R, Kataoka Y, Niwa M. Pericytes from brain microvessels strengthen the barrier integrity in primary cultures of rat brain endothelial cells. Cell Mol Neurobiol. 2007;27:687–94. https://doi.org/10.1007/s10571-007-9195-4.

    Article  CAS  PubMed  Google Scholar 

  29. Ruck T, Bittner S, Epping L, Herrmann AM and Meuth SG. Isolation of primary murine brain microvascular endothelial cells. J Vis Exp. 2014:e52204. https://doi.org/10.3791/52204.

  30. Damisah EC, Hill RA, Tong L, Murray KN, Grutzendler J. A fluoro-Nissl dye identifies pericytes as distinct vascular mural cells during in vivo brain imaging. Nat Neurosci. 2017;20:1023–32. https://doi.org/10.1038/nn.4564.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Liu Y, Zhang H, Wu CY, Yu T, Fang X, Ryu JJ, Zheng B, Chen Z, Roman RJ, Fan F. 20-HETE-promoted cerebral blood flow autoregulation is associated with enhanced pericyte contractility. Prostaglandins Other Lipid Mediat. 2021;154:106548. https://doi.org/10.1016/j.prostaglandins.2021.106548.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wang S, Lv W, Zhang H, Liu Y, Li L, Jefferson JR, Guo Y, Li M, Gao W, Fang X. Aging exacerbates impairments of cerebral blood flow autoregulation and cognition in diabetic rats. GeroScience. 2020;42:1387–410.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Wang S, Zhang H, Liu Y, Li L, Guo Y, Jiao F, Fang X, Jefferson JR, Li M, Gao W, Gonzalez-Fernandez E, Maranon RO, Pabbidi MR, Liu R, Alexander BT, Roman RJ, Fan F. Sex differences in the structure and function of rat middle cerebral arteries. Am J Physiol Heart Circ Physiol. 2020;318:H1219–32. https://doi.org/10.1152/ajpheart.00722.2019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Fan F, Geurts AM, Murphy SR, Pabbidi MR, Jacob HJ, Roman RJ. Impaired myogenic response and autoregulation of cerebral blood flow is rescued in CYP4A1 transgenic Dahl salt-sensitive rat. Am J Physiol Regul Integr Comp Physiol. 2015;308:R379–90. https://doi.org/10.1152/ajpregu.00256.2014.

    Article  CAS  PubMed  Google Scholar 

  35. Fan F, Geurts AM, Pabbidi MR, Smith SV, Harder DR, Jacob H, Roman RJ. Zinc-finger nuclease knockout of dual-specificity protein phosphatase-5 enhances the myogenic response and autoregulation of cerebral blood flow in FHH.1BN rats. PLoS One. 2014;9:e112878. https://doi.org/10.1371/journal.pone.0112878.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Guo Y, Wang S, Liu Y, Fan L, Booz GW, Roman RJ, Chen Z, Fan F. Accelerated cerebral vascular injury in diabetes is associated with vascular smooth muscle cell dysfunction. Geroscience. 2020;42:547–61. https://doi.org/10.1007/s11357-020-00179-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Liu Y, Zhang H, Wang S, Guo Y, Fang X, Zheng B, Gao W, Yu H, Chen Z, Roman RJ, Fan F. Reduced pericyte and tight junction coverage in old diabetic rats are associated with hyperglycemia-induced cerebrovascular pericyte dysfunction. Am J Physiol Heart Circ Physiol. 2021;320:H549-h562. https://doi.org/10.1152/ajpheart.00726.2020.

