Skip to main content
Log in

An energetics perspective on geroscience: mitochondrial protonmotive force and aging

  • Original Article
  • Published:
GeroScience Aims and scope Submit manuscript

Abstract

Mitochondria are organelles that provide energy to cells through ATP production. Mitochondrial dysfunction has long been postulated to mediate cellular declines that drive biological aging. Many well-characterized hallmarks of aging may involve underlying energetic defects that stem from loss of mitochondrial function with age. Why and how mitochondrial function declines with age is an open question and one that has been difficult to answer. Mitochondria are powered by an electrochemical gradient across the inner mitochondrial membrane known as the protonmotive force (PMF). This gradient decreases with age in several experimental models. However, it is unclear if a diminished PMF is a cause or a consequence of aging. Herein, we briefly review and define mitochondrial function, we summarize how PMF changes with age in several models, and we highlight recent studies that implicate PMF in aging biology. We also identify barriers that must be addressed for the field to progress. Emerging technology permits more precise in vivo study of mitochondria that will allow better understanding of cause and effect in metabolic models of aging. Once cause and effect can be discerned more precisely, energetics approaches to combat aging may be developed to prevent or reverse functional decline.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Harman D. Aging: a theory based on free radical and radiation chemistry. J Gerontol. 1956;11:298–300.

    Article  CAS  PubMed  Google Scholar 

  2. Harman D. The biologic clock: the mitochondria? J Am Geriatr Soc. 1972;20:145–7.

    Article  CAS  PubMed  Google Scholar 

  3. Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell. 2013;153:1194–217. https://doi.org/10.1016/j.cell.2013.05.039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. van der Rijt S, Molenaars M, McIntyre RL, Janssens GE, Houtkooper RH. Integrating the hallmarks of aging throughout the tree of life: a focus on mitochondrial dysfunction. Front Cell Dev Biol. 2020;8:594416. https://doi.org/10.3389/fcell.2020.594416.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Bornstein R, Gonzalez B, Johnson SC. Mitochondrial pathways in human health and aging. Mitochondrion. 2020;54:72–84. https://doi.org/10.1016/j.mito.2020.07.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Longo VD, Liou LL, Valentine JS, Gralla EB. Mitochondrial superoxide decreases yeast survival in stationary phase. Arch Biochem Biophys. 1999;365:131–42. https://doi.org/10.1006/abbi.1999.1158.

    Article  CAS  PubMed  Google Scholar 

  7. Papa S, Skulachev VP. Reactive oxygen species, mitochondria, apoptosis and aging. Mol Cell Biochem. 1997;174:305–19.

    Article  CAS  PubMed  Google Scholar 

  8. Auten RL, Davis JM. Oxygen toxicity and reactive oxygen species: the devil is in the details. Pediatr Res. 2009;66:121–7. https://doi.org/10.1203/PDR.0b013e3181a9eafb.

    Article  CAS  PubMed  Google Scholar 

  9. Stefanatos R, Sanz A. The role of mitochondrial ROS in the aging brain. FEBS Lett. 2018;592:743–58. https://doi.org/10.1002/1873-3468.12902.

    Article  CAS  PubMed  Google Scholar 

  10. Terman A, Kurz T, Navratil M, Arriaga EA, Brunk UT. Mitochondrial turnover and aging of long-lived postmitotic cells: the mitochondrial-lysosomal axis theory of aging. Antioxid Redox Signal. 2010;12:503–35. https://doi.org/10.1089/ars.2009.2598.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zheng Q, Huang J, Wang G. Mitochondria, telomeres and telomerase subunits. Front Cell Dev Biol. 2019;7:274. https://doi.org/10.3389/fcell.2019.00274.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Saberi M, Zhang X, Mobasheri A (2021) Targeting mitochondrial dysfunction with small molecules in intervertebral disc aging and degeneration. Geroscience doi:https://doi.org/10.1007/s11357-021-00341-1

  13. Zhang H, Menzies KJ, Auwerx J (2018) The role of mitochondria in stem cell fate and aging. Development 145 doi:https://doi.org/10.1242/dev.143420

  14. Peleg S, Feller C, Ladurner AG, Imhof A. The metabolic impact on histone acetylation and transcription in ageing trends. Biochem Sci. 2016;41:700–11. https://doi.org/10.1016/j.tibs.2016.05.008.

    Article  CAS  Google Scholar 

  15. Salminen A, Kaarniranta K. AMP-activated protein kinase (AMPK) controls the aging process via an integrated signaling network. Ageing Res Rev. 2012;11:230–41. https://doi.org/10.1016/j.arr.2011.12.005.

