Skip to main content
Log in

Cingulo-opercular and frontoparietal control network connectivity and executive functioning in older adults

  • Original Article
  • Published:
GeroScience Aims and scope Submit manuscript

Abstract

Executive function is a cognitive domain that typically declines in non-pathological aging. Two cognitive control networks that are vulnerable to aging—the cingulo-opercular (CON) and fronto-parietal control (FPCN) networks—play a role in various aspects of executive functioning. However, it is unclear how communication within these networks at rest relates to executive function subcomponents in older adults. This study examines the associations between CON and FPCN connectivity and executive function performance in 274 older adults across working memory, inhibition, and set-shifting tasks. Average CON connectivity was associated with better working memory, inhibition, and set-shifting performance, while average FPCN connectivity was associated solely with working memory. CON region of interest analyses revealed significant connections with classical hub regions (i.e., anterior cingulate and anterior insula) for each task, language regions for verbal working memory, right hemisphere dominance for inhibitory control, and widespread network connections for set-shifting. FPCN region of interest analyses revealed largely right hemisphere fronto-parietal connections important for working memory and a few temporal lobe connections for set-shifting. These findings characterize differential brain-behavior relationships between cognitive control networks and executive function in aging. Future research should target these networks for intervention to potentially attenuate executive function decline in older adults.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Data are managed under the data sharing agreement established with NIA and the parent R01 clinical trial Data Safety and Monitoring Board in the context of an ongoing Phase III clinical trial (ACT study, R01AG054077). All trial data will be made publicly available 2 years after completion of the parent clinical trial, per NIA and DSMB agreement. Requests for baseline data can be submitted to the ACT Publication and Presentation (P&P) Committee and will require submission of a data use, authorship, and analytic plan for review by the P&P committee (ajwoods@phhp.ufl.edu).

References

  1. Salthouse TA. Selective review of cognitive aging. J Int Neuropsychol Soc. 2010;16:754–60.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Salthouse TA. Trajectories of normal cognitive aging. Psychol Aging. 2019;34:17–24.

    Article  PubMed  Google Scholar 

  3. Murman DL. The impact of age on cognition. Semin Hear. 2015;36:111–21.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Diamond A. Executive functions. Annu Rev Psychol. 2013;64:135–68.

    Article  PubMed  Google Scholar 

  5. Miyake A, Friedman NP, Emerson MJ, et al. The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: a latent variable analysis. Cogn Psychol. 2000;41:49–100.

    Article  CAS  PubMed  Google Scholar 

  6. Lehto JE, Juujärvi P, Kooistra L, et al. Dimensions of executive functioning: evidence from children. Br J Dev Psychol. 2003;21:59–80.

    Article  Google Scholar 

  7. Collins A, Koechlin E. Reasoning, learning, and creativity: frontal lobe function and human decision-making. PLoS Biol. 2012;10:e1001293. https://doi.org/10.1371/journal.pbio.1001293.

  8. Zelazo PD, Carter A, Reznick JS, et al. Early development of executive function: a problem-solving framework. Rev Gen Psychol. 1997;1:198–226.

    Article  Google Scholar 

  9. Harada CN, Natelson Love MC, Triebel KL. Normal cognitive aging. Clin Geriatr Med. 2013;29:737–52.

  10. Evangelista ND, O’Shea A, Kraft JN, et al. Independent contributions of dorsolateral prefrontal structure and function to working memory in healthy older adults. Cereb Cortex. 2021;31:1732–43.

    Article  PubMed  Google Scholar 

  11. Boutzoukas EM, O’Shea A, Albizu A, et al. Frontal white matter hyperintensities and executive functioning performance in older adults. Front Aging Neurosci. 2021;0:338.

    Google Scholar 

  12. Hausman HK, O’Shea A, Kraft JN, et al. The role of resting-state network functional connectivity in cognitive aging. Front Aging Neurosci. 2020;12:177.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Fjell AM, Sneve MH, Grydeland H, et al. The disconnected brain and executive function decline in aging. Cereb Cortex. 2017;27:2303–17.

    PubMed  Google Scholar 

  14. Cole MW, Schneider W. The cognitive control network: integrated cortical regions with dissociable functions. Neuroimage. 2007;37:343–60.

