Skip to main content
Log in

New imaging tools for mouse models of osteoarthritis

  • Review
  • Published:
GeroScience Aims and scope Submit manuscript

Abstract

Osteoarthritis (OA) is a chronic degenerative disease characterized by a disruption of articular joint cartilage homeostasis. Mice are the most commonly used models to study OA. Despite recent reviews, there is still a lack of knowledge about the new development in imaging techniques. Two types of modalities are complementary: those that assess structural changes in joint tissues and those that assess metabolism and disease activity. Micro MRI is the most important imaging tool for OA research. Automated methodologies for assessing periarticular bone morphology with micro-CT have been developed allowing quantitative assessment of tibial surface that may be representative of the whole OA joint changes. Phase-contrast X-ray imaging provides in a single examination a high image precision with good differentiation between all anatomical elements of the knee joint (soft tissue and bone). Positron emission tomography, photoacoustic imaging, and fluorescence reflectance imaging provide molecular and functional data. To conclude, innovative imaging technologies could be an alternative to conventional histology with greater resolution and more efficiency in both morphological analysis and metabolism follow-up. There is a logic of permanent adjustment between innovations, 3R rule, and scientific perspectives. New imaging associated with artificial intelligence may add to human clinical practice allowing not only diagnosis but also prediction of disease progression to personalized medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. GBD. Disease and injury incidence and prevalence collaborators (2017) global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990–2016: a systematic analysis for the global burden of disease study 2016. Lancet. 2016;390:1211–59. https://doi.org/10.1016/S0140-6736(17)32154-2.

    Article  Google Scholar 

  2. van Oostrom SH, Picavet HSJ, de Bruin SR, et al. Multimorbidity of chronic diseases and health care utilization in general practice. BMC Fam Pract. 2014;15:61. https://doi.org/10.1186/1471-2296-15-61.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Sophia Fox AJ, Bedi A, Rodeo SA. The Basic science of articular cartilage. Sports health. 2009;1:461–8. https://doi.org/10.1177/1941738109350438.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Buckwalter JA, Mankin HJ. Articular cartilage: tissue design and chondrocyte-matrix interactions. Instr Course Lect. 1998;47:477–86.

    CAS  PubMed  Google Scholar 

  5. Bhosale AM, Richardson JB. Articular cartilage: structure, injuries and review of management. Br Med Bull. 2008;87:77–95. https://doi.org/10.1093/bmb/ldn025.

    Article  PubMed  Google Scholar 

  6. Eyre D. Collagen of articular cartilage. Arthritis Res. 2002;4:30–5. https://doi.org/10.1186/ar380.

    Article  CAS  PubMed  Google Scholar 

  7. Houard X, Goldring MB, Berenbaum F. Homeostatic mechanisms in articular cartilage and role of inflammation in osteoarthritis. Curr Rheumatol Rep. 2013;15:375. https://doi.org/10.1007/s11926-013-0375-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bijlsma JW, Berenbaum F, Lafeber FP. Osteoarthritis: an update with relevance for clinical practice. The Lancet. 2011;377:2115–26. https://doi.org/10.1016/S0140-6736(11)60243-2.

    Article  Google Scholar 

  9. Sellam J, Berenbaum F. Is osteoarthritis a metabolic disease? Joint Bone Spine. 2013;80:568–73. https://doi.org/10.1016/j.jbspin.2013.09.007.

    Article  CAS  PubMed  Google Scholar 

  10. Kuyinu EL, Narayanan G, Nair LS, Laurencin CT. Animal models of osteoarthritis: classification, update, and measurement of outcomes. J Orthop Surg Res. 2016;11:19. https://doi.org/10.1186/s13018-016-0346-5.

  11. McCoy AM. Animal models of osteoarthritis: comparisons and Key considerations. Vet Pathol. 2015;52:803–18. https://doi.org/10.1177/0300985815588611.

