Skip to main content

Advertisement

Log in

Comprehensive longitudinal non-invasive quantification of healthspan and frailty in a large cohort (n = 546) of geriatric C57BL/6 J mice

  • ORIGINAL ARTICLE
  • Published:
GeroScience Aims and scope Submit manuscript

Abstract

Frailty is an age-related condition characterized by a multisystem functional decline, increased vulnerability to stressors, and adverse health outcomes. Quantifying the degree of frailty in humans and animals is a health measure useful for translational geroscience research. Two frailty measurements, namely the frailty phenotype (FP) and the clinical frailty index (CFI), have been validated in mice and are frequently applied in preclinical research. However, these two tools are based on different concepts and do not necessarily identify the same mice as frail. In particular, the FP is based on a dichotomous classification that suffers from high sample size requirements and misclassification problems. Based on the monthly longitudinal non-invasive assessment of frailty in a large cohort of mice, here we develop an alternative scoring method, which we called physical function score (PFS), proposed as a continuous variable that resumes into a unique function, the five criteria included in the FP. This score would not only reduce misclassification of frailty but it also makes the two tools, PFS and CFI, integrable to provide an overall measurement of health, named vitality score (VS) in aging mice. VS displays a higher association with mortality than PFS or CFI and correlates with biomarkers related to the accumulation of senescent cells and the epigenetic clock. This longitudinal non-invasive assessment strategy and the VS may help to overcome the different sensitivity in frailty identification, reduce the sample size in longitudinal experiments, and establish the effectiveness of therapeutic/preventive interventions for frailty or other age-related diseases in geriatric animals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author (MM), upon reasonable request.

References

  1. Dent E, et al. Management of frailty: opportunities, challenges, and future directions. Lancet. 2019;394(10206):1376–86. https://doi.org/10.1016/S0140-6736(19)31785-4.

    Article  PubMed  Google Scholar 

  2. Clegg A, et al. Frailty in elderly people. Lancet. 2013;381(9868):752–62. https://doi.org/10.1016/S0140-6736(12)62167-9.

    Article  PubMed  Google Scholar 

  3. Fried LP, et al. Frailty in older adults: evidence for a phenotype. J Gerontol A Biol Sci Med Sci. 2001;56(3):M146–56. https://doi.org/10.1093/gerona/56.3.m146.

    Article  CAS  PubMed  Google Scholar 

  4. Rockwood K, et al. A global clinical measure of fitness and frailty in elderly people. CMAJ. 2005;173(5):489–95. https://doi.org/10.1503/cmaj.050051.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Howlett SE, Rutenberg AD, Rockwood K. The degree of frailty as a translational measure of health in aging. Nature Aging. 2021;1(8):651–65. https://doi.org/10.1038/s43587-021-00099-3.

    Article  PubMed  Google Scholar 

  6. Liu H, et al. Clinically relevant frailty index for mice. J Gerontol A Biol Sci Med Sci. 2014;69(12):1485–91. https://doi.org/10.1093/gerona/glt188.

    Article  PubMed  Google Scholar 

  7. Gomez-Cabrera MC, et al. A new frailty score for experimental animals based on the clinical phenotype: inactivity as a model of frailty. J Gerontol A Biol Sci Med Sci. 2017;72(7):885–91. https://doi.org/10.1093/gerona/glw337.

    Article  PubMed  Google Scholar 

  8. Baumann CW, Kwak D, Thompson LV. Assessing onset, prevalence and survival in mice using a frailty phenotype. Aging. 2018;10(12):4042–53. https://doi.org/10.18632/aging.101692.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Parks RJ, et al. A procedure for creating a frailty index based on deficit accumulation in aging mice. J Gerontol A Biol Sci Med Sci. 2012;67(3):217–27. https://doi.org/10.1093/gerona/glr193.

