Skip to main content
Log in

Analysis and remediation of phthalates in aquatic matrices: current perspectives

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Phthalic acid esters (PAEs) are high production volume chemicals used extensively as plasticizers, to increase the flexibility of the main polymer. They are reported to leach into their surroundings from plastic products and are now a ubiquitous environmental contaminant. Phthalate levels have been determined in several environmental matrices, especially in water. These levels serve as an indicator of plasticizer abuse and plastic pollution, and also serve as a route of exposure to different species including humans. Reports published on effects of different PAEs on experimental models demonstrate their carcinogenic, teratogenic, reproductive, and endocrine disruptive effects. Therefore, regular monitoring and remediation of environmental water samples is essential to ascertain their hazard quotient and daily exposure levels. This review summarises the extraction and detection techniques available for phthalate analysis in water samples such as chromatography, biosensors, immunoassays, and spectroscopy. Current remediation strategies for phthalate removal such as adsorption, advanced oxidation, and microbial degradation have also been highlighted.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Not applicable.

References

  • Abeysinghe H, Etampawala TNB, Perera VPS, Wikramasinghe G (2021) Multi-walled carbon nanotube sensor for detecting phthalates in solutions, ITUM Research Symposium. ITUMRS Proceedings Book, pp 87–91

  • Ahmad J, Naeem S, Ahmad M, Usman AR, Al-Wabel MI (2019) A critical review on organic micropollutants contamination in wastewater and removal through carbon nanotubes. J Environ Manag 246:214–228

    CAS  Google Scholar 

  • Ahmadi E, Kakavandi B, Azari A, Izanloo H, Gharibi H, Mahvi AH, Javid A, Hashemi SY (2016) The performance of mesoporous magnetite zeolite nanocomposite in removing dimethyl phthalate from aquatic environments. Desalin Water Treat 57:27768–27782

    CAS  Google Scholar 

  • Ahuactzin-Pérez M, Tlecuitl-Beristain S, García-Dávila J, Santacruz-Juárez E, González-Pérez M, Gutiérrez-Ruíz MC, Sánchez C (2018) A novel biodegradation pathway of the endocrine-disruptor di(2-ethyl hexyl) phthalate by Pleurotus ostreatus based on quantum chemical investigation. Ecotoxicol Environ Saf 147:494–499

    Google Scholar 

  • Akhtar N, Mannan MA-u (2020) Mycoremediation: expunging environmental pollutants. Biotechnol Rep 26:e00452

    Google Scholar 

  • Alahi MEE, Mukhopadhyay SC (2017) Detection methodologies for pathogen and toxins: a review. Sensors 17:1885

    Google Scholar 

  • Amiridou D, Voutsa D (2011) Alkylphenols and phthalates in bottled waters. J Hazard Mater 185:281–286

    CAS  Google Scholar 

  • An Q, Zhang P, Li J-M, Ma W-F, Guo J, Hu J, Wang C-C (2012) Silver-coated magnetite–carbon core–shell microspheres as substrate-enhanced SERS probes for detection of trace persistent organic pollutants. Nanoscale 4:5210–5216

    CAS  Google Scholar 

  • Anandan S, Pugazhenthiran N, Lana-Villarreal T, Lee G-J, Wu JJ (2013) Catalytic degradation of a plasticizer, di-ethylhexyl phthalate, using Nx–TiO2−x nanoparticles synthesized via co-precipitation. Chem Eng J 231:182–189

    CAS  Google Scholar 

  • Andrade-Eiroa A, Canle M, Leroy-Cancellieri V, Cerdà V (2016) Solid-phase extraction of organic compounds: a critical review. part ii. TrAC Trends Anal Chem 80:655–667

    CAS  Google Scholar 

  • Anju K, Roopitha K, Alexander L (2021) BaTiO3 SERS substrates for dimethyl phthalate detection. Mater Today: Proc 46:3044–3050

    CAS  Google Scholar 

  • Annamalai J, Vasudevan N (2020) Detection of phthalate esters in PET bottled drinks and lake water using esterase/PANI/CNT/CuNP based electrochemical biosensor. Anal Chim Acta 1135:175–186

    CAS  Google Scholar 

  • Arabi M, Ostovan A, Bagheri AR, Guo X, Wang L, Li J, Wang X, Li B, Chen L (2020) Strategies of molecular imprinting-based solid-phase extraction prior to chromatographic analysis. TrAC Trends Anal Chem 128:115923

    CAS  Google Scholar 

  • Armenta S, Esteve-Turrillas FA, Garrigues S, de la Guardia M (2022) Alternative green solvents in sample preparation. Green Anal Chem 1:100007

    Google Scholar 

  • Asakura H, Matsuto T (2009) Experimental study of behavior of endocrine-disrupting chemicals in leachate treatment process and evaluation of removal efficiency. Waste Manag 29:1852–1859

    CAS  Google Scholar 

  • Augusto F, Hantao LW, Mogollón NG, Braga SC (2013) New materials and trends in sorbents for solid-phase extraction. TrAC Trends Anal Chem 43:14–23

    CAS  Google Scholar 

  • Aziz A, Agamuthu P, Hassan A, Auta HS, Fauziah SH (2021) Green coagulant from Dillenia indica for removal of bis(2-ethylhexyl) phthalate and phenol, 4,4′-(1-methylethylidene)bis- from landfill leachate. Environ Technol Innov 24:102061

    CAS  Google Scholar 

  • Balaguer-Trias J, Deepika D, Schuhmacher M, Kumar V (2022) Impact of contaminants on microbiota: linking the gut–brain axis with neurotoxicity. Int J Environ Res Public Health 19:1368

    CAS  Google Scholar 

  • Barciela-Alonso MC, Otero-Lavandeira N, Bermejo-Barrera P (2017) Solid phase extraction using molecular imprinted polymers for phthalate determination in water and wine samples by HPLC-ESI-MS. Microchem J 132:233–237

    CAS  Google Scholar 

  • Bazarsadueva SV, Taraskin VV, Budaeva OD, Nikitina EP, Zhigzhitzhapova SV, Shiretorova VG, Bazarzhapov TZ, Radnaeva LD (2023) First data on PAE levels in surface water in lakes of the Eastern Coast of Baikal. Int J Environ Res Public Health 20:1173

    CAS  Google Scholar 

  • BelBruno JJ (2018) Molecularly imprinted polymers. Chem Rev 119:94–119

    Google Scholar 

  • Benjamin S, Pradeep S, Josh MS, Kumar S, Masai E (2015) A monograph on the remediation of hazardous phthalates. J Hazard Mater 298:58–72

    CAS  Google Scholar 

  • Biemann R, Blüher M, Isermann B (2021) Exposure to endocrine-disrupting compounds such as phthalates and bisphenol A is associated with an increased risk for obesity. Best Pract Res Clin Endocrinol Metab 35:101546

    CAS  Google Scholar 

  • Bolívar-Subirats G, Rivetti C, Cortina-Puig M, Barata C, Lacorte S (2021) Occurrence, toxicity and risk assessment of plastic additives in Besos river, Spain. Chemosphere 263:128022

    Google Scholar 

  • Boll M, Geiger R, Junghare M, Schink B (2020) Microbial degradation of phthalates: biochemistry and environmental implications. Environ Microbiol Rep 12:3–15

    CAS  Google Scholar 

  • Bølling AK, Sripada K, Becher R, Bekö G (2020) Phthalate exposure and allergic diseases: review of epidemiological and experimental evidence. Environ Int 139:105706

    Google Scholar 

  • Cai Y-Q, Jiang G-B, Liu J-F, Zhou Q-X (2003) Multi-walled carbon nanotubes packed cartridge for the solid-phase extraction of several phthalate esters from water samples and their determination by high performance liquid chromatography. Anal Chim Acta 494:149–156

    CAS  Google Scholar 

  • Calley D, Autian J, Guess WL (1966) Toxicology of a series of phthalate esters. J Pharm Sci 55:158–162

    CAS  Google Scholar 

  • Cano R, Pérez JL, Dávila LA, Ortega Á, Gómez Y, Valero-Cedeño NJ, Parra H, Manzano A, Véliz Castro TI, Albornoz MPD (2021) Role of endocrine-disrupting chemicals in the pathogenesis of non-alcoholic fatty liver disease: a comprehensive review. Int J Mol Sci 22:4807

    CAS  Google Scholar 

  • Carstens L, Cowan AR, Seiwert B, Schlosser D (2020) Biotransformation of phthalate plasticizers and bisphenol A by marine-derived, freshwater, and terrestrial fungi. Front Microbiol 11:317

    Google Scholar 

  • Casas M, Gascon M (2020) Prenatal exposure to endocrine-disrupting chemicals and asthma and allergic diseases. J Investig Allergol Clin Immunol 30:215–228