    Article  CAS  PubMed  Google Scholar 

  38. Wang S, Lv W, Zhang H, Liu Y, Li L, Jefferson JR, Guo Y, Li M, Gao W, Fang X, Paul IA, Rajkowska G, Shaffery JP, Mosley TH, Hu X, Liu R, Wang Y, Yu H, Roman RJ, Fan F. Aging exacerbates impairments of cerebral blood flow autoregulation and cognition in diabetic rats. Geroscience. 2020;42:1387–410. https://doi.org/10.1007/s11357-020-00233-w.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Liu Y, Zhang H, Wu CYC, Yu T, Fang X, Ryu JJ, Zheng B, Chen Z. Roman RJ and Fan F. 20-HETE-promoted cerebral blood flow autoregulation is associated with enhanced pericyte contractility. Prostaglandins Other Lipid Mediat. 2021;154:106548. https://doi.org/10.1016/j.prostaglandins.2021.106548.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhang H, Zhang C, Liu Y, Gao W, Wang S, Fang X, Guo Y, Li M, Liu R, Roman RJ, Sun P, Fan F. Influence of dual-specificity protein phosphatase 5 on mechanical properties of rat cerebral and renal arterioles. Physiol Rep. 2020;8:e14345. https://doi.org/10.14814/phy2.14345.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Wang S, Jiao F, Border JJ, Fang X, Crumpler RF, Liu Y, Zhang H, Jefferson J, Guo Y, Elliott PS, Thomas KN, Strong LB, Urvina AH, Zheng B, Rijal A, Smith SV, Yu H, Roman RJ, Fan F. Luseogliflozin, a sodium-glucose cotransporter-2 inhibitor, reverses cerebrovascular dysfunction and cognitive impairments in 18-mo-old diabetic animals. Am J Physiol Heart Circ Physiol. 2022;322:H246–59. https://doi.org/10.1152/ajpheart.00438.2021.

    Article  CAS  PubMed  Google Scholar 

  42. Cipolla MJ, Sweet JG, Gokina NI, White SL, Nelson MT. Mechanisms of enhanced basal tone of brain parenchymal arterioles during early postischemic reperfusion: role of ET-1-induced peroxynitrite generation. J Cereb Blood Flow Metab. 2013;33:1486–92. https://doi.org/10.1038/jcbfm.2013.99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Rosehart AC, Johnson AC, Dabertrand F. Ex vivo pressurized hippocampal capillary-parenchymal arteriole preparation for functional study. J Vis Exp. 2019. https://doi.org/10.3791/60676.

    Article  PubMed  Google Scholar 

  44. Golding EM, Steenberg ML, Johnson TD, Bryan RM Jr. The effects of potassium on the rat middle cerebral artery. Brain Res. 2000;880:159–66. https://doi.org/10.1016/s0006-8993(00)02793-1.

    Article  CAS  PubMed  Google Scholar 

  45. Youmans KL, Tai LM, Kanekiyo T, Stine WB Jr, Michon SC, Nwabuisi-Heath E, Manelli AM, Fu Y, Riordan S, Eimer WA, Binder L, Bu G, Yu C, Hartley DM, LaDu MJ. Intraneuronal Aβ detection in 5xFAD mice by a new Aβ-specific antibody. Mol Neurodegener. 2012;7:8. https://doi.org/10.1186/1750-1326-7-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Huang LK, Chao SP, Hu CJ. Clinical trials of new drugs for Alzheimer’s disease. J Biomed Sci. 2020;27:18. https://doi.org/10.1186/s12929-019-0609-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Anckaerts C, Blockx I, Summer P, Michael J, Hamaide J, Kreutzer C, Boutin H, Couillard-Després S, Verhoye M, Van der Linden A. Early functional connectivity deficits and progressive microstructural alterations in the TgF344-AD rat model of Alzheimer’s disease: a longitudinal MRI study. Neurobiol Dis. 2019;124:93–107. https://doi.org/10.1016/j.nbd.2018.11.010.