    Article  CAS  PubMed  Google Scholar 

  16. Pollack M, Leeuwenburgh C. Apoptosis and aging: role of the mitochondria. J Gerontol A Biol Sci Med Sci. 2001;56:B475–82. https://doi.org/10.1093/gerona/56.11.b475.

    Article  CAS  PubMed  Google Scholar 

  17. Picca A et al. (2017) Fueling inflamm-aging through mitochondrial dysfunction: mechanisms and molecular targets. International Journal of Molecular Sciences 18 doi:https://doi.org/10.3390/ijms18050933

  18. Zampino M, Brennan NA, Kuo PL, Spencer RG, Fishbein KW, Simonsick EM, et al. Poor mitochondrial health and systemic inflammation? Test of a classic hypothesis in the Baltimore Longitudinal Study of Aging Geroscience. 2020;42:1175–82. https://doi.org/10.1007/s11357-020-00208-x.

    Article  CAS  PubMed  Google Scholar 

  19. Vizioli MG, et al. Mitochondria-to-nucleus retrograde signaling drives formation of cytoplasmic chromatin and inflammation in senescence. Genes Dev. 2020;34:428–45. https://doi.org/10.1101/gad.331272.119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wolf DM, et al. Individual cristae within the same mitochondrion display different membrane potentials and are functionally independent. EMBO J. 2019;38:e101056. https://doi.org/10.15252/embj.2018101056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Glancy B, et al. Power grid protection of the muscle mitochondrial reticulum. Cell Rep. 2017;19:487–96. https://doi.org/10.1016/j.celrep.2017.03.063.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Berry BJ, et al. Optogenetic control of mitochondrial protonmotive force to impact cellular stress resistance. EMBO Rep. 2020;21:e49113. https://doi.org/10.15252/embr.201949113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Berry BJ, Baldzizhar A, Nieves TO, Wojtovich AP. Neuronal AMPK coordinates mitochondrial energy sensing and hypoxia resistance in C. elegans. FASEB J. 2020;34:16333–47. https://doi.org/10.1096/fj.202001150RR.

    Article  CAS  PubMed  Google Scholar 

  24. Tkatch T, et al. Optogenetic control of mitochondrial metabolism and Ca(2+) signaling by mitochondria-targeted opsins. Proc Natl Acad Sci U S A. 2017;114:E5167–76. https://doi.org/10.1073/pnas.1703623114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ernst P, et al. Precisely control mitochondria with light to manipulate cell fate decision. Biophys J. 2019;117:631–45. https://doi.org/10.1016/j.bpj.2019.06.038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Glancy B, et al. Mitochondrial reticulum for cellular energy distribution in muscle. Nature. 2015;523:617–20. https://doi.org/10.1038/nature14614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Glancy B, Kim Y, Katti P, Willingham TB. The functional impact of mitochondrial structure across subcellular scales. Front Physiol. 2020;11:541040. https://doi.org/10.3389/fphys.2020.541040.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Bleck CKE, Kim Y, Willingham TB, Glancy B. Subcellular connectomic analyses of energy networks in striated muscle. Nat Commun. 2018;9:5111. https://doi.org/10.1038/s41467-018-07676-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Shami GJ, Cheng D, Verhaegh P, Koek G, Wisse E, Braet F. Three-dimensional ultrastructure of giant mitochondria in human non-alcoholic fatty liver disease. Sci Rep. 2021;11:3319. https://doi.org/10.1038/s41598-021-82884-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kowaltowski AJ, et al. Mitochondrial morphology regulates organellar. Ca FASEB J. 2019;33:13176–88. https://doi.org/10.1096/fj.201901136R.

    Article  CAS  PubMed  Google Scholar 

  31. Willingham TB, Zhang Y, Andreoni A, Knutson JR, Lee DY, Glancy B. MitoRACE: evaluating mitochondrial function in vivo and in single cells with subcellular resolution using multiphoton NADH autofluorescence. J Physiol. 2019;597:5411–28. https://doi.org/10.1113/JP278611.

    Article  CAS  PubMed  Google Scholar 

  32. Ahier A, Dai CY, Tweedie A, Bezawork-Geleta A, Kirmes I, Zuryn S. Affinity purification of cell-specific mitochondria from whole animals resolves patterns of genetic mosaicism. Nat Cell Biol. 2018;20:352–60. https://doi.org/10.1038/s41556-017-0023-x.

    Article  CAS  PubMed  Google Scholar 

  33. Chandel NS. Evolution of mitochondria as signaling organelles. Cell Metab. 2015;22:204–6. https://doi.org/10.1016/j.cmet.2015.05.013.