    Article  PubMed  Google Scholar 

  10. Whitehead JC, et al. A clinical frailty index in aging mice: comparisons with frailty index data in humans. J Gerontol A Biol Sci Med Sci. 2014;69(6):621–32. https://doi.org/10.1093/gerona/glt136.

    Article  PubMed  Google Scholar 

  11. Malmstrom TK, Miller DK, Morley JE. A comparison of four frailty models. J Am Geriatr Soc. 2014;62(4):721–6. https://doi.org/10.1111/jgs.12735.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Hogan DB, et al. Comparing frailty measures in their ability to predict adverse outcome among older residents of assisted living. BMC Geriatr. 2012;12:56. https://doi.org/10.1186/1471-2318-12-56.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Todorovic S, et al. Frailty index and phenotype frailty score: sex- and age-related differences in 5XFAD transgenic mouse model of Alzheimer’s disease. Mech Ageing Dev. 2020;185:111195. https://doi.org/10.1016/j.mad.2019.111195.

    Article  CAS  PubMed  Google Scholar 

  14. Rockwood K, Andrew M, Mitnitski A. A comparison of two approaches to measuring frailty in elderly people. J Gerontol A Biol Sci Med Sci. 2007;62(7):738–43. https://doi.org/10.1093/gerona/62.7.738.

    Article  PubMed  Google Scholar 

  15. Kane AE, et al. A comparison of two mouse frailty assessment tools. J Gerontol A Biol Sci Med Sci. 2017;72(7):904–9. https://doi.org/10.1093/gerona/glx009.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Malavolta M, et al. LAV-BPIFB4 associates with reduced frailty in humans and its transfer prevents frailty progression in old mice. Aging. 2019;11(16):6555–68. https://doi.org/10.18632/aging.102209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kane AE, et al. Implementation of the mouse frailty index. Can J Physiol Pharmacol. 2017;95(10):1149–55. https://doi.org/10.1139/cjpp-2017-0025.

    Article  CAS  PubMed  Google Scholar 

  18. Feridooni HA, et al. Reliability of a frailty index based on the clinical assessment of health deficits in male C57BL/6J mice. J Gerontol A Biol Sci Med Sci. 2015;70(6):686–93. https://doi.org/10.1093/gerona/glu161.

    Article  PubMed  Google Scholar 

  19. Castro B, Kuang S. Evaluation of muscle performance in mice by treadmill exhaustion test and whole-limb grip strength assay. Bio Protoc. 2017;7(8):e2237. https://doi.org/10.21769/BioProtoc.2237.

  20. Deacon RM. Measuring the strength of mice. J Vis Exp. 2013;(76):2610.  https://doi.org/10.3791/2610.

  21. Malavolta M, et al. Recovery from mild Escherichia coli O157:H7 infection in young and aged C57BL/6 mice with intact flora estimated by fecal shedding, locomotor activity and grip strength. Comp Immunol Microbiol Infect Dis. 2019;63:1–9. https://doi.org/10.1016/j.cimid.2018.12.003.

    Article  PubMed  Google Scholar 

  22. Grohn KJ, et al. C60 in olive oil causes light-dependent toxicity and does not extend lifespan in mice. Geroscience. 2021;43(2):579–91. https://doi.org/10.1007/s11357-020-00292-z.

    Article  CAS  PubMed  Google Scholar 

  23. Morio Y, Izawa KP, Omori Y, Katata H, Ishiyama D, Koyama S, et al. The relationship between walking speed and step length in older aged patients. Diseases. 2019;7(1):17. https://doi.org/10.3390/diseases7010017.

  24. Fernagut PO, et al. A simple method to measure stride length as an index of nigrostriatal dysfunction in mice. J Neurosci Methods. 2002;113(2):123–30. https://doi.org/10.1016/s0165-0270(01)00485-x.

    Article  PubMed  Google Scholar 

  25. Han Y, Eipel M, Franzen J, Sakk V, Dethmers-Ausema B, Yndriago L, et al. Epigenetic age-predictor for mice based on three CpG sites. Elife. 2018;7:e37462. https://doi.org/10.7554/eLife.37462.