    Article  CAS  PubMed  Google Scholar 

  48. Rorabaugh JM, Chalermpalanupap T, Botz-Zapp CA, Fu VM, Lembeck NA, Cohen RM, Weinshenker D. Chemogenetic locus coeruleus activation restores reversal learning in a rat model of Alzheimer’s disease. Brain. 2017;140:3023–38. https://doi.org/10.1093/brain/awx232.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Bernaud VE, Bulen HL, Peña VL, Koebele SV, Northup-Smith SN, Manzo AA, Valenzuela Sanchez M, Opachich Z, Ruhland AM, Bimonte-Nelson HA. Task-dependent learning and memory deficits in the TgF344-AD rat model of Alzheimer’s disease: three key timepoints through middle-age in females. Sci Rep. 2022;12:14596. https://doi.org/10.1038/s41598-022-18415-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Joo IL, Lai AY, Bazzigaluppi P, Koletar MM, Dorr A, Brown ME, Thomason LA, Sled JG, McLaurin J, Stefanovic B. Early neurovascular dysfunction in a transgenic rat model of Alzheimer’s disease. Sci Rep. 2017;7:46427. https://doi.org/10.1038/srep46427.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Fang X, Zhang H, Border JJ, Rivers PL, Strong LB, Cooper J, Crumpler RF, Thomas KN, Roman RJ and Fan F. Contribution of beta-amyloid accumulation to cerebral hypoperfusion in Alzheimer’s disease. FASEB J. 2022;36. https://doi.org/10.1096/fasebj.2022.36.S1.R2710.

  52. Fang X, Zhang H, Wang S, Liu Y, Gao W, Roman RJ, Fan F. Abstract P076: cerebral vascular dysfunction precedes cognitive impairment in Alzheimer’s disease. Hypertension. 2020;76:AP076–AP076. https://doi.org/10.1161/hyp.76.suppl_1.P076.

    Article  Google Scholar 

  53. Apátiga-Pérez R, Soto-Rojas LO, Campa-Córdoba BB, Luna-Viramontes NI, Cuevas E, Villanueva-Fierro I, Ontiveros-Torres MA, Bravo-Muñoz M, Flores-Rodríguez P, Garcés-Ramirez L, de la Cruz F, Montiel-Sosa JF, Pacheco-Herrero M, Luna-Muñoz J. Neurovascular dysfunction and vascular amyloid accumulation as early events in Alzheimer’s disease. Metab Brain Dis. 2022;37:39–50. https://doi.org/10.1007/s11011-021-00814-4.

    Article  CAS  PubMed  Google Scholar 

  54. Canobbio I, Abubaker AA, Visconte C, Torti M, Pula G. Role of amyloid peptides in vascular dysfunction and platelet dysregulation in Alzheimer’s disease. Front Cell Neurosci. 2015;9:65. https://doi.org/10.3389/fncel.2015.00065.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Stavljenic-Rukavina A. Molecular mechanisms in Alzheimer’s disease. eJIFCC. 2004;15:100–3.

    PubMed  PubMed Central  Google Scholar 

  56. Bishay J, Beckett TL, Lai AY, Hill ME, McMahon D, McLaurin J. Venular amyloid accumulation in transgenic Fischer 344 Alzheimer’s disease rats. Sci Rep. 2022;12:15287. https://doi.org/10.1038/s41598-022-19549-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Greenberg SM, Bacskai BJ, Hernandez-Guillamon M, Pruzin J, Sperling R, van Veluw SJ. Cerebral amyloid angiopathy and Alzheimer’s disease - one peptide, two pathways. Nat Rev Neurol. 2020;16:30–42. https://doi.org/10.1038/s41582-019-0281-2.

    Article  CAS  PubMed  Google Scholar 

  58. Attems J, Lauda F, Jellinger KA. Unexpectedly low prevalence of intracerebral hemorrhages in sporadic cerebral amyloid angiopathy: an autopsy study. J Neurol. 2008;255:70–6. https://doi.org/10.1007/s00415-008-0674-4.