    Article  CAS  PubMed  Google Scholar 

  34. Nicholls DG. Mitochondria and calcium signaling. Cell Calcium. 2005;38:311–7. https://doi.org/10.1016/j.ceca.2005.06.011.

    Article  CAS  PubMed  Google Scholar 

  35. Fox TD. Mitochondrial protein synthesis, import, and assembly. Genetics. 2012;192:1203–34. https://doi.org/10.1534/genetics.112.141267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Olsen RK, Cornelius N, Gregersen N. Redox signalling and mitochondrial stress responses; lessons from inborn errors of metabolism. J Inherit Metab Dis. 2015;38:703–19. https://doi.org/10.1007/s10545-015-9861-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Nicholls DG. Bioenergetics 4. 4th ed: Elsevier; 2013.

  38. Nicholls DG. Mitochondrial membrane potential and aging. Aging Cell. 2004;3:35–40. https://doi.org/10.1111/j.1474-9728.2003.00079.x.

    Article  CAS  PubMed  Google Scholar 

  39. Martinez-Reyes I, et al. TCA cycle and mitochondrial membrane potential are necessary for diverse biological functions. Mol Cell. 2016;61:199–209. https://doi.org/10.1016/j.molcel.2015.12.002.

    Article  CAS  PubMed  Google Scholar 

  40. Burkewitz K, Zhang Y, Mair WB. AMPK at the nexus of energetics and aging. Cell Metab. 2014;20:10–25. https://doi.org/10.1016/j.cmet.2014.03.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Felkai S, Ewbank JJ, Lemieux J, Labbe JC, Brown GG, Hekimi S. CLK-1 controls respiration, behavior and aging in the nematode Caenorhabditis elegans. EMBO J. 1999;18:1783–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Feng J, Bussiere F, Hekimi S. Mitochondrial electron transport is a key determinant of life span in Caenorhabditis elegans. Dev Cell. 2001;1:633–44.

    Article  CAS  PubMed  Google Scholar 

  43. Dillin A, et al. Rates of behavior and aging specified by mitochondrial function during development. Science. 2002;298:2398–401.

    Article  CAS  PubMed  Google Scholar 

  44. Ristow M, Zarse K. How increased oxidative stress promotes longevity and metabolic health: The concept of mitochondrial hormesis (mitohormesis). Exp Gerontol. 2010;45:410–8. https://doi.org/10.1016/j.exger.2010.03.014.

    Article  CAS  PubMed  Google Scholar 

  45. Bennett CF, Kaeberlein M. The mitochondrial unfolded protein response and increased longevity: Cause, consequence, or correlation? Exp Gerontol. 2014;56C:142–6. https://doi.org/10.1016/j.exger.2014.02.002.

    Article  CAS  Google Scholar 

  46. Bennett CF, Vander Wende H, Simko M, Klum S, Barfield S, Choi H, et al. Activation of the mitochondrial unfolded protein response does not predict longevity in Caenorhabditis elegans. Nat Commun. 2014;5:3483. https://doi.org/10.1038/ncomms4483.

    Article  CAS  PubMed  Google Scholar 

  47. Longo VD, Shadel GS, Kaeberlein M, Kennedy B. Replicative and chronological aging in Saccharomyces cerevisiae. Cell Metab. 2012;16:18–31. https://doi.org/10.1016/j.cmet.2012.06.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Pan Y. Mitochondria, reactive oxygen species, and chronological aging: a message from yeast. Exp Gerontol. 2011;46:847–52. https://doi.org/10.1016/j.exger.2011.08.007.

    Article  CAS  PubMed  Google Scholar 

  49. Schulz TJ, Zarse K, Voigt A, Urban N, Birringer M, Ristow M. Glucose restriction extends Caenorhabditis elegans life span by inducing mitochondrial respiration and increasing oxidative stress. Cell Metab. 2007;6:280–93. https://doi.org/10.1016/j.cmet.2007.08.011.

    Article  CAS  PubMed  Google Scholar 

  50. Yang W, Hekimi S. A mitochondrial superoxide signal triggers increased longevity in Caenorhabditis elegans. PLoS Biol. 2010;8:e1000556. https://doi.org/10.1371/journal.pbio.1000556.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Owusu-Ansah E, Song W, Perrimon N. Muscle mitohormesis promotes longevity via systemic repression of insulin signaling. Cell. 2013;155:699–712. https://doi.org/10.1016/j.cell.2013.09.021.

    Article  CAS  PubMed  Google Scholar 

  52. Cox CS, et al. Mitohormesis in Mice via Sustained Basal Activation of Mitochondrial and Antioxidant Signaling. Cell Metab. 2018;28(776-786):e775. https://doi.org/10.1016/j.cmet.2018.07.011.