    CAS  Google Scholar 

  • Chakraborty P, Shappell NW, Mukhopadhyay M, Onanong S, Rex KR, Snow D (2021) Surveillance of plasticizers, bisphenol A, steroids and caffeine in surface water of River Ganga and Sundarban wetland along the Bay of Bengal: occurrence, sources, estrogenicity screening and ecotoxicological risk assessment. Water Res 190:116668

    CAS  Google Scholar 

  • Chan HW, Lau TC, Ang PO, Wu M, Wong PK (2004) Biosorption of di(2-ethylhexyl)phthalate by seaweed biomass. J Appl Phycol 16:263–274

    CAS  Google Scholar 

  • Chen C-Y, Chung Y-C (2006) Removal of phthalate esters from aqueous solutions by chitosan bead. J Environ Sci Health, Part A 41:235–248

    CAS  Google Scholar 

  • Chen Z, Hu Z, Wang J, Wang X, Niu X, Wang Y, Shen Y, Teng W, Fan J, Zhang W-X (2019) Synthesis of mesoporous silica-carbon microspheres via self-assembly and in-situ carbonization for efficient adsorption of di-n-butyl phthalate. Chem Eng J 369:854–862

    CAS  Google Scholar 

  • Cheong WJ, Yang SH, Ali F (2013) Molecular imprinted polymers for separation science: a review of reviews. J Sep Sci 36:609–628

    CAS  Google Scholar 

  • Chigbundu CE, Onipede OJ, Okonkwo ID (2022) Sorption studies of phthalic acid esters uptake from lagos lagoon sample using characterized gmelina arborea pericarp biosorbent. Sep Sci Technol 57:2165–2176

  • Chigome S, Torto N (2011) A review of opportunities for electrospun nanofibers in analytical chemistry. Anal Chim Acta 706:25–36

    CAS  Google Scholar 

  • Chigome S, Torto N (2012) Electrospun nanofiber-based solid-phase extraction. TrAC Trends Anal Chem 38:21–31

    CAS  Google Scholar 

  • Chiou C-S, Chen Y-H, Chang C-T, Chang C-Y, Shie J-L, Li Y-S (2006) Photochemical mineralization of di-n-butyl phthalate with H2O2/Fe3+. J Hazard Mater 135:344–349

    CAS  Google Scholar 

  • Chou YC, Tzeng CR (2021) The impact of phthalate on reproductive function in women with endometriosis. Reprod Med Biol 20:159–168

    CAS  Google Scholar 

  • Das MT, Kumar SS, Ghosh P, Shah G, Malyan SK, Bajar S, Thakur IS, Singh L (2021) Remediation strategies for mitigation of phthalate pollution: challenges and future perspectives. J Hazard Mater 409:124496

    CAS  Google Scholar 

  • de Toffoli AL, Maciel EVS, Fumes BH, Lanças FM (2018) The role of graphene-based sorbents in modern sample preparation techniques. J Sep Sci 41:288–302

    Google Scholar 

  • Den W, Liu H-C, Chan S-F, Kin KT, Huang C (2006) Adsorption of phthalate esters with multiwalled carbon nanotubes and its applications. J Environ Eng Manag 16:275–282

    CAS  Google Scholar 

  • Derco J, Branislav V (2018) Introductory chapter: biosorption. In: Jan D, Branislav V (eds) Biosorption. IntechOpen, Rijeka, pp 1–19

  • Desbrières J, Guibal E (2018) Chitosan for wastewater treatment. Polym Int 67:7–14

    Google Scholar 

  • Diepenheim G, Gift SC, Harb C, Wallace M, Layshock J (2020) Survey of phthalate mitigation and distribution in water, sediment, and Typha in a fully operational constructed wetland: a pilot study. Bull Environ Contam Toxicol 105:205–210

    CAS  Google Scholar 

  • Dolai J, Ali H, Jana NR (2020) Molecular imprinted poly-cyclodextrin for selective removal of dibutyl phthalate. ACS Appl Polym Mater 2:691–698

    CAS  Google Scholar 

  • Dominguez RB, Hayat A, Alonso GA, Gutiérrez JM, Muñoz R, Marty J-L (2017) Nanomaterial-based biosensors for food contaminant assessment. In: Grumezescu AM (ed) Nanobiosensors. Elsevier, pp 805–839

  • Dong L, Lin L, Pan X, Zhang S, Lv Z, Mi C (2022) Distribution dynamics of phthalate esters in surface water and sediment of the Middle-Lower Hanjiang River, China. Int J Environ Res Public Health 19:2702

    CAS  Google Scholar 

  • Dutta S, Haggerty DK, Rappolee DA, Ruden DM (2020) Phthalate exposure and long-term epigenomic consequences: a review. Front Genet 11:405

    CAS  Google Scholar 

  • EPA (2009) National primary drinking water regulations, EPA 816-F-09-004. USEPA, pp 1–6

  • Epstein SS, Shafner H (1968) Chemical mutagens in the human environment. Nature 219:385–387

    CAS  Google Scholar 

  • Fan J, Wang X, Teng W, Yang J, Ran X, Gou X, Bai N, Lv M, Xu H, Li G (2017) Phenyl-functionalized mesoporous silica materials for the rapid and efficient removal of phthalate esters. J Colloid Interface Sci 487:354–359

    CAS  Google Scholar 

  • Fan J, Wu H, Liu R, Meng L, Sun Y (2021) Review on the treatment of organic wastewater by discharge plasma combined with oxidants and catalysts. Environ Sci Pollut Res 28:2522–2548

    CAS  Google Scholar 

  • Fatoki O, Noma A (2001) Determination of phthalate esters in the aquatic environment. S Afr J Chem 54:69–83

    Google Scholar 

  • Fay M, Donohue JM, De Rosa C (1999) ATSDR evaluation of health effects of chemicals. VI. Di (2-ethylhexyl) phthalate. Toxicol Ind Health 15:651–746

  • Fletcher EJ, Santacruz-Márquez R, Mourikes VE, Neff AM, Laws MJ, Flaws JA (2022) Effects of phthalate mixtures on ovarian folliculogenesis and steroidogenesis. Toxics 10:251

    CAS  Google Scholar 

  • Gani KM, Kazmi AA (2016) Phthalate contamination in aquatic environment: a critical review of the process factors that influence their removal in conventional and advanced wastewater treatment. Crit Rev Environ Sci Technol 46:1402–1439

    CAS  Google Scholar 

  • Ganta M, Shilli A, Adishesh SC, Kurella BR, Kunnel SG (2020) Bioremediation of bisphenols and phthalates from industrial effluents: a review. In: Inamuddin A, M.I. Lichtfouse E, Asiri AM (eds) Methods for bioremediation of water and wastewater pollution. Springer, Cham, pp 253–265

  • Gao M, Gao Y, Chen G, Huang X, Xu X, Lv J, Wang J, Xu D, Liu G (2020) Recent advances and future trends in the detection of contaminants by molecularly imprinted polymers in food samples. Front Chem 8:1142

    Google Scholar 

  • Ghosh S, Sahu M (2022) Phthalate pollution and remediation strategies: a review. J Hazard Mater Adv 6:100065

    CAS  Google Scholar 

  • Graceli JB, Dettogni RS, Merlo E, Niño O, da Costa CS, Zanol JF, Morris EAR, Miranda-Alves L, Denicol AC (2020) The impact of endocrine-disrupting chemical exposure in the mammalian hypothalamic-pituitary axis. Mol Cell Endocrinol 518:110997

    CAS  Google Scholar 

  • Grün F (2010) Obesogens. Curr Opin Endocrinol Diabetes Obes 17:453–459

    Google Scholar 

  • Gunaalan K, Fabbri E, Capolupo M (2020) The hidden threat of plastic leachates: a critical review on their impacts on aquatic organisms. Water Res 184:116170

    CAS  Google Scholar 

  • Guo L, Hao L, Gao T, Wang C, Wu Q, Wang Z (2019a) p-Phenylenediamine-modified graphene oxide as a sorbent for solid-phase extraction of phenylurea herbicides, nitroimidazoles, chlorophenols, phenylurea insecticides and phthalates. Microchim Acta 186:1–8

    Google Scholar 

  • Guo L, Hao L, Gao T, Wang C, Wu Q, Wang Z (2019b) p-Phenylenediamine-modified graphene oxide as a sorbent for solid-phase extraction of phenylurea herbicides, nitroimidazoles, chlorophenols, phenylurea insecticides and phthalates. Microchim Acta 186:464

    Google Scholar 

  • Hagen DF, Markell CG, Schmitt GA, Blevins DD (1990) Membrane approach to solid-phase extractions. Anal Chim Acta 236:157–164