    Article  CAS  PubMed  Google Scholar 

  12. Fang H, Beier F. Mouse models of osteoarthritis: modelling risk factors and assessing outcomes. Nat Rev Rheumatol. 2014;10:413–21. https://doi.org/10.1038/nrrheum.2014.46.

    Article  PubMed  Google Scholar 

  13. Bapat S, Hubbard D, Munjal A, et al. Pros and cons of mouse models for studying osteoarthritis. Clin Transl Med. 2018;7:36. https://doi.org/10.1186/s40169-018-0215-4.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Little CB, Zaki S. What constitutes an “animal model of osteoarthritis”–the need for consensus? Osteoarthr Cartil. 2012;20:261–7. https://doi.org/10.1016/j.joca.2012.01.017.

    Article  CAS  Google Scholar 

  15. Malfait AM, Little CB, McDougall JJ. A commentary on modelling osteoarthritis pain in small animals. Osteoarthr Cartil. 2013;21:1316–26. https://doi.org/10.1016/j.joca.2013.06.003.

    Article  CAS  Google Scholar 

  16. Piel MJ, Kroin JS, van Wijnen AJ, et al. Pain assessment in animal models of osteoarthritis. Gene. 2014;537:184–8. https://doi.org/10.1016/j.gene.2013.11.091.

    Article  CAS  PubMed  Google Scholar 

  17. Thysen S, Luyten FP, Lories RJU. Targets, models and challenges in osteoarthritis research. Dis Model Mech. 2015;8:17–30. https://doi.org/10.1242/dmm.016881.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lim NH, Wen C, Vincent TL. Molecular and structural imaging in surgically induced murine osteoarthritis. Osteoarthritis Cartilage. 2020;28:874–84. https://doi.org/10.1016/j.joca.2020.03.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Roemer FW, Demehri S, Omoumi P, et al. State of the art: imaging of osteoarthritis-revisited 2020. Radiology. 2020;296:5–21. https://doi.org/10.1148/radiol.2020192498.

    Article  PubMed  Google Scholar 

  20. Sakellariou G, Conaghan PG, Zhang W, et al. EULAR recommendations for the use of imaging in the clinical management of peripheral joint osteoarthritis. Ann Rheum Dis. 2017;76:1484–94. https://doi.org/10.1136/annrheumdis-2016-210815.

    Article  PubMed  Google Scholar 

  21. Hayashi D, Roemer FW, Guermazi A. Recent advances in research imaging of osteoarthritis with focus on MRI, ultrasound and hybrid imaging. Clin Exp Rheumatol. 2018;36(Suppl 114):43–52.

    PubMed  Google Scholar 

  22. Tremoleda JL, Khalil M, Gompels LL, et al. Imaging technologies for preclinical models of bone and joint disorders. EJNMMI Res. 2011;1:11. https://doi.org/10.1186/2191-219X-1-11.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Zhang W, Doherty M, Peat G, et al. EULAR evidence-based recommendations for the diagnosis of knee osteoarthritis. Ann Rheum Dis. 2010;69:483–9. https://doi.org/10.1136/ard.2009.113100.

    Article  CAS  PubMed  Google Scholar 

  24. Glyn-Jones S, Palmer AJR, Agricola R, et al. Osteoarthritis Lancet. 2015;386:376–87. https://doi.org/10.1016/S0140-6736(14)60802-3.

    Article  CAS  PubMed  Google Scholar 

  25. Conaghan PG, Hunter DJ, Maillefert JF, et al. Summary and recommendations of the OARSI FDA osteoarthritis assessment of structural change working group. Osteoarthritis Cartilage. 2011;19:606–10. https://doi.org/10.1016/j.joca.2011.02.018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Keiji E. JEOL, NMR and ESR: A 65 year evolution. J Magn Reson. 2019;306:17–26. https://doi.org/10.1016/j.jmr.2019.07.033.

    Article  CAS  PubMed  Google Scholar 

  27. Mansfield P, Maudsley AA. Medical imaging by NMR. Br J Radiol. 1977;50:188–94. https://doi.org/10.1259/0007-1285-50-591-188.