    Article  PubMed  Google Scholar 

  15. Dosenbach NUF, Fair DA, Cohen AL, et al. A dual-networks architecture of top-down control. Trends Cogn Sci. 2008;12:99–105.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Seeley WW, Menon V, Schatzberg AF, et al. Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci. 2007;27:2349–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Fox MD, Corbetta M, Snyder A, et al. Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems. Proc Natl Acad Sci. 2006;103:10046–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dosenbach NUF, Fair DA, Miezin FM, et al. Distinct brain networks for adaptive and stable task control in humans. Proc Natl Acad Sci. 2007;104:11073–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Han SW, Eaton HP, Marois R. Functional fractionation of the cingulo-opercular network: alerting insula and updating cingulate. Cereb Cortex. 2018;29:2624–38.

    Article  PubMed Central  Google Scholar 

  20. Sestieri C, Corbetta M, Spadone S, et al. Domain-general signals in the cingulo-opercular network for visuospatial attention and episodic memory. J Cogn Neurosci. 2014;26:551–68.

    Article  PubMed  Google Scholar 

  21. Dixon ML, La VAD, Mills C, et al. Heterogeneity within the frontoparietal control network and its relationship to the default and dorsal attention networks. Proc Natl Acad Sci. 2018;115:E1598–607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Betzel RF, Byrge L, He Y, et al. Changes in structural and functional connectivity among resting-state networks across the human lifespan. Neuroimage. 2014;102:345–57.

    Article  PubMed  Google Scholar 

  23. Geerligs L, Renken RJ, Saliasi E, et al. A brain-wide study of age-related changes in functional connectivity. Cereb Cortex. 2015;25:1987–99.

    Article  PubMed  Google Scholar 

  24. Siman-Tov T, Bosak N, Sprecher E, et al. Early age-related functional connectivity decline in high-order cognitive networks. Front Aging Neurosci. 2017;8:330.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Wang K, Liang M, Wang L, et al. Altered functional connectivity in early Alzheimer’s disease: a resting-state fMRI study. Hum Brain Mapp. 2007;28:967–78.

    Article  PubMed  Google Scholar 

  26. Agosta F, Pievani M, Geroldi C, et al. Resting state fMRI in Alzheimer’s disease: beyond the default mode network. Neurobiol Aging. 2012;33:1564–78.

    Article  PubMed  Google Scholar 

  27. He X, Qin W, Liu Y, et al. Abnormal salience network in normal aging and in amnestic mild cognitive impairment and Alzheimer’s disease. Hum Brain Mapp. 2014;35:3446–64.

    Article  PubMed  Google Scholar 

  28. Elman JA, Madison CM, Baker SL, et al. Effects of beta-amyloid on resting state functional connectivity within and between networks reflect known patterns of regional vulnerability. Cereb Cortex. 2016;26:695–707.

    PubMed  Google Scholar 

  29. Buckley RF, Schultz AP, Hedden T, et al. Functional network integrity presages cognitive decline in preclinical Alzheimer disease. Neurology. 2017;89:29–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ferreira LK, Busatto GF. Resting-state functional connectivity in normal brain aging. Neurosci Biobehav Rev. 2013;37:384–400.

    Article  PubMed  Google Scholar 

  31. Duchek JM, Balota DA, Thomas JB, et al. Relationship between stroop performance and resting state functional connectivity in cognitively normal older adults. Neuropsychology. 2013;27:516–28.

    Article  PubMed  Google Scholar 

  32. Zhao J, Manza P, Wiers C, et al. Age-related decreases in interhemispheric resting-state functional connectivity and their relationship with executive function. Front Aging Neurosci. 2020;12:20.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Onoda K, Ishihara M, Yamaguchi S. Decreased functional connectivity by aging is associated with cognitive decline. J Cogn Neurosci. 2012;24:2186–98.