    CAS  Google Scholar 

  • Háková M, Havlíková LC, Švec F, Solich P, Šatínský D (2020) Nanofibers as advanced sorbents for on-line solid phase extraction in liquid chromatography: a tutorial. Anal Chim Acta 1121:83–96

    Google Scholar 

  • Hammad Khan M, Jung JY (2008) Ozonation catalyzed by homogeneous and heterogeneous catalysts for degradation of DEHP in aqueous phase. Chemosphere 72:690–696

    CAS  Google Scholar 

  • Hashemi B, Zohrabi P, Shamsipur M (2018) Recent developments and applications of different sorbents for SPE and SPME from biological samples. Talanta 187:337–347

    CAS  Google Scholar 

  • Haverinen E, Fernandez MF, Mustieles V, Tolonen H (2021) Metabolic syndrome and endocrine disrupting chemicals: an overview of exposure and health effects. Int J Environ Res Public Health 18:13047

    CAS  Google Scholar 

  • He L, Gielen G, Bolan NS, Zhang X, Qin H, Huang H, Wang H (2015) Contamination and remediation of phthalic acid esters in agricultural soils in China: a review. Agron Sustain Dev 35:519–534

    CAS  Google Scholar 

  • Hites RA (1973) Phthalates in the Charles and the Merrimack Rivers. Environ Health Perspect 3:17–21

    CAS  Google Scholar 

  • Hites R, Biemann K (1972) Water pollution: organic compounds in the Charles River. Science 178:158

    CAS  Google Scholar 

  • Huang W-B, Chen C-Y (2010) Photocatalytic degradation of diethyl phthalate (DEP) in water using TiO2. Water Air Soil Pollut 207:349–355

    CAS  Google Scholar 

  • Hustert K, Moza P (1988) Photocatalytic degradation of phthalates on titanium dioxide in aqueous phase. Chemosphere 17:1751–1754

    CAS  Google Scholar 

  • Huysman S, Van Meulebroek L, Janssens O, Vanryckeghem F, Van Langenhove H, Demeestere K, Vanhaecke L (2019) Targeted quantification and untargeted screening of alkylphenols, bisphenol A and phthalates in aquatic matrices using ultra-high-performance liquid chromatography coupled to hybrid Q-Orbitrap mass spectrometry. Anal Chim Acta 1049:141–151

    CAS  Google Scholar 

  • Ibrahim WAW, Nodeh HR, Sanagi MM (2016) Graphene-based materials as solid phase extraction sorbent for trace metal ions, organic compounds, and biological sample preparation. Crit Rev Anal Chem 46:267–283

    CAS  Google Scholar 

  • Jaeger RJ, Rubin RJ (1970) Plasticizers from plastic devices: extraction, metabolism, and accumulation by biological systems. Science 170:460–462

    CAS  Google Scholar 

  • Jalilian N, Ebrahimzadeh H, Asgharinezhad AA (2019) Preparation of magnetite/multiwalled carbon nanotubes/metal-organic framework composite for dispersive magnetic micro solid phase extraction of parabens and phthalate esters from water samples and various types of cream for their determination with liquid chromatography. J Chromatogr A 1608:460426

    CAS  Google Scholar 

  • Jebara A, Albergamo A, Rando R, Potortì AG, Lo Turco V, Mansour HB, Di Bella G (2021) Phthalates and non-phthalate plasticizers in Tunisian marine samples: occurrence, spatial distribution and seasonal variation. Mar Pollut Bull 163:111967

    CAS  Google Scholar 

  • Jha A, Singh A, Bharti M (1998) Germ cell mutagenicity of phthalic acid in mice. Mutat Res/fundam Mol Mech Mutagen 422:207–212

    CAS  Google Scholar 

  • Ji Z, Tang W, Pei Y (2022) Constructed wetland substrates: a review on development, function mechanisms, and application in contaminants removal. Chemosphere 286:131564

    CAS  Google Scholar 

  • Jiang B, Zheng J, Qiu S, Wu M, Zhang Q, Yan Z, Xue Q (2014) Review on electrical discharge plasma technology for wastewater remediation. Chem Eng J 236:348–368

    CAS  Google Scholar 

  • Jiang S, Wang F, Li Q, Sun H, Wang H, Yao Z (2021) Environment and food safety: a novel integrative review. Environ Sci Pollut Res 28:54511–54530

    Google Scholar 

  • Jiménez-Skrzypek G, González-Sálamo J, Varela-Martínez DA, González-Curbelo MÁ, Hernández-Borges J (2020) Analysis of phthalic acid esters in sea water and sea sand using polymer-coated magnetic nanoparticles as extraction sorbent. J Chromatogr A 1611:460620

    Google Scholar 

  • Jönander C, Backhaus T, Dahllöf I (2022) Single substance and mixture toxicity of dibutyl-phthalate and sodium dodecyl sulphate to marine zooplankton. Ecotoxicol Environ Saf 234:113406

    Google Scholar 

  • Kaneco S, Katsumata H, Suzuki T, Ohta K (2006) Titanium dioxide mediated photocatalytic degradation of dibutyl phthalate in aqueous solution—kinetics, mineralization and reaction mechanism. Chem Eng J 125:59–66

    CAS  Google Scholar 

  • Kavlock R, Boekelheide K, Chapin R, Cunningham M, Faustman E, Foster P, Golub M, Henderson R, Hinberg I, Little R (2002a) NTP Center for the Evaluation of Risks to Human Reproduction: phthalates expert panel report on the reproductive and developmental toxicity of di-n-butyl phthalate. Reprod Toxicol 16:489–527

    CAS  Google Scholar 

  • Kavlock R, Boekelheide K, Chapin R, Cunningham M, Faustman E, Foster P, Golub M, Henderson R, Hinberg I, Little R (2002b) NTP center for the evaluation of risks to human reproduction: phthalates expert panel report on the reproductive and developmental toxicity of di (2-ethylhexyl) phthalate. Reprod Toxicol (elmsford, NY) 16:529–653

    CAS  Google Scholar 

  • Kavlock R, Boekelheide K, Chapin R, Cunningham M, Faustman E, Foster P, CftEoRtH R (2002c) Phthalates expert panel report on the reproductive and developmental toxicity of di (2-ethylhexyl) phthalate. Reprod Toxicol 16:529–653

    CAS  Google Scholar 

  • Khezeli T, Daneshfar A (2017) Development of dispersive micro-solid phase extraction based on micro and nano sorbents. TrAC Trends Anal Chem 89:99–118

    CAS  Google Scholar 

  • Khishdost M, Dobaradaran S, Goudarzi G, Takdastan A, Babaei AA (2023) Contaminant occurrence, distribution and ecological risk assessment of phthalate esters in the Persian Gulf. PLoS One 18:e0287504

    CAS  Google Scholar 

  • Kingsley O, Witthayawirasak B (2020) Occurrence, ecological and health risk assessment of phthalate esters in surface water of U-Tapao Canal, Southern, Thailand. Toxics 8:58

    CAS  Google Scholar 

  • Kluwe W, Haseman J, Huff J (1983) The carcinogenicity of d1 (2‐ethylhexyl) phthalate (dehp) in perspective. J Toxicol Environ Health Part A 12:159–169

  • Kotowska U, Karpinska J, Kapelewska J, Kowejsza EM, Piotrowska-Niczyporuk A, Piekutin J, Kotowski A (2018) Removal of phthalates and other contaminants from municipal wastewater during cultivation of Wolffia arrhiza. Process Saf Environ Prot 120:268–277

    CAS  Google Scholar 

  • Kou L, Chen H, Zhang X, Liu S, Zhang B, Zhu H (2023) Biodegradation of di(2-ethylhexyl) phthalate by a new bacterial consortium. Water Sci Technol 88:92–105

    CAS  Google Scholar 

  • Kudelski A (2008) Analytical applications of Raman spectroscopy. Talanta 76:1–8

    CAS  Google Scholar 

  • Kumar AK, Mohan SV (2011) Endocrine disruptive synthetic estrogen (17α-ethynylestradiol) removal from aqueous phase through batch and column sorption studies: mechanistic and kinetic analysis. Desalination 276:66–74

    CAS  Google Scholar 

  • Kumawat M, Sharma P, Pal N, James MM, Verma V, Tiwari RR, Shubham S, Sarma DK, Kumar M (2022) Occurrence and seasonal disparity of emerging endocrine disrupting chemicals in a drinking water supply system and associated health risk. Sci Rep 12:9252

    CAS  Google Scholar 

  • Lacouture A, Lafront C, Peillex C, Pelletier M, Audet-Walsh É (2022) Impacts of endocrine-disrupting chemicals on prostate function and cancer. Environ Res 204:112085

    CAS  Google Scholar 

  • Le TM, Nguyen HMN, Nguyen VK, Nguyen AV, Vu ND, Yen NTH, Hoang AQ, Minh TB, Kannan K, Tran TM (2021) Profiles of phthalic acid esters (PAEs) in bottled water, tap water, lake water, and wastewater samples collected from Hanoi, Vietnam. Sci Total Environ 788:147831