    Article  CAS  PubMed  Google Scholar 

  28. Budinger TF, Lauterbur PC. Nuclear magnetic resonance technology for medical studies. Science. 1984;226:288–98. https://doi.org/10.1126/science.6385252.

    Article  CAS  PubMed  Google Scholar 

  29. Lauterbur PC. Progress in n.m.r. zeugmatography imaging. Philos Trans R Soc Lond B Biol Sci. 1980;289:483–7. https://doi.org/10.1098/rstb.1980.0066.

    Article  CAS  PubMed  Google Scholar 

  30. Kijowski R, Demehri S, Roemer F, Guermazi A. Osteoarthritis year in review 2019: imaging. Osteoarthritis Cartilage. 2020;28:285–95. https://doi.org/10.1016/j.joca.2019.11.009.

    Article  CAS  PubMed  Google Scholar 

  31. Roemer FW, Crema MD, Trattnig S, Guermazi A. Advances in imaging of osteoarthritis and cartilage. Radiology. 2011;260:332–54. https://doi.org/10.1148/radiol.11101359.

    Article  PubMed  Google Scholar 

  32. Tsai P-H, Lee H-S, Siow TY, et al. Sequential change in T2* values of cartilage, meniscus, and subchondral bone marrow in a rat model of knee osteoarthritis. PLoS ONE. 2013;8:e76658. https://doi.org/10.1371/journal.pone.0076658.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Grover VPB, Tognarelli JM, Crossey MME, et al. Magnetic resonance imaging: principles and techniques: lessons for clinicians. J Clin Exp Hepatol. 2015;5:246–55. https://doi.org/10.1016/j.jceh.2015.08.001.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Boileau C, Martel-Pelletier J, Abram F, et al. Magnetic resonance imaging can accurately assess the long-term progression of knee structural changes in experimental dog osteoarthritis. Ann Rheum Dis. 2008;67:926–32. https://doi.org/10.1136/ard.2007.077297.

    Article  CAS  PubMed  Google Scholar 

  35. Laurent D, Wasvary J, O’Byrne E, Rudin M. In vivo qualitative assessments of articular cartilage in the rabbit knee with high-resolution MRI at 3 T. Magn Reson Med. 2003;50:541–9. https://doi.org/10.1002/mrm.10566.

    Article  PubMed  Google Scholar 

  36. Tessier JJ, Bowyer J, Brownrigg NJ, et al. Characterisation of the guinea pig model of osteoarthritis by in vivo three-dimensional magnetic resonance imaging. Osteoarthritis Cartilage. 2003;11:845–53. https://doi.org/10.1016/s1063-4584(03)00162-6.

    Article  CAS  PubMed  Google Scholar 

  37. Wang Y-XJ, Wang J, Deng M, et al. In vivo three-dimensional magnetic resonance imaging of rat knee osteoarthritis model induced using meniscal transection. J Orthop Translat. 2015;3:134–41. https://doi.org/10.1016/j.jot.2015.06.002.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Kerckhofs G, Sainz J, Wevers M, et al. Contrast-enhanced nanofocus computed tomography images the cartilage subtissue architecture in three dimensions. Eur Cell Mater. 2013;25:179–89.

    Article  CAS  Google Scholar 

  39. Guermazi A, Alizai H, Crema MD, et al. Compositional MRI techniques for evaluation of cartilage degeneration in osteoarthritis. Osteoarthritis Cartilage. 2015;23:1639–53. https://doi.org/10.1016/j.joca.2015.05.026.

    Article  CAS  PubMed  Google Scholar 

  40. Blair-Levy JM, Watts CE, Fiorentino NM, et al. A type I collagen defect leads to rapidly progressive osteoarthritis in a mouse model. Arthritis Rheum. 2008;58:1096–106. https://doi.org/10.1002/art.23277.