    Article  PubMed  Google Scholar 

  59. Fernandez-Klett F, Offenhauser N, Dirnagl U, Priller J, Lindauer U. Pericytes in capillaries are contractile in vivo, but arterioles mediate functional hyperemia in the mouse brain. Proc Natl Acad Sci U S A. 2010;107:22290–5. https://doi.org/10.1073/pnas.1011321108.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Fowler CF, Goerzen D, Devenyi GA, Madularu D, Chakravarty MM, Near J. Neurochemical and cognitive changes precede structural abnormalities in the TgF344-AD rat model. Brain Commun. 2022;4:fcac072. https://doi.org/10.1093/braincomms/fcac072.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Sweeney MD, Montagne A, Sagare AP, Nation DA, Schneider LS, Chui HC, Harrington MG, Pa J, Law M, Wang DJJ, Jacobs RE, Doubal FN, Ramirez J, Black SE, Nedergaard M, Benveniste H, Dichgans M, Iadecola C, Love S, Bath PM, Markus HS, Al-Shahi Salman R, Allan SM, Quinn TJ, Kalaria RN, Werring DJ, Carare RO, Touyz RM, Williams SCR, Moskowitz MA, Katusic ZS, Lutz SE, Lazarov O, Minshall RD, Rehman J, Davis TP, Wellington CL, González HM, Yuan C, Lockhart SN, Hughes TM, Chen CLH, Sachdev P, O’Brien JT, Skoog I, Pantoni L, Gustafson DR, Biessels GJ, Wallin A, Smith EE, Mok V, Wong A, Passmore P, Barkof F, Muller M, Breteler MMB, Román GC, Hamel E, Seshadri S, Gottesman RF, van Buchem MA, Arvanitakis Z, Schneider JA, Drewes LR, Hachinski V, Finch CE, Toga AW, Wardlaw JM, Zlokovic BV. Vascular dysfunction-the disregarded partner of Alzheimer’s disease. Alzheimers Dement. 2019;15:158–67. https://doi.org/10.1016/j.jalz.2018.07.222.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Wang S, Tang C, Liu Y, Border JJ, Roman RJ, Fan F. Impact of impaired cerebral blood flow autoregulation on cognitive impairment. Front Aging. 2022;3:1077302. https://doi.org/10.3389/fragi.2022.1077302.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Sweeney MD, Kisler K, Montagne A, Toga AW, Zlokovic BV. The role of brain vasculature in neurodegenerative disorders. Nat Neurosci. 2018;21:1318–31. https://doi.org/10.1038/s41593-018-0234-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Tarantini S, Tran CHT, Gordon GR, Ungvari Z, Csiszar A. Impaired neurovascular coupling in aging and Alzheimer’s disease: contribution of astrocyte dysfunction and endothelial impairment to cognitive decline. Exp Gerontol. 2017;94:52–8. https://doi.org/10.1016/j.exger.2016.11.004.

    Article  CAS  PubMed  Google Scholar 

  65. Toth P, Tarantini S, Ashpole NM, Tucsek Z, Milne GL, Valcarcel-Ares NM, Menyhart A, Farkas E, Sonntag WE, Csiszar A, Ungvari Z. IGF-1 deficiency impairs neurovascular coupling in mice: implications for cerebromicrovascular aging. Aging Cell. 2015;14:1034–44. https://doi.org/10.1111/acel.12372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Tarantini S, Nyúl-Tóth Á, Yabluchanskiy A, Csipo T, Mukli P, Balasubramanian P, Ungvari A, Toth P, Benyo Z, Sonntag WE, Ungvari Z, Csiszar A. Endothelial deficiency of insulin-like growth factor-1 receptor (IGF1R) impairs neurovascular coupling responses in mice, mimicking aspects of the brain aging phenotype. Geroscience. 2021;43:2387–94. https://doi.org/10.1007/s11357-021-00405-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Tarantini S, Hertelendy P, Tucsek Z, Valcarcel-Ares MN, Smith N, Menyhart A, Farkas E, Hodges EL, Towner R, Deak F, Sonntag WE, Csiszar A, Ungvari Z, Toth P. Pharmacologically-induced neurovascular uncoupling is associated with cognitive impairment in mice. J Cereb Blood Flow Metab. 2015;35:1871–81. https://doi.org/10.1038/jcbfm.2015.162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Harraz OF, Hill-Eubanks D, Nelson MT. PIP2: a critical regulator of vascular ion channels hiding in plain sight. Proc Natl Acad Sci U S A. 2020;117:20378–89. https://doi.org/10.1073/pnas.2006737117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Hakim MA, Behringer EJ. Development of Alzheimer’s disease progressively alters sex-dependent KCa and sex-independent KIR channel function in cerebrovascular endothelium. J Alzheimers Dis. 2020;76:1423–42. https://doi.org/10.3233/jad-200085.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Iadecola C. Cerebrovascular effects of amyloid-beta peptides: mechanisms and implications for Alzheimer’s dementia. Cell Mol Neurobiol. 2003;23:681–9. https://doi.org/10.1023/A:1025092617651.