    Article  CAS  Google Scholar 

  53. Dell'agnello C, et al. Increased longevity and refractoriness to Ca(2+)-dependent neurodegeneration in Surf1 knockout mice. Hum Mol Genet. 2007;16:431–44. https://doi.org/10.1093/hmg/ddl477.

    Article  CAS  PubMed  Google Scholar 

  54. Sparks LM, Redman LM, Conley KE, Harper ME, Hodges A, Eroshkin A, et al. Differences in mitochondrial coupling reveal a novel signature of mitohormesis in muscle of healthy individuals. J Clin Endocrinol Metab. 2016;101:4994–5003. https://doi.org/10.1210/jc.2016-2742.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Deepa SS, Pharaoh G, Kinter M, Diaz V, Fok WC, Riddle K, et al. Lifelong reduction in complex IV induces tissue-specific metabolic effects but does not reduce lifespan or healthspan in mice. Aging Cell. 2018;17:e12769. https://doi.org/10.1111/acel.12769.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Saito Y, Chikenji TS, Matsumura T, Nakano M, Fujimiya M. Exercise enhances skeletal muscle regeneration by promoting senescence in fibro-adipogenic progenitors. Nat Commun. 2020;11:889. https://doi.org/10.1038/s41467-020-14734-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Reddy A et al. (2020) pH-gated succinate secretion regulates muscle remodeling in response to exercise Cell 183:62-75.e17 doi:https://doi.org/10.1016/j.cell.2020.08.039

  58. Trewin AJ, et al. Acute exercise alters skeletal muscle mitochondrial respiration and H2O2 emission in response to hyperinsulinemic-euglycemic clamp in middle-aged obese men. PLoS One. 2017;12:e0188421. https://doi.org/10.1371/journal.pone.0188421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lear SA, et al. The effect of physical activity on mortality and cardiovascular disease in 130 000 people from 17 high-income, middle-income, and low-income countries: the PURE study. Lancet. 2017;390:2643–54. https://doi.org/10.1016/S0140-6736(17)31634-3.

    Article  PubMed  Google Scholar 

  60. Warburton DE, Nicol CW, Bredin SS. Health benefits of physical activity: the evidence. CMAJ. 2006;174:801–9. https://doi.org/10.1503/cmaj.051351.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Mandsager K, Harb S, Cremer P, Phelan D, Nissen SE, Jaber W. Association of cardiorespiratory fitness with long-term mortality among adults undergoing exercise treadmill testing. JAMA Netw Open. 2018;1:e183605. https://doi.org/10.1001/jamanetworkopen.2018.3605.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Johnson SC, Rabinovitch PS, Kaeberlein M. mTOR is a key modulator of ageing and age-related disease. Nature. 2013;493:338–45. https://doi.org/10.1038/nature11861.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Johnson SC, Sangesland M, Kaeberlein M, Rabinovitch PS (2015) Modulating mTOR in aging and health Interdisciplinary topics in gerontology 40:107-127 doi:https://doi.org/10.1159/000364974

  64. Cunningham JT, Rodgers JT, Arlow DH, Vazquez F, Mootha VK, Puigserver P. mTOR controls mitochondrial oxidative function through a YY1-PGC-1alpha transcriptional complex. Nature. 2007;450:736–40. https://doi.org/10.1038/nature06322.

    Article  CAS  PubMed  Google Scholar 

  65. Martin-Perez M, et al. PKC downregulation upon rapamycin treatment attenuates mitochondrial disease. Nat Metab. 2020;2:1472–81. https://doi.org/10.1038/s42255-020-00319-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Johnson SC, et al. mTOR inhibition alleviates mitochondrial disease in a mouse model of Leigh syndrome. Science. 2013;342:1524–8. https://doi.org/10.1126/science.1244360.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Johnson SC, Yanos ME, Bitto A, Castanza A, Gagnidze A, Gonzalez B, et al. Dose-dependent effects of mTOR inhibition on weight and mitochondrial disease in mice. Front Genet. 2015;6:247. https://doi.org/10.3389/fgene.2015.00247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ito TK, et al. Hepatic S6K1 partially regulates lifespan of mice with mitochondrial complex I deficiency. Front Genet. 2017;8:113. https://doi.org/10.3389/fgene.2017.00113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Wang A, Mouser J, Pitt J, Promislow D, Kaeberlein M. Rapamycin enhances survival in a Drosophila model of mitochondrial disease. Oncotarget. 2016;7:80131–9. https://doi.org/10.18632/oncotarget.12560.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Zheng X, Boyer L, Jin M, Kim Y, Fan W, Bardy C, Berggren T, Evans RM, Gage FH, Hunter T (2016) Alleviation of neuronal energy deficiency by mTOR inhibition as a treatment for mitochondria-related neurodegeneration. eLife 5 doi:https://doi.org/10.7554/eLife.13378

  71. Johnson SC, et al. mTOR inhibitors may benefit kidney transplant recipients with mitochondrial diseases. Kidney Int. 2019;95:455–66. https://doi.org/10.1016/j.kint.2018.08.038.