    Article  PubMed  Google Scholar 

  34. Shaw EE, Schultz AP, Sperling RA, et al. Functional connectivity in multiple cortical networks is ssociated with performance across cognitive domains in older adults. Brain Connect. 2015;5:505–16.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Weintraub S, Dikmen SS, Heaton RK, et al. Cognition assessment using the NIH Toolbox. Neurology. 2013;80:S54-64.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Vincent JL, Kahn I, Snyder AZ, et al. Evidence for a frontoparietal control system revealed by intrinsic functional connectivity. J Neurophysiol. 2008;100:3328–42.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Barbey AK. Network neuroscience theory of human intelligence. Trends Cogn Sci. 2018;22:8–20.

    Article  PubMed  Google Scholar 

  38. Woods AJ, Cohen R, Marsiske M, et al. Augmenting cognitive training in older adults (The ACT Study): design and methods of a phase III tDCS and cognitive training trial. Contemp Clin Trials. 2018;65:19–32.

    Article  PubMed  Google Scholar 

  39. Weintraub S, Salmon D, Mercaldo N, et al. The Alzheimer’s disease centers’ uniform data set (UDS): the neuropsychologic test battery. Alzheimer Dis Assoc Disord. 2009;23:91–101.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Wechsler D. Manual for the Wechsler Memory Scale-Revised. San Antonio, TX: Psychological Corporation; 1987.

    Google Scholar 

  41. Crowe SF. Does the Letter Number Sequencing task measure anything more than digit span? Assessment. 2000;7:113–7.

    Article  CAS  PubMed  Google Scholar 

  42. Wechsler D. WAIS-IV administration and scoring manual. San Antonio, TX: Psychological Corporation; 2008.

    Google Scholar 

  43. Stroop JR. Studies of interference in serial verbal reactions. J Exp Psychol. 1935;18:643–62.

    Article  Google Scholar 

  44. Reitan, R.M. and Wolfson, D. (1993) The Halstead-Reitan Neuropsychological Test Battery theory and clinical interpretation. 2nd Edition, Neuropsychology Press, Tucson. - References - Scientific Research Publishing. (n.d.). Retrieved May 21, 2021, from https://www.scirp.org/(S(i43dyn45teexjx455qlt3d2q))/reference/ReferencesPapers.aspx?ReferenceID=1560926

  45. Penny W, Friston K, Ashburner J et al. Statistical parametric mapping: the analysis of functional brain images., Amsterdam; Boston: Elsevier/Academic Press. 2007.

  46. Whitfield-Gabrieli S, Nieto-Castanon A. Conn : a functional connectivity toolbox for correlated and anticorrelated brain networks. Brain Connect. 2012;2:125–41.

    Article  PubMed  Google Scholar 

  47. Behzadi Y, Restom K, Liau J, et al. A component based noise correction method (CompCor) for BOLD and perfusion based fMRI. Neuroimage. 2007;37:90–101.

    Article  PubMed  Google Scholar 

  48. Shirer WR, Jiang H, Price CM, et al. Optimization of rs-fMRI pre-processing for enhanced signal-noise separation, test-retest reliability, and group discrimination. Neuroimage. 2015;117:67–79.

    Article  PubMed  Google Scholar 

  49. Power JD, Barnes KA, Snyder AZ, et al. Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. Neuroimage. 2012;59:2142–54.

    Article  PubMed  Google Scholar 

  50. Friston KJ, Williams S, Howard R, et al. Movement-related effects in fMRI time-series. Magn Reson Med. 1996;35:346–55.

    Article  CAS  PubMed  Google Scholar 

  51. Van Dijk KRA, Hedden T, Venkataraman A, et al. Intrinsic functional connectivity as a tool for human connectomics: theory, properties, and optimization. J Neurophysiol. 2010;103:297–321.

    Article  PubMed  Google Scholar 

  52. Satterthwaite TD, Elliott MA, Gerraty RT, et al. An improved framework for confound regression and filtering for control of motion artifact in the preprocessing of resting-state functional connectivity data. Neuroimage. 2013;64:240–56.

    Article  PubMed  Google Scholar 

  53. Parkes L, Fulcher B, Yücel M, et al. An evaluation of the efficacy, reliability, and sensitivity of motion correction strategies for resting-state functional MRI. Neuroimage. 2018;171:415–36.