    Article  CAS  PubMed  Google Scholar 

  71. Nishimura N, Schaffer CB, Friedman B, Lyden PD, Kleinfeld D. Penetrating arterioles are a bottleneck in the perfusion of neocortex. Proc Natl Acad Sci U S A. 2007;104:365–70. https://doi.org/10.1073/pnas.0609551104.

    Article  CAS  PubMed  Google Scholar 

  72. Behringer EJ, Hakim MA, Blackwell J and Pires PW. Endothelial KIR channel dysfunction in aged cerebral parenchymal arterioles. FASEB J. 2022;36. https://doi.org/10.1096/fasebj.2022.36.S1.R5757.

  73. Okamoto H, Meng W, Ma J, Ayata C, Roman Richard J, Bosnjak Zeljko J, Kampine John P, Huang Paul L, Moskowitz Michael A, Hudetz AG. Isoflurane-induced cerebral hyperemia in neuronal nitric oxide synthase gene deficient mice. Anesthesiology. 1997;86:875–84. https://doi.org/10.1097/00000542-199704000-00018.

    Article  CAS  PubMed  Google Scholar 

  74. van der Schoor L, van Hattum EJ, de Wilde SM, Harlianto NI, van Weert AJ, Bloothooft M and van der Heyden MAG. Towards the development of AgoKirs: new pharmacological activators to study K ir 2.x channel and target cardiac disease. Int J Mol Sci. 2020;21. https://doi.org/10.3390/ijms21165746.

  75. Sancho M and Welsh DG. Chapter eight - KIR channels in the microvasculature: regulatory properties and the lipid-hemodynamic environment. In: Jackson WF, ed. Current topics in membranes. Academic Press; 2020;85: 227–259.

  76. Li J, Lü S, Liu Y, Pang C, Chen Y, Zhang S, Yu H, Long M, Zhang H, Logothetis DE, Zhan Y, An H. Identification of the Conformational transition pathway in PIP2 Opening Kir Channels. Sci Rep. 2015;5:11289. https://doi.org/10.1038/srep11289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Dabertrand F, Harraz OF, Koide M, Longden TA, Rosehart AC, Hill-Eubanks DC, Joutel A and Nelson MT. PIP2 corrects cerebral blood flow deficits in small vessel disease by rescuing capillary Kir2.1 activity. Proc Natl Acad Sci U S A. 2021;118. https://doi.org/10.1073/pnas.2025998118.

Download references

Funding

This study was supported by grants R01 AG057842, RF1 AG079336, and HL138685 from the National Institutes of Health; 23PRE1018124 from the American Heart Association; and G20221001-3551 from Sigma Xi.

Author information

Authors and Affiliations

Authors

Contributions

F. F., X. F., and R. J. R. conceived and designed the research project; X. F., J. B., P. R., and H. Z. performed the experiments; X. F., J. B., P. R., R. J. R., and F. F. analyzed the data; X. F., R. J. R., and F. F. interpreted the results of experiments; X. F., H. Z., and F. F. prepared the figures; X. F. and R. J. R. drafted, edited, and revised the manuscript; X. F., F. F., J. B., P. R., H. Z., R. J. R., and J. M. W. approved the final version of the manuscript.

Corresponding authors

Correspondence to Fan Fan or Richard J. Roman.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, X., Border, J.J., Rivers, P.L. et al. Amyloid beta accumulation in TgF344-AD rats is associated with reduced cerebral capillary endothelial Kir2.1 expression and neurovascular uncoupling. GeroScience 45, 2909–2926 (2023). https://doi.org/10.1007/s11357-023-00841-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-023-00841-2

Keywords

Navigation