    Article  CAS  PubMed  Google Scholar 

  72. Sage-Schwaede A, Engelstad K, Salazar R, Curcio A, Khandji A, Garvin JH Jr, et al. Exploring mTOR inhibition as treatment for mitochondrial disease. Ann Clin Transl Neurol. 2019;6:1877–81. https://doi.org/10.1002/acn3.50846.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Hughes AL, Gottschling DE. An early age increase in vacuolar pH limits mitochondrial function and lifespan in yeast. Nature. 2012;492:261–5. https://doi.org/10.1038/nature11654.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ames BN, Shigenaga MK, Hagen TM. Mitochondrial decay in aging. Biochim Biophys Acta. 1995;1271:165–70. https://doi.org/10.1016/0925-4439(95)00024-x.

    Article  PubMed  Google Scholar 

  75. Sugrue MM, Tatton WG. Mitochondrial membrane potential in aging cells. Biol Signals Recept. 2001;10:176–88. https://doi.org/10.1159/000046886.

    Article  CAS  PubMed  Google Scholar 

  76. Bayliak MM, Sorochynska OM, Kuzniak OV, Gospodaryov DV, Demianchuk OI, Vasylyk YV, et al. Middle age as a turning point in mouse cerebral cortex energy and redox metabolism: Modulation by every-other-day fasting. Exp Gerontol. 2020;145:111182. https://doi.org/10.1016/j.exger.2020.111182.

    Article  CAS  PubMed  Google Scholar 

  77. Kokoszka JE, Coskun P, Esposito LA, Wallace DC. Increased mitochondrial oxidative stress in the Sod2 (+/-) mouse results in the age-related decline of mitochondrial function culminating in increased apoptosis. Proc Natl Acad Sci U S A. 2001;98:2278–83. https://doi.org/10.1073/pnas.051627098.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Fontana L, Partridge L, Longo VD. Extending healthy life span--from yeast to humans. Science. 2010;328:321–6. https://doi.org/10.1126/science.1172539.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Anderson RM, Weindruch R. The caloric restriction paradigm: implications for healthy human aging. American journal of human biology: the official journal of the Human Biology Council. 2012;24:101–6. https://doi.org/10.1002/ajhb.22243.

    Article  Google Scholar 

  80. Hagopian K, Harper ME, Ram JJ, Humble SJ, Weindruch R, Ramsey JJ. Long-term calorie restriction reduces proton leak and hydrogen peroxide production in liver mitochondria. Am J Physiol Endocrinol Metab. 2005;288:E674–84. https://doi.org/10.1152/ajpendo.00382.2004.

    Article  CAS  PubMed  Google Scholar 

  81. Bevilacqua L, Ramsey JJ, Hagopian K, Weindruch R, Harper ME (2005) Long-term caloric restriction increases UCP3 content but decreases proton leak and reactive oxygen species production in rat skeletal muscle mitochondria Am J Physiol Endocrinol Metab 289:E429-438 doi:https://doi.org/10.1152/ajpendo.00435.2004

  82. Weir HJ et al. (2017) Dietary restriction and AMPK increase lifespan via mitochondrial network and peroxisome remodeling. Cell Metab 26:884-896.e885 doi:https://doi.org/10.1016/j.cmet.2017.09.024

  83. Zhang Y et al. (2019) Neuronal TORC1 modulates longevity via AMPK and cell nonautonomous regulation of mitochondrial dynamics in Elife 8 doi:https://doi.org/10.7554/eLife.49158

  84. Vial G, Detaille D, Guigas B. Role of mitochondria in the mechanism(s) of action of metformin. Front Endocrinol (Lausanne). 2019;10:294. https://doi.org/10.3389/fendo.2019.00294.

    Article  Google Scholar 

  85. Martin-Montalvo A, Mercken EM, Mitchell SJ, Palacios HH, Mote PL, Scheibye-Knudsen M, et al. Metformin improves healthspan and lifespan in mice. Nat Commun. 2013;4:2192. https://doi.org/10.1038/ncomms3192.