    Article  CAS  PubMed  Google Scholar 

  41. Goebel JC, Bolbos R, Pham M, et al. In vivo high-resolution MRI (7T) of femoro-tibial cartilage changes in the rat anterior cruciate ligament transection model of osteoarthritis: a cross-sectional study. Rheumatology (Oxford). 2010;49:1654–64. https://doi.org/10.1093/rheumatology/keq154.

    Article  Google Scholar 

  42. Zhen G, Wen C, Jia X, et al. Inhibition of TGF–β signaling in subchondral bone mesenchymal stem cells attenuates osteoarthritis. Nat Med. 2013;19:704–12. https://doi.org/10.1038/nm.3143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Broche L, Favier B, Rougé-Labriet H, et al. Calcified cartilage revealed in whole joint by X-ray phase contrast imaging. Osteoarthritis and Cartilage Open. 2021;3:100168. https://doi.org/10.1016/j.ocarto.2021.100168.

    Article  Google Scholar 

  44. Rai MF, Duan X, Quirk JD, et al. Post-traumatic osteoarthritis in mice following mechanical injury to the synovial joint. Sci Rep. 2017;7:45223. https://doi.org/10.1038/srep45223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wang Y-X. In vivo magnetic resonance imaging of animal models of knee osteoarthritis. Lab Anim. 2008;42:246–64. https://doi.org/10.1258/la.2007.06041e.

    Article  PubMed  Google Scholar 

  46. Hafner T, Post M, Said O, et al. Identifying the imaging correlates of cartilage functionality based on quantitative MRI mapping - the collagenase exposure model. Acta Biomater. 2020;117:310–21. https://doi.org/10.1016/j.actbio.2020.09.032.

    Article  CAS  PubMed  Google Scholar 

  47. Munasinghe JP, Tyler JA, Carpenter TA, Hall LD. High resolution MR imaging of joint degeneration in the knee of the STR/ORT mouse. Magn Reson Imaging. 1995;13:421–8. https://doi.org/10.1016/0730-725x(94)00123-k.

    Article  CAS  PubMed  Google Scholar 

  48. Sharir A, Ramniceanu G, Brumfeld V. High resolution 3D imaging of ex-vivo biological samples by micro CT. J Vis Exp. 2011;52:2688. https://doi.org/10.3791/2688.

  49. Schambach SJ, Bag S, Schilling L, et al. Application of micro-CT in small animal imaging. Methods. 2010;50:2–13. https://doi.org/10.1016/j.ymeth.2009.08.007.

    Article  CAS  PubMed  Google Scholar 

  50. Mazur CM, Woo JJ, Yee CS, et al. Osteocyte dysfunction promotes osteoarthritis through MMP13-dependent suppression of subchondral bone homeostasis. Bone Res. 2019;7:34. https://doi.org/10.1038/s41413-019-0070-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ji C-C, Liu B, Shao Y-J, et al. Microstructure and mechanical properties of subchondral bone are negatively regulated by tramadol in osteoarthritis in mice. Biosci Rep. 2020;40:BSR20194207. https://doi.org/10.1042/BSR20194207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Botter SM, van Osch GJVM, Waarsing JH, et al. Quantification of subchondral bone changes in a murine osteoarthritis model using micro-CT. Biorheology. 2006;43:379–88.

    CAS  PubMed  Google Scholar 

  53. Fang H, Huang L, Welch I, et al. Early changes of articular cartilage and subchondral bone in the DMM mouse model of osteoarthritis. Sci Rep. 2018;8:2855. https://doi.org/10.1038/s41598-018-21184-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wachsmuth L, Engelke K. High-resolution imaging of osteoarthritis using microcomputed tomography. Methods Mol Med. 2004;101:231–48. https://doi.org/10.1385/1-59259-821-8:231.

    Article  PubMed  Google Scholar 

  55. Das Neves Borges P, Vincent TL, Marenzana M. Automated assessment of bone changes in cross-sectional micro-CT studies of murine experimental osteoarthritis. PLoS ONE. 2017;12:e0174294. https://doi.org/10.1371/journal.pone.0174294.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bravin A, Coan P, Suortti P. X-ray phase-contrast imaging: from pre-clinical applications towards clinics. Phys Med Biol. 2013;58:R1-35. https://doi.org/10.1088/0031-9155/58/1/R1.