  26. Kreidler SM, Muller KE, Grunwald GK, Ringham BM, Coker-Dukowitz ZT, Sakhadeo UR, et al. GLIMMPSE: online power computation for linear models with and without a baseline covariate. J Stat Softw. 2013;54(10):i10. https://doi.org/10.18637/jss.v054.i10.

  27. Romero-Ortuno R. An alternative method for frailty index cut-off points to define frailty categories. Eur Geriatr Med. 2013;4(5):299–303. https://doi.org/10.1016/j.eurger.2013.06.005.

  28. Kwak D, Baumann CW, Thompson LV. Identifying characteristics of frailty in female mice using a phenotype assessment tool. J Gerontol A Biol Sci Med Sci. 2020;75(4):640–6. https://doi.org/10.1093/gerona/glz092.

    Article  CAS  PubMed  Google Scholar 

  29. von Zglinicki T, et al. Frailty in mouse ageing: a conceptual approach. Mech Ageing Dev. 2016;160:34–40. https://doi.org/10.1016/j.mad.2016.07.004.

    Article  Google Scholar 

  30. Kane AE, et al. Impact of longevity interventions on a validated mouse clinical frailty index. J Gerontol A Biol Sci Med Sci. 2016;71(3):333–9. https://doi.org/10.1093/gerona/glu315.

    Article  CAS  PubMed  Google Scholar 

  31. Kane AE, et al. Sex differences in healthspan predict lifespan in the 3xTg-AD mouse model of Alzheimer’s disease. Front Aging Neurosci. 2018;10:172. https://doi.org/10.3389/fnagi.2018.00172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kane AE, et al. Acetaminophen hepatotoxicity in mice: effect of age, frailty and exposure type. Exp Gerontol. 2016;73:95–106. https://doi.org/10.1016/j.exger.2015.11.013.

    Article  CAS  PubMed  Google Scholar 

  33. Jansen HJ, et al. Atrial structure, function and arrhythmogenesis in aged and frail mice. Sci Rep. 2017;7:44336. https://doi.org/10.1038/srep44336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Antoch MP, et al. Physiological frailty index (PFI): quantitative in-life estimate of individual biological age in mice. Aging. 2017;9(3):615–26. https://doi.org/10.18632/aging.101206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Keller K, et al. Chronic treatment with the ACE inhibitor enalapril attenuates the development of frailty and differentially modifies pro- and anti-inflammatory cytokines in aging male and female C57BL/6 mice. J Gerontol A Biol Sci Med Sci. 2019;74(8):1149–57. https://doi.org/10.1093/gerona/gly219.

    Article  CAS  PubMed  Google Scholar 

  36. Huizer-Pajkos A, et al. Adverse geriatric outcomes secondary to polypharmacy in a mouse model: the influence of aging. J Gerontol A Biol Sci Med Sci. 2016;71(5):571–7. https://doi.org/10.1093/gerona/glv046.

    Article  CAS  PubMed  Google Scholar 

  37. Tang Y, et al. Pre-existing weakness is critical for the occurrence of postoperative cognitive dysfunction in mice of the same age. PLoS One. 2017;12(8):e0182471. https://doi.org/10.1371/journal.pone.0182471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mach J, et al. Preclinical frailty assessments: phenotype and frailty index identify frailty in different mice and are variably affected by chronic medications. Exp Gerontol. 2022;161:111700. https://doi.org/10.1016/j.exger.2022.111700.

    Article  CAS  PubMed  Google Scholar 

  39. Seldeen KL, et al. High intensity interval training improves physical performance and frailty in aged mice. J Gerontol A Biol Sci Med Sci. 2018;73(4):429–37. https://doi.org/10.1093/gerona/glx120.