    Article  CAS  PubMed  Google Scholar 

  86. Mohsin AA, Chen Q, Quan N, Rousselle T, Maceyka MW, Samidurai A, et al. Mitochondrial complex I inhibition by metformin limits reperfusion injury. J Pharmacol Exp Ther. 2019;369:282–90. https://doi.org/10.1124/jpet.118.254300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Espada L, et al. Loss of metabolic plasticity underlies metformin toxicity in aged Caenorhabditis elegans. Nat Metab. 2020;2:1316–31. https://doi.org/10.1038/s42255-020-00307-1.

    Article  CAS  PubMed  Google Scholar 

  88. Lerner C, et al. Reduced mammalian target of rapamycin activity facilitates mitochondrial retrograde signaling and increases life span in normal human fibroblasts. Aging Cell. 2013;12:966–77. https://doi.org/10.1111/acel.12122.

    Article  CAS  PubMed  Google Scholar 

  89. Hipp MS, Kasturi P, Hartl FU. The proteostasis network and its decline in ageing. Nat Rev Mol Cell Biol. 2019;20:421–35. https://doi.org/10.1038/s41580-019-0101-y.

    Article  CAS  PubMed  Google Scholar 

  90. Klaips CL, Jayaraj GG, Hartl FU. Pathways of cellular proteostasis in aging and disease. J Cell Biol. 2018;217:51–63. https://doi.org/10.1083/jcb.201709072.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Mauvezin C, Nagy P, Juhasz G, Neufeld TP. Autophagosome-lysosome fusion is independent of V-ATPase-mediated acidification. Nat Commun. 2015;6:7007. https://doi.org/10.1038/ncomms8007.

    Article  PubMed  Google Scholar 

  92. Settembre C, et al. A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB. EMBO J. 2012;31:1095–108. https://doi.org/10.1038/emboj.2012.32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Hughes CE, Coody TK, Jeong MY, Berg JA, Winge DR, Hughes AL (2020) Cysteine Toxicity Drives Age-Related Mitochondrial Decline by Altering Iron Homeostasis. Cell 180:296-310. e218 doi:https://doi.org/10.1016/j.cell.2019.12.035

  94. Weber RA et al. (2020) Maintaining iron homeostasis is the key role of lysosomal acidity for cell proliferation. Mol Cell 77:645-655 e647 doi:https://doi.org/10.1016/j.molcel.2020.01.003

  95. Chen KL, et al. Loss of vacuolar acidity results in iron-sulfur cluster defects and divergent homeostatic responses during aging in Saccharomyces cerevisiae. Geroscience. 2020;42:749–64. https://doi.org/10.1007/s11357-020-00159-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Giacomello M, Pyakurel A, Glytsou C, Scorrano L. The cell biology of mitochondrial membrane dynamics. Nat Rev Mol Cell Biol. 2020;21:204–24. https://doi.org/10.1038/s41580-020-0210-7.

    Article  CAS  PubMed  Google Scholar 

  97. Wai T, Langer T. Mitochondrial dynamics and metabolic regulation trends. Endocrinol Metab. 2016;27:105–17. https://doi.org/10.1016/j.tem.2015.12.001.

    Article  CAS  Google Scholar 

  98. Bakula D, Scheibye-Knudsen M. MitophAging: mitophagy in aging and disease. Front Cell Dev Biol. 2020;8:239. https://doi.org/10.3389/fcell.2020.00239.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Ashrafi G, Schwarz TL. The pathways of mitophagy for quality control and clearance of mitochondria. Cell Death Differ. 2013;20:31–42. https://doi.org/10.1038/cdd.2012.81.

    Article  CAS  PubMed  Google Scholar 

  100. Vincow ES, Merrihew G, Thomas RE, Shulman NJ, Beyer RP, Maccoss MJ, et al. The PINK1-Parkin pathway promotes both mitophagy and selective respiratory chain turnover in vivo. Proc Natl Acad Sci U S A. 2013;110:6400–5. https://doi.org/10.1073/pnas.1221132110.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Zhou B et al. (2019) Mitochondrial permeability uncouples elevated autophagy and lifespan extension Cell 177:299-314 e216 doi:https://doi.org/10.1016/j.cell.2019.02.013

  102. Schultz MB, Sinclair DA. When stem cells grow old: phenotypes and mechanisms of stem cell aging. Development. 2016;143:3–14. https://doi.org/10.1242/dev.130633.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Morris O, Deng H, Tam C, Jasper H. Warburg-like metabolic reprogramming in aging intestinal stem cells contributes to tissue hyperplasia. Cell Rep. 2020;33:108423. https://doi.org/10.1016/j.celrep.2020.108423.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Sukumar M, et al. Mitochondrial membrane potential identifies cells with enhanced stemness for cellular therapy. Cell Metab. 2016;23:63–76. https://doi.org/10.1016/j.cmet.2015.11.002.