    Article  PubMed  Google Scholar 

  57. Horng A, Brun E, Mittone A, et al. Cartilage and soft tissue imaging using X-rays: propagation-based phase-contrast computed tomography of the human knee in comparison with clinical imaging techniques and histology. Invest Radiol. 2014;49:627–34. https://doi.org/10.1097/RLI.0000000000000063.

    Article  PubMed  Google Scholar 

  58. Geith T, Brun E, Mittone A, et al. Quantitative assessment of degenerative cartilage and subchondral bony lesions in a preserved cadaveric knee: propagation-based phase-contrast CT versus conventional MRI and CT. AJR Am J Roentgenol. 2018;210:1317–22. https://doi.org/10.2214/AJR.17.18286.

    Article  PubMed  Google Scholar 

  59. Rougé-Labriet H, Berujon S, Mathieu H, et al. X-ray phase contrast osteo-articular imaging: a pilot study on cadaveric human hands. Sci Rep. 2020;10:1911. https://doi.org/10.1038/s41598-020-58168-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hafezi-Nejad N, Demehri S, Guermazi A, Carrino JA. Osteoarthritis year in review 2017: updates on imaging advancements. Osteoarthr Cartil. 2018;26:341–9. https://doi.org/10.1016/j.joca.2018.01.007.

    Article  CAS  Google Scholar 

  61. Kobayashi N, Inaba Y, Tateishi U, et al. Comparison of 18F-fluoride positron emission tomography and magnetic resonance imaging in evaluating early-stage osteoarthritis of the hip. Nucl Med Commun. 2015;36:84–9. https://doi.org/10.1097/MNM.0000000000000214.

    Article  CAS  PubMed  Google Scholar 

  62. Hayer S, Zeilinger M, Weiss V, et al. Multimodal [18 F]FDG PET/CT is a direct readout for inflammatory bone repair: a longitudinal study in TNFα transgenic mice. J Bone Miner Res. 2019;34:1632–45. https://doi.org/10.1002/jbmr.3748.

    Article  CAS  PubMed  Google Scholar 

  63. Irmler IM, Gebhardt P, Hoffmann B, et al. 18 F-Fluoride positron emission tomography/computed tomography for noninvasive in vivo quantification of pathophysiological bone metabolism in experimental murine arthritis. Arthritis Res Ther. 2014;16:R155. https://doi.org/10.1186/ar4670.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Notni J, Gassert FT, Steiger K, et al. In vivo imaging of early stages of rheumatoid arthritis by α5β1-integrin-targeted positron emission tomography. EJNMMI Res. 2019;9:87. https://doi.org/10.1186/s13550-019-0541-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Chung S-J, Youn H, Jeong EJ, et al. In vivo imaging of activated macrophages by 18F-FEDAC, a TSPO targeting PET ligand, in the use of biologic disease-modifying anti-rheumatic drugs (bDMARDs). Biochem Biophys Res Commun. 2018;506:216–22. https://doi.org/10.1016/j.bbrc.2018.10.083.

    Article  CAS  PubMed  Google Scholar 

  66. Mitra A, Kundu-Raychaudhuri S, Abria C, et al. In-vivo quantitative assessment of the therapeutic response in a mouse model of collagen-induced arthritis using 18F-fluorodeoxyglucose positron emission tomography. Clin Exp Immunol. 2017;188:293–8. https://doi.org/10.1111/cei.12926.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Umemoto Y, Oka T, Inoue T, Saito T. Imaging of a rat osteoarthritis model using (18)F-fluoride positron emission tomography. Ann Nucl Med. 2010;24:663–9. https://doi.org/10.1007/s12149-010-0411-9.