    Article  CAS  PubMed  Google Scholar 

  40. Xu M, et al. Senolytics improve physical function and increase lifespan in old age. Nat Med. 2018;24(8):1246–56. https://doi.org/10.1038/s41591-018-0092-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Baumann CW, Kwak D, Thompson LV. Sex-specific components of frailty in C57BL/6 mice. Aging. 2019;11(14):5206–14. https://doi.org/10.18632/aging.102114.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Romero-Ortuno R, et al. Is phenotypical prefrailty all the same? A longitudinal investigation of two prefrailty subtypes in TILDA. Age Ageing. 2019;49(1):39–45. https://doi.org/10.1093/ageing/afz129.

    Article  PubMed  Google Scholar 

  43. Baumann CW, Kwak D, Thompson LV. Phenotypic frailty assessment in mice: development, discoveries, and experimental considerations. Physiology (Bethesda). 2020;35(6):405–14. https://doi.org/10.1152/physiol.00016.2020.

    Article  PubMed  Google Scholar 

  44. Ackert-Bicknell CL, et al. Aging research using mouse models. Curr Protoc Mouse Biol. 2015;5(2):95–133. https://doi.org/10.1002/9780470942390.mo140195.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Alfaras I, et al. Empirical versus theoretical power and type I error (false-positive) rates estimated from real murine aging research data. Cell Rep. 2021;36(7):109560. https://doi.org/10.1016/j.celrep.2021.109560.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Demaria M, et al. An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA. Dev Cell. 2014;31(6):722–33. https://doi.org/10.1016/j.devcel.2014.11.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Dungan CM, Figueiredo VC, Wen Y, VonLehmden GL, Zdunek CJ, Thomas NT, et al. Senolytic treatment rescues blunted muscle hypertrophy in old mice. Geroscience. 2022;44(4):1925–40. https://doi.org/10.1007/s11357-022-00542-2.

  48. Kim S, et al. The frailty index outperforms DNA methylation age and its derivatives as an indicator of biological age. Geroscience. 2017;39(1):83–92. https://doi.org/10.1007/s11357-017-9960-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Seldeen KL, et al. High intensity interval training improves physical performance in aged female mice: a comparison of mouse frailty assessment tools. Mech Ageing Dev. 2019;180:49–62. https://doi.org/10.1016/j.mad.2019.04.001.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the Centro Piattaforme Tecnologiche (CPT) of Verona University for the IVIS Spectrum usage. The authors wish also to acknowledge Andrea Amoroso, Daniele Pierelli and Huillca Quispe Doctor Ambrosio from Charles River Laboratory Italia, as well as Beatrice Bartozzi and Gianni Bernardini for their precious technical support.

Funding

This work was supported by The Network IRCCS AGING “Rete Nazionale di Ricerca sull’invecchiamento e la longevità attiva – Implementazione della RoadMap nella ricerca sull’Aging (IRMA)” to FL; by Fondazione Cariplo (grant 2016–1006) “Multicomponent Analysis of Physical Frailty Biomarkers” to EN, MP, and AV; and by Ricerca Corrente funding from Italian Ministry of Health to IRCCS-INRCA (MM and MP) and to IRCCS MultiMedica (AP).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: MM EN, AV. Data curation: MM, SM. Formal analysis: SM. Funding acquisition: AP, MM, AV, MP, EN, FL. Investigation: MM, GB, AS, MEG, RG. Methodology: MM, FB. Project administration: FL, MP. Supervision: AP, MP, FL. Visualization: SM. Writing—original draft: SM, MM. Writing—review and editing: MP, FP, RG, EN, AV.

Corresponding author

Correspondence to Marco Malavolta.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 36180 KB)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marcozzi, S., Bigossi, G., Giuliani, M.E. et al. Comprehensive longitudinal non-invasive quantification of healthspan and frailty in a large cohort (n = 546) of geriatric C57BL/6 J mice. GeroScience 45, 2195–2211 (2023). https://doi.org/10.1007/s11357-023-00737-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-023-00737-1

Keywords

Navigation