    CAS  Google Scholar 

  • Lee H, Park Y-K, Kim J-S, Park Y-H, Jung S-C (2019a) Degradation of dimethyl phthalate using a liquid phase plasma process with TiO2 photocatalysts. Environ Res 169:256–260

    CAS  Google Scholar 

  • Lee Y-M, Lee J-E, Choe W, Kim T, Lee J-Y, Kho Y, Choi K, Zoh K-D (2019b) Distribution of phthalate esters in air, water, sediments, and fish in the Asan Lake of Korea. Environ Int 126:635–643

    CAS  Google Scholar 

  • Lefebvre O, Lee LY, Ng HY (2010) Physico-chemical treatment of micropollutants: coagulation and membrane processes. In: Virkutyte Jurate, Veeriah J, S. VR (eds) Treatments of micropollutants in water and wastewater. IWA Publishing London, pp 205–237

  • Li W-k, Shi Y-p (2019) Recent advances and applications of carbon nanotubes based composites in magnetic solid-phase extraction. TrAC Trends Anal Chem 118:652–665

    CAS  Google Scholar 

  • Li L, Zhang M (2020) Development of immunoassays for the determination of phthalates. Food Agric Immunol 31:303–316

    CAS  Google Scholar 

  • Li D-W, Zhai W-L, Li Y-T, Long Y-T (2014) Recent progress in surface enhanced Raman spectroscopy for the detection of environmental pollutants. Microchim Acta 181:23–43

    CAS  Google Scholar 

  • Li X, Wang X, Li L, Duan H, Luo C (2015) Electrochemical sensor based on magnetic graphene oxide@gold nanoparticles-molecular imprinted polymers for determination of dibutyl phthalate. Talanta 131:354–360

    CAS  Google Scholar 

  • Li C, Ma X, Zhang X, Wang R, Chen Y, Li Z (2016) Magnetic molecularly imprinted polymer nanoparticles-based solid-phase extraction coupled with gas chromatography–mass spectrometry for selective determination of trace di-(2-ethylhexyl) phthalate in water samples. Anal Bioanal Chem 408:7857–7864

    CAS  Google Scholar 

  • Li M, Cui Y, Liu Z, Xue Y, Zhao R, Li Y, Du D (2019a) Sensitive and selective determination of butyl benzyl phthalate from environmental samples using an enzyme immunoassay. Sci Total Environ 687:849–857

    CAS  Google Scholar 

  • Li X, Li J, Zhu J, Hao S, Fang G, Liu J, Wang S (2019b) Degradation of phthalic acid esters (PAEs) by an enzyme mimic and its application in the degradation of intracellular DEHP. Chem Commun 55:13458–13461

    CAS  Google Scholar 

  • Li T, Fan Y, Cun D, Song X, Dai Y, Wang F, Wu C, Liang W (2020a) Treatment performance and microbial response to dibutyl phthalate contaminated wastewater in vertical flow constructed wetland mesocosms. Chemosphere 246:125635

    CAS  Google Scholar 

  • Li Y, Huang G, Zhang L, Gu H, Lou C, Zhang H, Liu H (2020b) Phthalate esters (PAEs) in soil and vegetables in solar greenhouses irrigated with reclaimed water. Environ Sci Pollut Res 27:22658–22669

    CAS  Google Scholar 

  • Li Y, Wang J, Yang S, Zhang S (2021a) Occurrence, health risks and soil-air exchange of phthalate acid esters: a case study in plastic film greenhouses of Chongqing, China. Chemosphere 268:128821

    CAS  Google Scholar 

  • Li Y, Ye X, Niu Z, He J, Luo X, Ma Q (2021b) Analysis of 16 phthalate esters in wastewater from textile plants using headspace solid-phase microextraction and gas chromatography with mass spectrometric detection. Text Res J 91:306–315

    CAS  Google Scholar 

  • Liang X, Liu S, Wang S, Guo Y, Jiang S (2014) Carbon-based sorbents: carbon nanotubes. J Chromatogr A 1357:53–67

    CAS  Google Scholar 

  • Lim HJ, Kim AR, Yoon M-Y, You Y, Chua B, Son A (2018) Development of quantum dot aptasensor and its portable analyzer for the detection of di-2-ethylhexyl phthalate. Biosens Bioelectron 121:1–9

    CAS  Google Scholar 

  • Lin T, Song Y-L, Liao J, Liu F, Zeng T-T (2020) Applications of surface-enhanced Raman spectroscopy in detection fields. Nanomedicine 15:2971–2989

    CAS  Google Scholar 

  • Lin L, Dong L, Wang Z, Li C, Liu M, Li Q, Crittenden JC (2021) Hydrochemical composition, distribution, and sources of typical organic pollutants and metals in Lake Bangong Co, Tibet. Environ Sci Pollut Res 28:9877–9888

    CAS  Google Scholar 

  • Lin J, Xiao Y, Liu Y, Lei Y, Cai Y, Liang Q, Nie S, Jia Y, Chen S, Huang C (2022) Leachate from plastic food packaging induced reproductive and neurobehavioral toxicity in zebrafish. Ecotoxicol Environ Saf 231:113189

    CAS  Google Scholar 

  • Ling W, Jiang G-B, Cai Y-Q, Bin H, Wang Y-W, Shen D-Z (2007) Cloud point extraction coupled with HPLC-UV for the determination of phthalate esters in environmental water samples. J Environ Sci 19:874–878

    Google Scholar 

  • Liu W, Sun Y, Liu N, Hou J, Huo X, Zhao Y, Zhang Y, Deng F, Kan H, Zhao Z (2022) Indoor exposure to phthalates and its burden of disease in China. Indoor Air 32:e13030

    CAS  Google Scholar 

  • Liu C, Fu L, Du H, Sun Y, Wu Y, Li C, Tong J, Liang S (2023) Distribution, source apportionment and risk assessment of phthalate esters in the overlying water of Baiyang Lake, China. Int J Environ Res Public Health 20:2918

    CAS  Google Scholar 

  • Lu M, Jiang W, Gao Q, Zhang M, Hong Q (2020) Degradation of dibutyl phthalate (DBP) by a bacterial consortium and characterization of two novel esterases capable of hydrolyzing PAEs sequentially. Ecotoxicol Environ Saf 195:110517

    CAS  Google Scholar 

  • Lucaccioni L, Trevisani V, Passini E, Righi B, Plessi C, Predieri B, Iughetti L (2021) Perinatal exposure to phthalates: from endocrine to neurodevelopment effects. Int J Mol Sci 22:4063

    CAS  Google Scholar 

  • Luo X, Zhang F, Ji S, Yang B, Liang X (2014) Graphene nanoplatelets as a highly efficient solid-phase extraction sorbent for determination of phthalate esters in aqueous solution. Talanta 120:71–75

    CAS  Google Scholar 

  • Luo Q, Liu Z-h, Yin H, Dang Z, Wu P-x, Zhu N-w, Lin Z, Liu Y (2018) Migration and potential risk of trace phthalates in bottled water: a global situation. Water Res 147:362–372

    CAS  Google Scholar 

  • Lv X, Hao Y, Jia Q (2013) Preconcentration procedures for phthalate esters combined with chromatographic analysis. J Chromatogr Sci 51:632–644

    CAS  Google Scholar 

  • Madikizela LM, Ncube S, Chimuka L (2019) Recent developments in selective materials for solid phase extraction. Chromatographia 82:1171–1189

    CAS  Google Scholar 

  • Malem F, Soonthondecha P, Khawmodjod P, Chunhakorn V, Whitlow HJ, Chienthavorn O (2019) Occurrence of phthalate esters in the eastern coast of Thailand. Environ Monit Assess 191:627

    Google Scholar 

  • Manea LR, Bertea A-P (2018) Sensors from electrospun nanostructures. In: Fedorenko Y (ed) Nanostructures in energy generation, transmission and storage. IntechOpen, pp 28–40

  • Marco M-P, Gee S, Hammock BD (1995) Immunochemical techniques for environmental analysis II. Antibody production and immunoassay development. TrAC Trends Anal Chem 14:415–425

    CAS  Google Scholar 

  • Maryjoseph S, Ketheesan B (2020) Microalgae based wastewater treatment for the removal of emerging contaminants: a review of challenges and opportunities. Case Stud Chem Environ Eng 2:100046

    Google Scholar 

  • Maynard IFN, Cavalcanti EB, da Silva LL, Martins EAJ, Pires MAF, de Barros ML, Cardoso E, Marques MN (2019) Assessing the presence of endocrine disruptors and markers of anthropogenic activity in a water supply system in northeastern Brazil. J Environ Sci Health Part A 54:891–898