    Article  PubMed  Google Scholar 

  68. Bertrand J, Nitschke Y, Fuerst M, et al. Decreased levels of nucleotide pyrophosphatase phosphodiesterase 1 are associated with cartilage calcification in osteoarthritis and trigger osteoarthritic changes in mice. Ann Rheum Dis. 2012;71:1249–53. https://doi.org/10.1136/annrheumdis-2011-200892.

    Article  CAS  PubMed  Google Scholar 

  69. Spriet MP, Girard CA, Foster SF, et al. Validation of a 40 MHz B-scan ultrasound biomicroscope for the evaluation of osteoarthritis lesions in an animal model. Osteoarthritis Cartilage. 2005;13:171–9. https://doi.org/10.1016/j.joca.2004.10.022.

    Article  PubMed  Google Scholar 

  70. Xu H, Bouta EM, Wood RW, et al. Utilization of longitudinal ultrasound to quantify joint soft-tissue changes in a mouse model of posttraumatic osteoarthritis. Bone Res. 2017;5:17012. https://doi.org/10.1038/boneres.2017.12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Liu Z, Au M, Wang X, Chan P-MB, Lai P, Sun L, Zheng Y, Rong L, Wen C. Photoacoustic imaging of synovial tissue hypoxia in experimental post-traumatic osteoarthritis. Prog Biophys Mol Biol. 2018. https://doi.org/10.1016/j.pbiomolbio.2018.03.009.

  72. Chen L, Ji Y, Hu X, et al. Cationic poly-l-lysine-encapsulated melanin nanoparticles as efficient photoacoustic agents targeting to glycosaminoglycans for the early diagnosis of articular cartilage degeneration in osteoarthritis. Nanoscale. 2018;10:13471–84. https://doi.org/10.1039/c8nr03791d.

    Article  CAS  PubMed  Google Scholar 

  73. Izumi T, Sato M, Yabe Y, et al. Ultrasonic and photoacoustic imaging of knee joints in normal and osteoarthritis rats. Conf Proc IEEE Eng Med Biol Soc. 2013;2013:1116–9. https://doi.org/10.1109/EMBC.2013.6609701.

    Article  Google Scholar 

  74. Liu Z, Au M, Wang X, et al. Photoacoustic imaging of synovial tissue hypoxia in experimental post-traumatic osteoarthritis. Prog Biophys Mol Biol. 2019;148:12–20. https://doi.org/10.1016/j.pbiomolbio.2018.03.009.

    Article  PubMed  Google Scholar 

  75. Xiao S, Tang Y, Lin Y, et al. Tracking osteoarthritis progress through cationic nanoprobe-enhanced photoacoustic imaging of cartilage. Acta Biomater. 2020;109:153–62. https://doi.org/10.1016/j.actbio.2020.04.001.

    Article  CAS  PubMed  Google Scholar 

  76. Satkunananthan PB, Anderson MJ, De Jesus NM, et al. In vivo fluorescence reflectance imaging of protease activity in a mouse model of post-traumatic osteoarthritis. Osteoarthr Cartil. 2014;22:1461–9. https://doi.org/10.1016/j.joca.2014.07.011.

    Article  CAS  Google Scholar 

  77. Lai W-FT, Chang C-H, Tang Y, et al. Early diagnosis of osteoarthritis using cathepsin B sensitive near-infrared fluorescent probes. Osteoarthritis Cartilage. 2004;12:239–44. https://doi.org/10.1016/j.joca.2003.11.005.

    Article  PubMed  Google Scholar 

  78. Hsia AW, Emami AJ, Tarke FD, et al. Osteophytes and fracture calluses share developmental milestones and are diminished by unloading. J Orthop Res. 2018;36:699–710. https://doi.org/10.1002/jor.23779.

    Article  PubMed  Google Scholar 

  79. Hu X, Wang Q, Liu Y, et al. Optical imaging of articular cartilage degeneration using near-infrared dipicolylamine probes. Biomaterials. 2014;35:7511–21. https://doi.org/10.1016/j.biomaterials.2014.05.042.