    Article  PubMed  Google Scholar 

  54. Yeo BTT, Krienen FM, Sepulcre J, et al. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J Neurophysiol. 2011;106:1125–65.

    Article  PubMed  Google Scholar 

  55. Dubois J, Galdi P, Paul LK et al. A distributed brain network predicts general intelligence from resting-state human neuroimaging data. Philos Trans R Soc Lond B Biol Sci. 2018;373:20170284. https://doi.org/10.1098/rstb.2017.0284.

  56. Khasawinah S, Chuang Y-F, Caffo B, et al. The association between functional connectivity and cognition in older adults. J Syst Integr Neurosci. 2017;3:1–10.

    Article  Google Scholar 

  57. Ruiz-Rizzo AL, Sorg C, Napiórkowski N, et al. Decreased cingulo-opercular network functional connectivity mediates the impact of aging on visual processing speed. Neurobiol Aging. 2019;73:50–60.

    Article  PubMed  Google Scholar 

  58. Menon V, Uddin LQ. Saliency, switching, attention and control: a network model of insula function. Brain Struct Funct. 2010;214:655.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Sridharan D, Levitin DJ, Menon V. A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks. Proc Natl Acad Sci. 2008;105:12569–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Fox MD, Snyder AZ, Vincent JL, et al. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci. 2005;102:9673–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Greicius MD, Krasnow B, Reiss AL et al. Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci. 2003;100:253-258. https://doi.org/10.1073/pnas.0135058100

  62. Pardo JV, Lee JT, Sheikh SA, et al. Where the brain grows old: decline in anterior cingulate and medial prefrontal function with normal aging. Neuroimage. 2007;35:1231.

    Article  PubMed  Google Scholar 

  63. Pardo JV, Nyabwari SM, Lee JT, et al. Aging-related hypometabolism in the anterior cingulate cortex of cognitively intact, amyloid-negative seniors at rest mediates the relationship between age and executive function but not memory. Cereb Cortex Commun. 2020;1:1–9.

    Google Scholar 

  64. Otsuka Y, Osaka N, Morishita M, et al. Decreased activation of anterior cingulate cortex in the working memory of the elderly. NeuroReport. 2006;17:1479–82.

    Article  PubMed  Google Scholar 

  65. Nee DE, Wager TD, Jonides J. Interference resolution: insights from a meta-analysis of neuroimaging tasks. Cogn Affect Behav Neurosci 2007 71 2007;7:1–17.

  66. Kurth F, Zilles K, Fox PT et al. A link between the systems: functional differentiation and integration within the human insula revealed by meta-analysis. Brain Struct Funct 2010;214:519-34. https://doi.org/10.1007/S00429-010-0255-Z.

  67. Braver T, Barch D, Gray J, et al. Anterior cingulate cortex and response conflict: effects of frequency, inhibition and errors. Cereb Cortex. 2001;11:825–36.

    Article  CAS  PubMed  Google Scholar 

  68. Botvinick MM, Carter CS, Braver TS, et al. Conflict monitoring and cognitive control. Psychol Rev. 2001;108:624–52.

    Article  CAS  PubMed  Google Scholar 

  69. Li R, Qin W, Zhang Y, et al. The neuronal correlates of igits backward are revealed by voxel-based morphometry and resting-state functional connectivity analyses. PLoS One. 2012;7:e31877.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kondo H, Morishita M, Osaka N, et al. Functional roles of the cingulo-frontal network in performance on working memory. Neuroimage. 2004;21:2–14.

    Article  PubMed  Google Scholar 

  71. Osaka M, Osaka N, Kondo H, et al. The neural basis of individual differences in working memory capacity: an fMRI study. Neuroimage. 2003;18:789–97.

    Article  PubMed  Google Scholar 

  72. Bunge SA, Ochsner KN, Desmond JE, et al. Prefrontal regions involved in keeping information in and out of mind. Brain. 2001;124:2074–86.

    Article  CAS  PubMed  Google Scholar 

  73. Yang Z, Jutagir DR, Koyama MS, et al. Intrinsic brain indices of verbal working memory capacity in children and adolescents. Dev Cogn Neurosci. 2015;15:67–82.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Chai WJ, Hamid AIA, Abdullah JM. Working memory from the psychological and neurosciences perspectives: a review. Front Psychol 2018;9:401 https://doi.org/10.3389/FPSYG.2018.00401.