    CAS  Google Scholar 

  • McNeil EE, Otson R, Miles WF, Rajabalee F (1977) Determination of chlorinated pesticides in potable water. J Chromatogr A 132:277–286

    CAS  Google Scholar 

  • Melnick RL, Schiller CM (1982) Mitochondrial toxicity of phthalate esters. Environ Health Perspect 45:51–56

    CAS  Google Scholar 

  • Mesdaghinia A, Azari A, Nodehi RN, Yaghmaeian K, Bharti AK, Agarwal S, Gupta VK, Sharafi K (2017) Removal of phthalate esters (PAEs) by zeolite/Fe3O4: investigation on the magnetic adsorption separation, catalytic degradation and toxicity bioassay. J Mol Liq 233:378–390

    CAS  Google Scholar 

  • Mohan SV, Shailaja S, Krishna MR, Sarma P (2007) Adsorptive removal of phthalate ester (di-ethyl phthalate) from aqueous phase by activated carbon: a kinetic study. J Hazard Mater 146:278–282

    CAS  Google Scholar 

  • Mondal T, Mondal S, Ghosh SK, Pal P, Soren T, Pandey S, Maiti TK (2022) Phthalates - A family of plasticizers, their health risks, phytotoxic effects, and microbial bioaugmentation approaches. Environ Res 214:114059

  • Montuori P, Jover E, Morgantini M, Bayona JM, Triassi M (2008) Assessing human exposure to phthalic acid and phthalate esters from mineral water stored in polyethylene terephthalate and glass bottles. Food Addit Contam 25:511–518

    CAS  Google Scholar 

  • Moore NP (2000) The oestrogenic potential of the phthalate esters. Reprod Toxicol 14:183–192

    CAS  Google Scholar 

  • Moore S, Paalanen L, Melymuk L, Katsonouri A, Kolossa-Gehring M, Tolonen H (2022) The association between ADHD and environmental chemicals—a scoping review. Int J Environ Res Public Health 19:2849

    CAS  Google Scholar 

  • Morova M, Kršková L (2021) Autistic-like traits in laboratory rodents exposed to phthalic acid esters during early development—an animal model of autism? Physiol Res 70:345

    CAS  Google Scholar 

  • Morris RJ (1970) Phthalic acid in the deep sea jellyfish Atolla. Nature 227:1264–1264

    CAS  Google Scholar 

  • Mortada WI (2020) Recent developments and applications of cloud point extraction: a critical review. Microchem J 157:105055

    CAS  Google Scholar 

  • Mosier-Boss PA (2017) Review of SERS substrates for chemical sensing. Nanomaterials 7:142

    Google Scholar 

  • Moulahoum H, Ghorbanizamani F, Zihnioglu F, Timur S (2021) Tracking and treating: molecularly imprinted polymer-based nanoprobes application in theranostics. In: Denizli A (ed) Molecular imprinting for nanosensors and other sensing applications. Elsevier, pp 45–68

  • Mughees M, Chugh H, Wajid S (2022) Mechanism of phthalate esters in the progression and development of breast cancer. Drug Chem Toxicol 45:1021–1025

    CAS  Google Scholar 

  • Mukhopadhyay M, Chakraborty P (2021) Plasticizers and bisphenol A: emerging organic pollutants along the lower stretch of River Ganga, north-east coast of the Bay of Bengal. Environ Pollut 276:116697

    CAS  Google Scholar 

  • Mukhopadhyay M, Sampath S, Muñoz-Arnanz J, Jiménez B, Chakraborty P (2020) Plasticizers and bisphenol A in Adyar and Cooum riverine sediments, India: occurrences, sources and risk assessment. Environ Geochem Health 42:2789–2802

    CAS  Google Scholar 

  • Nantaba F, Palm W-U, Wasswa J, Bouwman H, Kylin H, Kümmerer K (2021) Temporal dynamics and ecotoxicological risk assessment of personal care products, phthalate ester plasticizers, and organophosphorus flame retardants in water from Lake Victoria, Uganda. Chemosphere 262:127716

    CAS  Google Scholar 

  • Naveen KV, Saravanakumar K, Zhang X, Sathiyaseelan A, Wang M-H (2022) Impact of environmental phthalate on human health and their bioremediation strategies using fungal cell factory-a review. Environ Res 214:113781

  • Net S, Delmont A, Sempéré R, Paluselli A, Ouddane B (2015) Reliable quantification of phthalates in environmental matrices (air, water, sludge, sediment and soil): a review. Sci Total Environ 515:162–180

    Google Scholar 

  • Nielsen J, Åkesson B, Skerfving S (1985) Phthalate ester exposure—air levels and health of workers processing polyvinylchloride. Am Ind Hyg Assoc J 46:643–647

    CAS  Google Scholar 

  • Niu HY, Cai YQ, Shi YL, Wei FS, Liu JM, Jiang GB (2008) A new solid-phase extraction disk based on a sheet of single-walled carbon nanotubes. Anal Bioanal Chem 392:927–935

    CAS  Google Scholar 

  • Okino-Delgado CH, Zanutto-Elgui MR, do Prado DZ, Pereira MS, Fleuri LF (2019) Enzymatic bioremediation: current status, challenges of obtaining process, and applications. In: Arora PK (ed) Microbial metabolism of xenobiotic compounds. Springer Singapore, pp 79–101

  • Ong TT, Blanch EW, Jones OA (2020) Surface enhanced Raman spectroscopy in environmental analysis, monitoring and assessment. Sci Total Environ 720:137601

    CAS  Google Scholar 

  • Ooi PW, Ramachandran MR, Yahaya N, Kamal NNSM, Gopal K, Husin NA, Zain NNM (2019) Removal of phthalates in aqueous samples using non-ionic silicone surfactant mediated cloud point extraction via spectrophotometry. Malaysian J Anal Sci 23:839–848

    Google Scholar 

  • Özer ET, Osman B, Yazıcı T (2017) Dummy molecularly imprinted microbeads as solid-phase extraction material for selective determination of phthalate esters in water. J Chromatogr A 1500:53–60

    Google Scholar 

  • Öztürk Er E, Dalgıç Bozyiğit G, Büyükpınar Ç, Bakırdere S (2022) Magnetic nanoparticles based solid phase extraction methods for the determination of trace elements. Crit Rev Anal Chem 52:231–249

    Google Scholar 

  • Paluselli A, Kim S-K (2020) Horizontal and vertical distribution of phthalates acid ester (PAEs) in seawater and sediment of East China Sea and Korean South Sea: traces of plastic debris? Mar Pollut Bull 151:110831

    CAS  Google Scholar 

  • Paluselli A, Fauvelle V, Schmidt N, Galgani F, Net S, Sempéré R (2018) Distribution of phthalates in Marseille Bay (NW Mediterranean Sea). Sci Total Environ 621:578–587

    CAS  Google Scholar 

  • Pang X, Skillen N, Gunaratne N, Rooney DW, Robertson PK (2021) Removal of phthalates from aqueous solution by semiconductor photocatalysis: a review. J Hazard Mater 402:123461

    CAS  Google Scholar 

  • Parde D, Patwa A, Shukla A, Vijay R, Killedar DJ, Kumar R (2021) A review of constructed wetland on type, treatment and technology of wastewater. Environ Technol Innov 21:101261

    CAS  Google Scholar 

  • Pérez-Jiménez AI, Lyu D, Lu Z, Liu G, Ren B (2020) Surface-enhanced Raman spectroscopy: benefits, trade-offs and future developments. Chem Sci 11:4563–4577

    Google Scholar 

  • Prasad B (2017) Biodegradation of ortho-dimethyl phthalate by a binary culture of Variovorax sp. BS1 and Achromobacter denitrificans. Int J Environ Sci Technol (tehran) 14:2575–2582

    CAS  Google Scholar 

  • Prevarić V, SigurnjakBureš M, Cvetnić M, Miloloža M, KučićGrgić D, Markić M, Bule K, Milković M, Bolanča T, Ukić Š (2021) The problem of phthalate occurrence in aquatic environment: a review. Chem Biochem Eng Q 35:81–104

    Google Scholar 

  • Qi P, Wang J, Li Y, Su F, Jin J, Chen J (2011) Molecularly imprinted solid-phase extraction coupled with HPLC for the selective determination of monobutyl phthalate in bottled water. J Sep Sci 34:2712–2718

    CAS  Google Scholar 

  • Qi X, Li T, Wang F, Dai Y, Liang W (2018) Removal efficiency and enzymatic mechanism of dibutyl phthalate (DBP) by constructed wetlands. Environ Sci Pollut Res 25:23009–23017

    CAS  Google Scholar 

  • Qian Y, Shao H, Ying X, Huang W, Hua Y (2020) The endocrine disruption of prenatal phthalate exposure in mother and offspring. Front Public Health 8:366