    Article  CAS  PubMed  Google Scholar 

  105. Mansell E et al. (2020) Mitochondrial membrane potential identifies cells with enhanced stemness for cellular therapy Stem Cell doi:https://doi.org/10.1016/j.stem.2020.09.018

  106. Tauskela JS. MitoQ--a mitochondria-targeted antioxidant. IDrugs. 2007;10:399–412.

    CAS  PubMed  Google Scholar 

  107. Sun N, Youle RJ, Finkel T. The Mitochondrial Basis of Aging. Mol Cell. 2016;61:654–66. https://doi.org/10.1016/j.molcel.2016.01.028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Goodman RP, et al. Hepatic NADH reductive stress underlies common variation in metabolic traits. Nature. 2020;583:122–6. https://doi.org/10.1038/s41586-020-2337-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Kulkarni CA, Brookes PS. Cellular compartmentation and the redox/nonredox functions of NAD Antioxid Redox. Signal. 2019;31:623–42. https://doi.org/10.1089/ars.2018.7722.

    Article  CAS  Google Scholar 

  110. Shpilka T, du YG, Yang Q, Melber A, Uma Naresh N, Lavelle J, et al. UPR. Nat Commun. 2021;12:479. https://doi.org/10.1038/s41467-020-20784-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Berry BJ, Wojtovich AP. Mitochondrial light switches: optogenetic approaches to control metabolism. FEBS J. 2020;287:4544–56. https://doi.org/10.1111/febs.15424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Trewin AJ, Bahr LL, Almast A, Berry BJ, Wei AY, Foster TH, et al. Mitochondrial reactive oxygen species generated at the complex-II matrix or intermembrane space microdomain have distinct effects on redox signaling and stress sensitivity in Caenorhabditis elegans. Antioxid Redox Signal. 2019;31:594–607. https://doi.org/10.1089/ars.2018.7681.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Qian W, et al. Chemoptogenetic damage to mitochondria causes rapid telomere dysfunction. Proc Natl Acad Sci U S A. 2019;116:18435–44. https://doi.org/10.1073/pnas.1910574116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Xie W, Jiao B, Bai Q, Ilin VA, Sun M, Burton CE, Kolodieznyi D, Calderon MJ, Stolz DB, Opresko PL, St Croix CM, Watkins S, van Houten B, Bruchez MP, Burton EA (2020) Chemoptogenetic ablation of neuronal mitochondria in vivo with spatiotemporal precision and controllable severity Elife 9 doi:https://doi.org/10.7554/eLife.51845

  115. Xiao H et al. (2020) A quantitative tissue-specific landscape of protein redox regulation during aging Cell 180:968-983.e924 doi:https://doi.org/10.1016/j.cell.2020.02.012

  116. Mills EL, et al. Accumulation of succinate controls activation of adipose tissue thermogenesis. Nature. 2018;560:102–6. https://doi.org/10.1038/s41586-018-0353-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Vyssokikh MY, et al. Mild depolarization of the inner mitochondrial membrane is a crucial component of an anti-aging program. Proc Natl Acad Sci U S A. 2020;117:6491–501. https://doi.org/10.1073/pnas.1916414117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Mookerjee SA, Divakaruni AS, Jastroch M, Brand MD. Mitochondrial uncoupling and lifespan. Mech Ageing Dev. 2010;131:463–72. https://doi.org/10.1016/j.mad.2010.03.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Jürgens KD, Prothero J. Scaling of maximal lifespan in bats. Comp Biochem Physiol A Comp Physiol. 1987;88:361–7. https://doi.org/10.1016/0300-9629(87)90498-1.

    Article  PubMed  Google Scholar 

  120. Barja G. Mitochondrial free radical production and aging in mammals and birds. Ann N Y Acad Sci. 1998;854:224–38. https://doi.org/10.1111/j.1749-6632.1998.tb09905.x.

    Article  CAS  PubMed  Google Scholar 

  121. Caldeira da Silva CC, Cerqueira FM, Barbosa LF, Medeiros MH, Kowaltowski AJ. Mild mitochondrial uncoupling in mice affects energy metabolism, redox balance and longevity. Aging Cell. 2008;7:552–60. https://doi.org/10.1111/j.1474-9726.2008.00407.x.