    Article  CAS  PubMed  Google Scholar 

  80. Inagawa K, Oohashi T, Nishida K, et al. Optical imaging of mouse articular cartilage using the glycosaminoglycans binding property of fluorescent-labeled octaarginine. Osteoarthritis Cartilage. 2009;17:1209–18. https://doi.org/10.1016/j.joca.2009.03.010.

    Article  CAS  PubMed  Google Scholar 

  81. Hui Mingalone CK, Liu Z, Hollander JM, et al. Bioluminescence and second harmonic generation imaging reveal dynamic changes in the inflammatory and collagen landscape in early osteoarthritis. Lab Invest. 2018;98:656–69. https://doi.org/10.1038/s41374-018-0040-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Chen D, Shen J, Zhao W, et al. Osteoarthritis: toward a comprehensive understanding of pathological mechanism. Bone Res. 2017;5:16044. https://doi.org/10.1038/boneres.2016.44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Pritzker KPH, Gay S, Jimenez SA, et al. Osteoarthritis cartilage histopathology: grading and staging. Osteoarthr Cartil. 2006;14:13–29. https://doi.org/10.1016/j.joca.2005.07.014.

    Article  CAS  Google Scholar 

  84. Blaker CL, Clarke EC, Little CB. Using mouse models to investigate the pathophysiology, treatment, and prevention of post-traumatic osteoarthritis. J Orthop Res. 2017;35:424–39. https://doi.org/10.1002/jor.23343.

    Article  PubMed  Google Scholar 

  85. He B, Wu JP, Kirk TB, et al. High-resolution measurements of the multilayer ultra-structure of articular cartilage and their translational potential. Arthritis Res Ther. 2014;16:205. https://doi.org/10.1186/ar4506.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Christiansen BA, Guilak F, Lockwood KA, et al. Non-invasive mouse models of post-traumatic osteoarthritis. Osteoarthr Cartil. 2015;23:1627–38. https://doi.org/10.1016/j.joca.2015.05.009.

    Article  CAS  Google Scholar 

  87. National Research Council (US) Committee for the Update of the Guide for the Care and Use of Laboratory Animals. Guide for the Care and Use of Laboratory Animals. 8th edition. Washington (DC): National Academies Press (US); 2011. https://www.ncbi.nlm.nih.gov/books/NBK54050/, https://doi.org/10.17226/12910.

  88. Tiulpin A, Klein S, Bierma-Zeinstra SMA, et al. Multimodal machine learning-based knee osteoarthritis progression prediction from plain radiographs and clinical data. Sci Rep. 2019;9:20038. https://doi.org/10.1038/s41598-019-56527-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Tolpadi AA, Lee JJ, Pedoia V, Majumdar S. Deep learning predicts total knee replacement from magnetic resonance images. Sci Rep. 2020;10:6371. https://doi.org/10.1038/s41598-020-63395-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Mrs. and Mr. Gittler for editorial assistance. We thank Dr. Shifali Singh and Mr. Christopher Ninham for their help with the proofreading of this article.

Author information

Authors and Affiliations

Authors

Contributions

Sabine Drevet: conceptualization, methodology, writing—original draft preparation, visualization, writing—reviewing and editing. Bertrand Favier: writing—original draft preparation, writing—reviewing and editing. Bernard Lardy: conceptualization, methodology, writing—original draft preparation, writing—reviewing and editing. Gaetan Gavazzi: conceptualization, methodology, writing—original draft preparation, writing—reviewing and editing, supervision. Emmanuel Brun: writing—original draft preparation, writing—reviewing and editing.

Corresponding author

Correspondence to S. Drevet.

Ethics declarations

Conflict of interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Drevet, S., Favier, B., Lardy, B. et al. New imaging tools for mouse models of osteoarthritis. GeroScience 44, 639–650 (2022). https://doi.org/10.1007/s11357-022-00525-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-022-00525-3

Keywords

Navigation