    Google Scholar 

  • Qiu Y, Li Y (2018) A theoretical method for the high-sensitivity fluorescence detection of PAEs through double-substitution modification. Environ Sci Pollut Res 25:34684–34692

    CAS  Google Scholar 

  • Qiu C, Gong Y, Guo Y, Zhang C, Wang P, Zhao J, Che Y (2019) Sensitive fluorescence detection of phthalates by suppressing the intramolecular motion of nitrophenyl groups in porous crystalline ribbons. Anal Chem 91:13355–13359

    CAS  Google Scholar 

  • Qureshi MS, Yusoff ARbM, Wirzal MDH, Sirajuddin, Barek J, Afridi HI, Üstündag Z (2016) Methods for the determination of endocrine-disrupting phthalate esters. Crit Rev Anal Chem 46:146–159

    CAS  Google Scholar 

  • Rendedula D, Satyanarayana GNV, Asati A, Kaliyaperumal M, Mudiam MKR (2021) Development of a multiclass method to quantify phthalates, pharmaceuticals, and personal care products in river water using ultra-high performance liquid chromatography coupled with quadrupole hybrid Orbitrap mass spectrometry. Anal Sci Adv 2:373–386

    CAS  Google Scholar 

  • Rivera-Utrilla J, Ocampo-Pérez R, Méndez-Díaz JD, Sánchez-Polo M (2012) Environmental impact of phthalic acid esters and their removal from water and sediments by different technologies—a review. J Environ Manag 109:164–178

    Google Scholar 

  • Roth Z, Komsky-Elbaz A, Kalo D (2020) Effect of environmental contamination on female and male gametes–a lesson from bovines. Animal Reproduction 17:e20200041

  • Rotondo E, Chiarelli F (2020) Endocrine-disrupting chemicals and insulin resistance in children. Biomedicines 8:137

    CAS  Google Scholar 

  • Salazar-Beltrán D, Hinojosa-Reyes L, Ruiz-Ruiz E, Hernández-Ramírez A, Guzmán-Mar JL (2018) Phthalates in beverages and plastic bottles: sample preparation and determination. Food Anal Methods 11:48–61

    Google Scholar 

  • Samir K, Prabhat K, Anamika D, Chandra Shakher P (2020) Surface-enhanced raman scattering: introduction and applications. In: Mojtaba K, Parsoua AS (eds) Recent advances in nanophotonics. IntechOpen, Rijeka, pp 1–24

  • Sánchez C (2020) Fungal potential for the degradation of petroleum-based polymers: an overview of macro- and microplastics biodegradation. Biotechnol Adv 40:107501

    Google Scholar 

  • Sangwan S, Dukare A (2018) Microbe-mediated bioremediation: an eco-friendly sustainable approach for environmental clean-up. In: Adhya TK, Lal B, Mohapatra B, Paul D, Das S (eds) Advances in soil microbiology: recent trends and future prospects. Springer Germany, pp 145–163

  • Santana-Mayor Á, Socas-Rodríguez B, Rodríguez-Ramos R, Herrera-Herrera AV, Rodríguez-Delgado MÁ (2021) Quality assessment of environmental water by a simple and fast non-ionic hydrophobic natural deep eutectic solvent-based extraction procedure combined with liquid chromatography tandem mass spectrometry for the determination of plastic migrants. Anal Bioanal Chem 413:1967–1981

    CAS  Google Scholar 

  • Savinova O, Shabaev A, Glazunova O, Eremin S, Fedorova T (2022) Biodestruction of phthalic acid esters by white rot fungi. Appl Biochem Microbiol 58:598–612

    CAS  Google Scholar 

  • Savinova OS, Shabaev AV, Fedorova TV (2023) Biodegradation of phthalic acid esters by the white-rot fungus Peniophora lycii. Microbiology 92:427–433

    CAS  Google Scholar 

  • Scaria J, Gopinath A, Nidheesh P (2021) A versatile strategy to eliminate emerging contaminants from the aqueous environment: heterogeneous Fenton process. J Clean Prod 278:124014

    CAS  Google Scholar 

  • Schmidt N, Castro-Jiménez J, Fauvelle V, Ourgaud M, Sempéré R (2020) Occurrence of organic plastic additives in surface waters of the Rhône River (France). Environ Pollut 257:113637

    CAS  Google Scholar 

  • Sedha S, Lee H, Singh S, Kumar S, Jain S, Ahmad A, Jardan YAB, Sonwal S, Shukla S, Simal-Gandara J (2021) Reproductive toxic potential of phthalate compounds—state of art review. Pharmacol Res 167:105536

    CAS  Google Scholar 

  • Shaikh H, Memon N, Khan H, Bhanger M, Nizamani S (2012) Preparation and characterization of molecularly imprinted polymer for di (2-ethylhexyl) phthalate: application to sample clean-up prior to gas chromatographic determination. J Chromatogr A 1247:125–133

    CAS  Google Scholar 

  • Sharma R, Kaur R (2020) Physiological and metabolic alterations induced by phthalates in plants: possible mechanisms of their uptake and degradation. Environ Sustain 3:391–404

    CAS  Google Scholar 

  • Shen C, Wu S, Chen H, Rashid S, Wen Y (2016) Phthalate degradation by glow discharge plasma enhanced with pyrite in aqueous solution. Water Sci Technol 74:1365–1375

    CAS  Google Scholar 

  • Shiota K, Mima S (1985) Assessment of the teratogenicity of di (2-ethylhexyl) phthalate and mono (2-ethylhexyl) phthalate in mice. Arch Toxicol 56:263–266

    CAS  Google Scholar 

  • Singh AR, Lawrence WH, Autian J (1972) Teratogenicity of phthalate esters in rats. J Pharm Sci 61:51–55

    CAS  Google Scholar 

  • Singh A, Lawrence W, Autian J (1975) Maternal-fetal transfer of 14C-di-2-ethylhexyl phthalate and 14C-diethyl phthalate in rats. J Pharm Sci 64:1347–1350

    CAS  Google Scholar 

  • Singh S, Sharma P, Pal N, Kumawat M, Shubham S, Sarma DK, Tiwari RR, Kumar M, Nagpal R (2022) Impact of environmental pollutants on gut microbiome and mental health via the gut–brain axis. Microorganisms 10:1457

    CAS  Google Scholar 

  • Sitko R, Zawisza B, Malicka E (2013) Graphene as a new sorbent in analytical chemistry. TrAC Trends Anal Chem 51:33–43

    CAS  Google Scholar 

  • Speltini A, Scalabrini A, Maraschi F, Sturini M, Profumo A (2017) Newest applications of molecularly imprinted polymers for selective extraction of contaminants from environmental and food matrices: a review. Anal Chim Acta 974:1–26

    CAS  Google Scholar 

  • Sreedhashyam H, Mehtab V, Chenna S, Upadhyayula VV (2022) Simultaneous determination of phthalates and bisphenols from plastic bottled water samples by dispersive solid-phase extraction with multiwalled carbon nanotubes and liquid chromatography/atmospheric pressure photoionization/high-resolution mass spectrometry. Rapid Commun Mass Spectrom 36:e9394

    CAS  Google Scholar 

  • Sun C, Sun R, Wu X, Yin S, Li Y, Yang D (2021) Analytical methods for phthalates in water samples. In: Inamuddin, Ahamed MI, Lichtfouse E (eds) Water pollution and remediation: organic pollutants. Springer International Publishing, Cham, pp 539–575

  • Szaniawska A, Kudelski A (2021) Applications of surface-enhanced raman scattering in biochemical and medical analysis. Front Chem 9:664134

  • Terry LR, Sanders S, Potoff RH, Kruel JW, Jain M, Guo H (2022) Applications of surface-enhanced Raman spectroscopy in environmental detection. Anal Sci Adv 3:113–145

    CAS  Google Scholar 

  • Thakur H, GA N, R V (2015) Biosorption of di-butyl phthalate from aqueous solutions using Pleurotus ostreatus: isotherm and kinetic study. J Chem Pharm Res 7:697–706

    CAS  Google Scholar 

  • Tran H-T, Nguyen M-K, Hoang H-G, Hutchison JM, Vu CT (2022a) Composting and green technologies for remediation of phthalate (PAE)-contaminated soil: current status and future perspectives. Chemosphere 307:135989

    CAS  Google Scholar 

  • Tran HT, Lin C, Bui X-T, Nguyen MK, Cao NDT, Mukhtar H, Hoang HG, Varjani S, Ngo HH, Nghiem LD (2022b) Phthalates in the environment: characteristics, fate and transport, and advanced wastewater treatment technologies. Bioresour Technol 344:126249