  75. Xu J, Calhoun VD, Pearlson GD et al. Opposite modulation of brain functional networks implicated at low vs. high demand of attention and working memory. PLoS One 2014;9:e87078. https://doi.org/10.1371/JOURNAL.PONE.0087078.

  76. Osaka N, Osaka M, Kondo H, et al. The neural basis of executive function in working memory: an fMRI study based on individual differences. Neuroimage. 2004;21:623–31.

    Article  PubMed  Google Scholar 

  77. Buchsbaum BR, D’Esposito M. The search for the phonological store: from loop to convolution. J Cogn Neurosci. 2008;20:762–78.

    Article  PubMed  Google Scholar 

  78. Paulesu E, Frith CD, Frackowiak RSJ. The neural correlates of the verbal component of working memory. Nat 1993 3626418 1993;362:342–5.

  79. Chein JM, Fiez JA. Dissociation of verbal working memory system components using a delayed serial recall task. Cereb Cortex. 2001;11:1003–14.

    Article  CAS  PubMed  Google Scholar 

  80. Gerton BK, Brown TT, Meyer-Lindenberg A, et al. Shared and distinct neurophysiological components of the digits forward and backward tasks as revealed by functional neuroimaging. Neuropsychologia. 2004;42:1781–7.

    Article  PubMed  Google Scholar 

  81. Amici S, Brambati S, Wilkins D, et al. Anatomical correlates of sentence comprehension and verbal working memory in neurodegenerative disease. J Neurosci. 2007;27:6282–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Menon V, Adleman NE, White CD, et al. Error-related brain activation during a Go/NoGo response inhibition task. Hum Brain Mapp. 2001;12:131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Leung H-C, Skudlarski P, Gatenby JC, et al. An event-related functional MRI study of the Stroop color word interference task. Cereb Cortex. 2000;10:552–60.

    Article  CAS  PubMed  Google Scholar 

  84. Hampshire A, Chamberlain SR, Monti MM, et al. The role of the right inferior frontal gyrus: inhibition and attentional control. Neuroimage. 2010;50:1313.

    Article  PubMed  Google Scholar 

  85. Swick D, Ashley V, Turken AU. Left inferior frontal gyrus is critical for response inhibition. BMC Neurosci. 2008;9:102.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Padmala S, Pessoa L. Interactions between cognition and motivation during response inhibition. Neuropsychologia. 2010;48:558.

    Article  PubMed  Google Scholar 

  87. Garavan H, Ross TJ, Stein EA. Right hemispheric dominance of inhibitory control: an event-related functional MRI study. Proc Natl Acad Sci U S A. 1999;96:8301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Aron AR, Fletcher PC, Bullmore ET et al. Stop-signal inhibition disrupted by damage to right inferior frontal gyrus in humans. Nat Neurosci 2003 62 2003;6:115–6.

  89. Chambers CD, Bellgrove MA, Stokes MG, et al. Executive “brake failure” following deactivation of human frontal lobe. J Cogn Neurosci. 2006;18:444–55.

    PubMed  Google Scholar 

  90. Huang Y, Su L, Ma Q. The Stroop effect: an activation likelihood estimation meta-analysis in healthy young adults. Neurosci Lett. 2020;716:134683.

    Article  CAS  PubMed  Google Scholar 

  91. Coxon JP, Van IA, Wenderoth N, et al. Aging and inhibitory control of action: cortico-subthalamic connection strength predicts stopping performance. 2012;32:8401–12.

    CAS  Google Scholar 

  92. Kawai N, Nakata R, Kubo-Kawai N. Older adults exhibit greater brain activity than young adults in a selective inhibition task by bipedal and bimanual responses: An fNIRS study. Neuroreport 2020;31:1048–53.

  93. Talwar N, Churchill NW, Hird MA, et al. Functional magnetic resonance imaging of the trail-making test in older adults. PLoS One. 2020;15:e0232469.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Zakzanis KK, Mraz R, Graham SJ. An fMRI study of the Trail Making Test. Neuropsychologia. 2005;43:1878–86.