    Article  CAS  PubMed  Google Scholar 

  122. Lemire BD, Behrendt M, DeCorby A, Gásková D. C. elegans longevity pathways converge to decrease mitochondrial membrane potential. Mech Ageing Dev. 2009;130:461–5. https://doi.org/10.1016/j.mad.2009.05.001.

    Article  CAS  PubMed  Google Scholar 

  123. Cerqueira FM, Laurindo FR, Kowaltowski AJ. Mild mitochondrial uncoupling and calorie restriction increase fasting eNOS, akt and mitochondrial biogenesis. PLoS One. 2011;6:e18433. https://doi.org/10.1371/journal.pone.0018433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Berry BJ, Trewin AJ, Amitrano AM, Kim M, Wojtovich AP. Use the protonmotive force: mitochondrial uncoupling and reactive oxygen species. J Mol Biol. 2018;430:3873–91. https://doi.org/10.1016/j.jmb.2018.03.025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Chouchani ET, et al. Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature. 2014;515:431–5. https://doi.org/10.1038/nature13909.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Loschen G, Flohe L, Chance B. Respiratory chain linked H(2)O(2) production in pigeon heart mitochondria. FEBS Lett. 1971;18:261–4. https://doi.org/10.1016/0014-5793(71)80459-3.

    Article  CAS  PubMed  Google Scholar 

  127. Perez VI, Bokov A, Van Remmen H, Mele J, Ran Q, Ikeno Y, et al. Is the oxidative stress theory of aging dead? Biochim Biophys Acta. 2009;1790:1005–14. https://doi.org/10.1016/j.bbagen.2009.06.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Andziak B, et al. High oxidative damage levels in the longest-living rodent, the naked mole-rat. Aging Cell. 2006;5:463–71. https://doi.org/10.1111/j.1474-9726.2006.00237.x.

    Article  CAS  PubMed  Google Scholar 

  129. Van Raamsdonk JM, Hekimi S. Deletion of the mitochondrial superoxide dismutase sod-2 extends lifespan in Caenorhabditis elegans. PLoS Genet. 2009;5:e1000361. https://doi.org/10.1371/journal.pgen.1000361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Zhang H, Alder NN, Wang W, Szeto H, Marcinek DJ, Rabinovitch PS (2020) Reduction of elevated proton leak rejuvenates mitochondria in the aged cardiomyocyte Elife 9 doi:https://doi.org/10.7554/eLife.60827

  131. Brand MD, Pakay JL, Ocloo A, Kokoszka J, Wallace DC, Brookes PS, et al. The basal proton conductance of mitochondria depends on adenine nucleotide translocase content. Biochem J. 2005;392:353–62. https://doi.org/10.1042/BJ20050890.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Bertholet AM, et al. H(+) transport is an integral function of the mitochondrial ADP/ATP carrier. Nature. 2019;571:515–20. https://doi.org/10.1038/s41586-019-1400-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Chouchani ET, Kazak L, Spiegelman BM. New advances in adaptive thermogenesis: UCP1 and beyond. Cell Metab. 2019;29:27–37. https://doi.org/10.1016/j.cmet.2018.11.002.

    Article  CAS  PubMed  Google Scholar 

  134. Nolfi-Donegan D, Braganza A, Shiva S. Mitochondrial electron transport chain: oxidative phosphorylation, oxidant production, and methods of measurement. Redox Biol. 2020;37:101674. https://doi.org/10.1016/j.redox.2020.101674.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Cardenes N, et al. Platelet bioenergetic screen in sickle cell patients reveals mitochondrial complex V inhibition, which contributes to platelet activation. Blood. 2014;123:2864–72. https://doi.org/10.1182/blood-2013-09-529420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Lopez-Otin C, Kroemer G. Hallmarks of health. Cell. 2021;184:33–63. https://doi.org/10.1016/j.cell.2020.11.034.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Gavin Pharoah for critically reviewing the manuscript.

Funding

BJB is supported by the Biological Mechanisms for Healthy Aging (BMHA) Training Grant NIH T32AG066574. MK is the director of the BMHA Training Program and the Nathan Shock Center of Excellence in the Basic Biology of Aging (NIH P30AG013280) at the University of Washington. This work was supported by NIH grant R01NS98329 to MK.

Author information

Authors and Affiliations

Authors

Contributions

BJB wrote and revised the manuscript; MK wrote and revised the manuscript.

Corresponding author

Correspondence to Matt Kaeberlein.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berry, B.J., Kaeberlein, M. An energetics perspective on geroscience: mitochondrial protonmotive force and aging. GeroScience 43, 1591–1604 (2021). https://doi.org/10.1007/s11357-021-00365-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-021-00365-7

Keywords

Navigation