    Google Scholar 

  • Tu D, Garza JT, Coté GL (2019) A SERS aptasensor for sensitive and selective detection of bis (2-ethylhexyl) phthalate. RSC Adv 9:2618–2625

    CAS  Google Scholar 

  • Vannucchi F, Francini A, Pierattini EC, Raffaelli A, Sebastiani L (2019) Populus alba dioctyl phthalate uptake from contaminated water. Environ Sci Pollut Res 26:25564–25572

    CAS  Google Scholar 

  • Vieira WT, de Farias MB, Spaolonzi MP, da Silva MGC, Vieira MGA (2020) Removal of endocrine disruptors in waters by adsorption, membrane filtration and biodegradation. A review. Environ Chem Lett 18:1113–1143

    CAS  Google Scholar 

  • Vymazal J (2010) Constructed wetlands for wastewater treatment. Water 2:530–549

    CAS  Google Scholar 

  • Wang X, Grady CL Jr (1994) Comparison of biosorption isotherms for di-n-butyl phthalate by live and dead bacteria. Water Res 28:1247–1251

    CAS  Google Scholar 

  • Wang F, Yao J, Sun K, Xing B (2010) Adsorption of dialkyl phthalate esters on carbon nanotubes. Environ Sci Technol 44:6985–6991

    CAS  Google Scholar 

  • Wang HX, Xu JL, Sheng LX, Liu XJ (2018a) A review of research on substrate materials for constructed wetlands, materials science forum. Trans Tech Publications, pp 917–929

  • Wang T, Jia H, Guo X, Xia T, Qu G, Sun Q, Yin X (2018b) Evaluation of the potential of dimethyl phthalate degradation in aqueous using sodium percarbonate activated by discharge plasma. Chem Eng J 346:65–76

    CAS  Google Scholar 

  • Wang H-X, Zhao Y-W, Li Z, Liu B-S, Zhang D (2019a) Development and application of aptamer-based surface-enhanced Raman spectroscopy sensors in quantitative analysis and biotherapy. Sensors 19:3806

    CAS  Google Scholar 

  • Wang L, Pang S, Zhou G (2019b) Recent advances in spectroscopy technology for trace analysis of persistent organic pollutants. Appl Sci 9:3439

    CAS  Google Scholar 

  • Wang X, Chen C, Xu L, Zhang H, Xu Z (2019c) Development of molecularly imprinted biomimetic immunoassay method based on quantum dot marker for detection of phthalates. Food Agric Immunol 30:1007–1019

    CAS  Google Scholar 

  • Wang Y, Li W, Hu X, Zhang X, Huang X, Li Z, Li M, Zou X, Shi J (2021) Efficient preparation of dual-emission ratiometric fluorescence sensor system based on aptamer-composite and detection of bis (2-ethylhexyl) phthalate in pork. Food Chem 352:129352

    CAS  Google Scholar 

  • Wang X, Zhang Y, Huang B, Chen Z, Zhong M, Lu Q, Liu X, Ji Q (2022b) Phthalate pollution and migration in soil-air-vegetable systems in typical plastic agricultural greenhouses in northwestern China. Sci Total Environ 809:151101

    CAS  Google Scholar 

  • Wang M, Lu J, Zhou L, Su Y, Yao H, Li M, Yin X (2023a) Residual status and source analysis of phthalate esters in Ulungur Lake, China. Environ Geochem Health 45:5991–6007

    CAS  Google Scholar 

  • Wang M, Su Y, Lu J, Yan Y, Yin X, Zhou L (2023b) Content level and risk assessment of phthalate esters in surface water of Bosten Lake, China. Environ Sci Pollut Res 30:74991–75001

    CAS  Google Scholar 

  • Wang S, Pan M, Liu K, Xie X, Yang J, Hong L, Wang S (2022b) A SiO2@MIP electrochemical sensor based on MWCNTs and AuNPs for highly sensitive and selective recognition and detection of dibutyl phthalate. Food Chem 381:132225

  • WHO (2011) Guidelines for drinking-water quality, Fourth edition. WHO chronicles 38:104–108

  • Wieczorek K, Szczęsna D, Jurewicz J (2022) Environmental exposure to non-persistent endocrine disrupting chemicals and endometriosis: a systematic review. Int J Environ Res Public Health 19:5608

    CAS  Google Scholar 

  • Wierucka M, Biziuk M (2014) Application of magnetic nanoparticles for magnetic solid-phase extraction in preparing biological, environmental and food samples. TrAC Trends Anal Chem 59:50–58

    CAS  Google Scholar 

  • Wolecki D, Trella B, Qi F, Stepnowski P, Kumirska J (2021) Evaluation of the removal of selected phthalic acid esters (PAEs) in municipal wastewater treatment plants supported by constructed wetlands. Molecules 26:6966

    CAS  Google Scholar 

  • Wu X, Liang R, Dai Q, Jin D, Wang Y, Chao W (2010) Complete degradation of di-n-octyl phthalate by biochemical cooperation between Gordonia sp. strain JDC-2 and Arthrobacter sp. strain JDC-32 isolated from activated sludge. J Hazard Mater 176:262–268

    CAS  Google Scholar 

  • Wu X, Hong H, Liu X, Guan W, Meng L, Ye Y, Ma Y (2013) Graphene-dispersive solid-phase extraction of phthalate acid esters from environmental water. Sci Total Environ 444:224–230

    CAS  Google Scholar 

  • Wu M-C, Lin M-P, Lin T-H, Su W-F (2018) Ag/SiO2 surface-enhanced Raman scattering substrate for plasticizer detection. Jpn J Appl Phys 57:04FM07

    Google Scholar 

  • Wu K, Dumat C, Li H, Xia H, Li Z, Wu J (2019) Responses of soil microbial community and enzymes during plant-assisted biodegradation of di-(2-ethylhexyl) phthalate and pyrene. Int J Phytoremediation 21:683–692

    CAS  Google Scholar 

  • Wu Y, Zhou Q, Yuan Y, Wang H, Tong Y, Zhan Y, Sheng X, Sun Y, Zhou X (2020) Enrichment and sensitive determination of phthalate esters in environmental water samples: a novel approach of MSPE-HPLC based on PAMAM dendrimers-functionalized magnetic-nanoparticles. Talanta 206:120213

    CAS  Google Scholar 

  • Xiaoyan T, Suyu W, Yang Y, Ran T, Yunv D, Dan A, Li L (2015) Removal of six phthalic acid esters (PAEs) from domestic sewage by constructed wetlands. Chem Eng J 275:198–205

    Google Scholar 

  • Xie L, Jiang R, Zhu F, Liu H, Ouyang G (2014) Application of functionalized magnetic nanoparticles in sample preparation. Anal Bioanal Chem 406:377–399

    CAS  Google Scholar 

  • Xie J, Liu B, Wang H (2021) Fabrication of three bio-adsorbents from different parts of rape straw. Can J Chem 99:614–618

    CAS  Google Scholar 

  • Xing S, Zhang W, Qiao J, Hou X (2018) Determination of ultra-low level plutonium isotopes (239Pu, 240Pu) in environmental samples with high uranium. Talanta 187:357–364

    CAS  Google Scholar 

  • Xu X-R, Li S-X, Li X-Y, Gu J-D, Chen F, Li X-Z, Li H-B (2009) Degradation of n-butyl benzyl phthalate using TiO2/UV. J Hazard Mater 164:527–532

    CAS  Google Scholar 

  • Xu Q, Yin X, Wu S, Wang M, Wen Z, Gu Z (2010) Determination of phthalate esters in water samples using Nylon6 nanofibers mat-based solid-phase extraction coupled to liquid chromatography. Microchim Acta 168:267–275

    CAS  Google Scholar 

  • Xu Y, Wang L, Li S, Zhang W, Jing Q, Cao J (2016) Adsorption of PAEs from aqueous solution by modified zeolites. Desalin Water Treat 57:18300–18313

    CAS  Google Scholar 

  • Xue X, Su Y, Su H, Fan D, Jia H, Chu X, Song X, Liu Y, Li F, Xue J (2021) Occurrence of phthalates in bottled drinks in the Chinese market and its implications for dietary exposure. Molecules 26:6054

    CAS  Google Scholar 

  • Yamauchi T, Nakajima R, Tsuchiya M, Yabuki A, Kitahashi T, Nagano Y, Isobe N, Nakata H (2021) Plastic additives in deep-sea debris collected from the western North Pacific and estimation for their environmental loads. Sci Total Environ 768:144537

    Google Scholar 

  • Yan H, Cheng X, Yang G (2012) Dummy molecularly imprinted solid-phase extraction for selective determination of five phthalate esters in plastic bottled functional beverages. J Agric Food Chem 60:5524–5531

    CAS  Google Scholar 

  • Yang J, Li Y, Wang Y, Ruan J, Zhang J, Sun C (2015a) Recent advances in analysis of phthalate esters in foods. TrAC Trends Anal Chem 72:10–26