    Article  PubMed  Google Scholar 

  95. Varjacic A, Mantini D, Demeyere N, et al. Neural signatures of Trail Making Test performance: evidence from lesion-mapping and neuroimaging studies. Neuropsychologia. 2018;115:78–87.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Varjačić A, Mantini D, Levenstein J, et al. The role of left insula in executive set-switching: lesion evidence from an acute stroke cohort. Cortex. 2018;107:92.

    Article  PubMed  PubMed Central  Google Scholar 

  97. MacPherson SE, Cox SR, Dickie DA, et al. Processing speed and the relationship between Trail Making Test-B performance, cortical thinning and white matter microstructure in older adults. Cortex. 2017;95:92.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Hagen K, Ehlis A, Haeussinger F, et al. Activation during the Trail Making Test measured with functional near-infrared spectroscopy in healthy elderly subjects. Neuroimage. 2014;85(Pt 1):583–91.

    Article  PubMed  Google Scholar 

  99. Dolcos F, Rice HJ, Cabeza R. Hemispheric asymmetry and aging: right hemisphere decline or asymmetry reduction. Neurosci Biobehav Rev. 2002;26:819-25.

  100. Reuter-Lorenz PA, Cappell KA. Neurocognitive aging and the compensation hypothesis. Cur Dir in Psych Sci. 2008;17:177-82.

  101. Kim H. Neural activity during working memory encoding, maintenance, and retrieval: a network-based model and meta-analysis. Hum Brain Mapp. 2019;40:4912–33.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Harding IH, Yücel M, Harrison BJ, et al. Effective connectivity within the frontoparietal control network differentiates cognitive control and working memory. Neuroimage. 2015;106:144–53.

    Article  PubMed  Google Scholar 

  103. Grady C, Sarraf S, Saverino C, et al. Age differences in the functional interactions among the default, frontoparietal control, and dorsal attention networks. Neurobiol Aging. 2016;41:159–72.

    Article  PubMed  Google Scholar 

  104. Koenigs M, Barbey AK, Postle BR, et al. Superior parietal cortex is critical for the manipulation of information in working memory. J Neurosci. 2009;29:14980–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Postle B, Ferrarelli F, Hamidi M, et al. Repetitive transcranial magnetic stimulation dissociates working memory manipulation from retention functions in the prefrontal, but not posterior parietal, cortex. J Cogn Neurosci. 2006;18:1712–22.

    Article  PubMed  Google Scholar 

  106. Geva S, Truneh T, Seghier ML et al. Lesions that do or do not impair digit span: a study of 816 stroke survivors. Brain Commun 2021;3:fcab031.

  107. Todd JJ, Marois R. Capacity limit of visual short-term memory in human posterior parietal cortex. Nature. 2004;428:751–4.

    Article  CAS  PubMed  Google Scholar 

  108. Nyberg L, Dahlin E, Stigsdotter Neely A, et al. Neural correlates of variable working memory load across adult age and skill: dissociative patterns within the fronto-parietal network. Scand J Psychol. 2009;50:41–6.

    Article  PubMed  Google Scholar 

  109. Edin F, Klingberg T, Johansson P, et al. Mechanism for top-down control of working memory capacity. Proc Natl Acad Sci. 2009;106:6802–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Emery L, Heaven TJ, Paxton JL et al. Age-related changes in neural activity during performance matched working memory manipulation. Neuroimage 2008;42:1577-86. https://doi.org/10.1016/J.NEUROIMAGE.2008.06.021.

  111. Sun X, Zhang X, Chen X, et al. Age-dependent brain activation during forward and backward digit recall revealed by fMRI. Neuroimage. 2005;26:36–47.

    Article  CAS  PubMed  Google Scholar 

  112. Li Z, Moore AB, Tyner C, et al. Asymmetric connectivity reduction and its relationship to “HAROLD” in aging brain. Brain Res. 2009;1295:149–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Moll J, de Oliveira-Souza R, Moll FT, et al. The cerebral correlates of set-shifting: an fMRI study of the trail making test. Arq Neuropsiquiatr. 2002;60:900–5.