    CAS  Google Scholar 

  • Yang J, Guo C, Liu S, Liu W, Wang H, Dang Z, Lu G (2018) Characterization of a di-n-butyl phthalate-degrading bacterial consortium and its application in contaminated soil. Environ Sci Pollut Res 25:17645–17653

    CAS  Google Scholar 

  • Yang J, Rorrer GL, Wang AX (2015b) Bioenabled SERS substrates for food safety and drinking water monitoring. Proc SPIE Int Soc Opt Eng 9488

  • Ye Q, Liu L, Chen Z (2014) Analysis of phthalate acid esters in environmental water by magnetic graphene solid phase extraction coupled with gas chromatography–mass spectrometry. J Chromatogr A 1329:24–29

    CAS  Google Scholar 

  • Ye H, Zhao B, Zhou Y, Du J, Huang M (2021) Recent advances in adsorbents for the removal of phthalate esters from water: material, modification, and application. Chem Eng J 409:128127

    CAS  Google Scholar 

  • Yilmaz E, Soylak M (2020) Historical backgrounds, milestones in the field of development of separation and preconcentration methods. In: Soylak M, Yilmaz E (eds) New generation green solvents for separation and preconcentration of organic and inorganic species. Elsevier, pp 1–43

  • Zakharkiv I, Zui M, Zaitsev V (2020) Determination of phthalate esters in water and liquid pharmaceutical samples by dispersive liquid-liquid microextraction (DLLME) and gas chromatography with flame ionization detection (GC-FID). Anal Lett 53:1536–1553

    CAS  Google Scholar 

  • Zeghioud H, Nguyen-Tri P, Khezami L, Amrane A, Assadi AA (2020) Review on discharge plasma for water treatment: mechanism, reactor geometries, active species and combined processes. J Water Process Eng 38:101664

    Google Scholar 

  • Zhang M, Sheng Y (2010) An indirect competitive fluorescence immunoassay for determination of dicyclohexyl phthalate in water samples. J Fluoresc 20:1167–1173

    CAS  Google Scholar 

  • Zhang C, Wang Y (2009) Removal of dissolved organic matter and phthalic acid esters from landfill leachate through a complexation–flocculation process. Waste Manag 29:110–116

    Google Scholar 

  • Zhang M-C, Wang Q-E, Zhuang H-S (2006) A novel competitive fluorescence immunoassay for the determination of dibutyl phthalate. Anal Bioanal Chem 386:1401–1406

    CAS  Google Scholar 

  • Zhang W, Xu Z, Pan B, Lv L, Zhang Q, Zhang Q, Du W, Pan B, Zhang Q (2007) Assessment on the removal of dimethyl phthalate from aqueous phase using a hydrophilic hyper-cross-linked polymer resin NDA-702. J Colloid Interface Sci 311:382–390

    CAS  Google Scholar 

  • Zhang M, Cong Y, Sheng Y, Liu B (2010a) A direct competitive enzyme-linked immunosorbent assay by antibody coated for diethyl phthalate analysis. Anal Biochem 406:24–28

    CAS  Google Scholar 

  • Zhang XL, Niu HY, Zhang SX, Cai YQ (2010b) Preparation of a chitosan-coated C18-functionalized magnetite nanoparticle sorbent for extraction of phthalate ester compounds from environmental water samples. Anal Bioanal Chem 397:791–798

    CAS  Google Scholar 

  • Zhang M, Liu B, Cong Y, Liu S, Hu Y (2011) Development of highly specific fluorescence immunoassay and enzyme-linked immunosorbent assay for detection of dimethyl phthalate in water samples. Food Agric Immunol 22:297–309

    CAS  Google Scholar 

  • Zhang M, Liu S, Zhuang H, Hu Y (2012) Determination of dimethyl phthalate in environment water samples by a highly sensitive indirect competitive ELISA. Appl Biochem Biotechnol 166:436–445

    CAS  Google Scholar 

  • Zhang Q, Song J, Li X, Peng Q, Yuan H, Li N, Duan L, Ma J (2019a) Concentrations and distribution of phthalate esters in the seamount area of the Tropical Western Pacific Ocean. Mar Pollut Bull 140:107–115

    CAS  Google Scholar 

  • Zhang Z, Zhang C, Huang Z, Yi X, Zeng H, Zhang M, Huang M (2019b) Residue levels and spatial distribution of phthalate acid esters in water and sediment from urban lakes of Guangzhou, China. J Environ Sci Health Part A 54:127–135

    CAS  Google Scholar 

  • Zhang Y-J, Guo J-L, Xue J-c, Bai C-L, Guo Y (2021) Phthalate metabolites: characterization, toxicities, global distribution, and exposure assessment. Environ Pollut 291:118106

    CAS  Google Scholar 

  • Zhao X-K, Yang G-P, Wang Y-J, Gao X-C (2004) Photochemical degradation of dimethyl phthalate by Fenton reagent. J Photochem Photobiol A: Chem 161:215–220

    CAS  Google Scholar 

  • Zhao Y, Cho C-W, Cui L, Wei W, Cai J, Wu G, Yun Y-S (2019) Adsorptive removal of endocrine-disrupting compounds and a pharmaceutical using activated charcoal from aqueous solution: kinetics, equilibrium, and mechanism studies. Environ Sci Pollut Res 26:33897–33905

    CAS  Google Scholar 

  • Zhao X, Shen J-m, Zhang H, Li X, Chen Z-l, Wang X-c (2020) The occurrence and spatial distribution of phthalate esters (PAEs) in the Lanzhou section of the Yellow River. Environ Sci Pollut Res 27:19724–19735

    CAS  Google Scholar 

  • Zhao X, Wang R, Dong L, Li W, Li M, Wu H (2021) Simultaneous removal of nitrogen and dimethyl phthalate from low-carbon wastewaters by using intermittently-aerated constructed wetlands. J Hazard Mater 404:124130

    CAS  Google Scholar 

  • Zheng Z, Zhang H, He P-J, Shao L-M, Chen Y, Pang L (2009) Co-removal of phthalic acid esters with dissolved organic matter from landfill leachate by coagulation and flocculation process. Chemosphere 75:180–186

    CAS  Google Scholar 

  • Zheng L, Liu T, Xie E, Liu M, Ding A, Zhang B-T, Li X, Zhang D (2020a) Partition and fate of phthalate acid esters (PAEs) in a full-scale horizontal subsurface flow constructed wetland treating polluted river water. Water 12:865

    CAS  Google Scholar 

  • Zheng S, Zhao Y, Liangwei W, Liang J, Liu T, Zhu M, Li Q, Sun X (2020b) Characteristics of microplastics ingested by zooplankton from the Bohai Sea, China. Sci Total Environ 713:136357

    CAS  Google Scholar 

  • Zhou Z, Li T, Xu W, Huang W, Wang N, Yang W (2017) Synthesis and characterization of fluorescence molecularly imprinted polymers as sensor for highly sensitive detection of dibutyl phthalate from tap water samples. Sensors Actuators B: Chem 240:1114–1122

    CAS  Google Scholar 

  • Zhou Z, Goodrich JM, Strakovsky RS (2020) Mitochondrial epigenetics and environmental health: making a case for endocrine disrupting chemicals. Toxicol Sci 178:16–25

    CAS  Google Scholar 

  • Ziembowicz S, Kida M, Koszelnik P (2018) Development of an analytical method for dibutyl phthalate (DBP) determination in water samples using gas chromatography, E3S Web of Conferences. EDP Sciences, pp 00200

  • Zolfaghari M, Drogui P, Seyhi B, Brar SK, Buelna G, Dubé R (2014) Occurrence, fate and effects of di (2-ethylhexyl) phthalate in wastewater treatment plants: a review. Environ Pollut 194:281–293

    CAS  Google Scholar 

Download references

Funding

This work was supported by the Department of Science and Technology, Govt. of India (F. No. DST/TMD-EWO/WTI/2K19/EWFH/2019/271(G)). We also thank Council of Scientific and Industrial Research (CSIR), Govt. of India for providing fellowship to author — Anannya Tuli (F. No. 09/006(0525)/2020-EMR-I).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Data curation was performed by Anannya Tuli and Gayatri Suresh. The first draft of the manuscript was written by Anannya Tuli and Gayatri Suresh. The manuscript was reviewed and edited by Nabanita Halder and Thirumurthy Velpandian. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Thirumurthy Velpandian.

Ethics declarations

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Thomas D. Bucheli

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tuli, A., Suresh, G., Halder, N. et al. Analysis and remediation of phthalates in aquatic matrices: current perspectives. Environ Sci Pollut Res 31, 23408–23434 (2024). https://doi.org/10.1007/s11356-024-32670-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-024-32670-x

Keywords

Navigation