    Article  PubMed  Google Scholar 

  114. Pa J, Possin K, Wilson S, et al. Gray matter correlates of set-shifting among neurodegenerative disease, mild cognitive impairment, and healthy older adults. J Int Neuropsychol Soc. 2010;16:640–50.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Müller LD, Guhn A, Zeller JBM, et al. Neural correlates of a standardized version of the trail making test in young and elderly adults: a functional near-infrared spectroscopy study. Neuropsychologia. 2014;56:271–9.

    Article  PubMed  Google Scholar 

  116. Perry ME, McDonald CR, Hagler DJ, et al. White matter tracts associated with set-shifting in healthy aging. Neuropsychologia. 2009;47:2835–42.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Oosterman JM, Vogels RLC, van Harten B, et al. Assessing mental flexibility: neuroanatomical and neuropsychological correlates of the Trail Making Test in elderly people. Clin Neuropsychol. 2010;24:203–19.

    Article  PubMed  Google Scholar 

  118. Oldrati V, Patricelli J, Colombo B, et al. The role of dorsolateral prefrontal cortex in inhibition mechanism: a study on cognitive reflection test and similar tasks through neuromodulation. Neuropsychologia. 2016;91:499–508.

    Article  PubMed  Google Scholar 

  119. Vanderhasselt M, DE Raedt R, Baeken C. Dorsolateral prefrontal cortex and Stroop performance: tackling the lateralization. Psychon Bull Rev. 2009;16:609–12.

    Article  PubMed  Google Scholar 

  120. Cohen JD, Botvinick M, Carter CS. Anterior cingulate and prefrontal cortex: who’s in control? Nat Neurosci 2000 35 2000;3:421–3.

  121. Kondo H, Osaka N, Osaka M. Cooperation of the anterior cingulate cortex and dorsolateral prefrontal cortex for attention shifting. Neuroimage. 2004;23:670–9.

    Article  PubMed  Google Scholar 

  122. Vespa J, Medina L, Armstrong DM. Demographic turning points for the United States: population projections for 2020 to 2060 population estimates and projections. Current Population Reports. U.S. Census Bureau, Washington, DC, 2020;P25-1144.

  123. Gilmore-Bykovskyi A, Croff R, Glover CM et al. Traversing the aging research and health equity divide: toward intersectional frameworks of research justice and participation. Gerontologist. 2021;gnab107. https://doi.org/10.1093/GERONT/GNAB107

  124. Mondino M, Ghumman S, Gane C et al. Effects of transcranial stimulation with direct and alternating current on resting-state functional connectivity: an exploratory study simultaneously combining stimulation and multiband functional magnetic resonance imaging. Front Hum Neurosci 2020;13:474. https://doi.org/10.3389/fnhum.2019.00474.

  125. Peña-Gómez C, Sala-Lonch R, Junqué C, et al. Modulation of large-scale brain networks by transcranial direct current stimulation evidenced by resting-state functional MRI. Brain Stimul. 2012;5:252–63.

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Institute on Aging [NIA R01AG054077, NIA K01AG050707, NIA P30AG072980, T32AG020499], the State of Arizona and Arizona Department of Health Services (ADHS), the University of Florida Center for Cognitive Aging and Memory Clinical Translational Research, the McKnight Brain Research Foundation, and National Heart, Lung, and Blood Institute [T32HL134621].

Author information

Authors and Affiliations

Authors

Contributions

HH and AW contributed to the conception and design of this specific study. HH extracted the data, performed the statistical analyses, and wrote the first draft of the manuscript. CH wrote various sections of the discussion. EP, GH, SW, SD, GA, MM, RC, and AW were involved in project administration. All authors contributed to manuscript revision, read, and approved the submitted version.

Corresponding author

Correspondence to Adam J. Woods.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hausman, H.K., Hardcastle, C., Albizu, A. et al. Cingulo-opercular and frontoparietal control network connectivity and executive functioning in older adults. GeroScience 44, 847–866 (2022). https://doi.org/10.1007/s11357-021-00503-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-021-00503-1

Keywords

Navigation