Skip to main content
Log in

A critical review on fate, behavior, and ecotoxicological impact of zinc oxide nanoparticles on algae

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The rapid inclusion of zinc oxide nanoparticles (ZnO NPs) in nanotechnology-based products over the last decade has generated a new threat in the apprehension of the environment. The massive use of zinc nanosized products will certainly be disposed of and be released, eventually entering the aquatic ecosystem, posing severe environmental hazards. Moreover, nanosized ZnO particles owing the larger surface area per volume exhibit different chemical interactions within the aquatic ecosystem. They undergo diverse potential transformations because of their unique physiochemical properties and the feature of receiving medium. Therefore, assessment of their impact is critical not only for scavenging the present situation but also for preventing unintended environmental hazards. Algae being a primary producer of the aquatic ecosystem help assess the risk of massive NPs usage in environmental health. Because of their nutritional needs and position at the base of aquatic food webs, algal indicators exhibit relatively unique information concerning ecosystem conditions. Moreover, algae are presently the most vital part of the circular economy. Hence, it is imperative to understand the physiologic, metabolic, and morphologic changes brought by the ZnO NPs to the algal cells along with the development of the mechanism imparting toxicity mechanism. We also need to develop an appropriate scientific strategy in the innovation process to restrain the exposure of NPs at safer levels. This review provides the details of ZnO NP interaction with algae. Moreover, their impact, mechanism, and factors affecting toxicity to the algae are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Code availability

Not applicable.

Abbreviations

DOM:

Dissolved organic matter

EC50 :

Half maximal effective concentration

FTIR:

Fourier transform infrared

IC50 :

Inhibitory concentration 50

LDH:

Lactate dehydrogenase

MTT assay:

(3-(4,5-Dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide) assay

NPs:

Nanoparticles

OECD:

The Organization for Economic Cooperation And Development

ROS:

Reactive oxygen species

SEM:

Scanning electron microscope

SOD:

Superoxide dismutase

UV:

Ultraviolet

ZnO:

Zinc oxide

References

  • Agbogidi OM, Michael OE, Egboduku OW, Stephen OF (2018) Relevance of algae as biological indicators of pollution management studies. Choubisa, SL

  • Aguilar A, Schüth C, Castrejon U, et al (2023a) Statistical analysis and assessment of water quality parameters in relation to the use of algae as bioindicators in contaminated reservoirs. Springer

  • Aguilar AG, Schüth C, Castrejon UR, Luna BN, Muñoz AS (2023b) Statistical analysis and assessment of water quality parameters in relation to the use of algae as bioindicators in contaminated reservoirs. Water Air Soil Pollut 234(2):98. https://doi.org/10.1007/S11270-023-06121-1

  • Ali I, Alharbi OML, Tkachev A et al (2018) Water treatment by new-generation graphene materials: hope for bright future. Environ Sci Pollut Res 25:7315–7329

    Article  CAS  Google Scholar 

  • Ando N, Hoshino E (1990) Predominant obligate anaerobes invading the deep layers of root canal dentine. Int Endod J 23(1):20–27

  • Araujo-Lima CF, Nunes RJ, Carpes RM, Aiub CA, Felzenszwalb I (2017) Pharmacokinetic and toxicological evaluation of a zinc gluconate-based chemical sterilant using in vitro and in silico approaches. BioMed Res Int 2017

  • Aravantinou AF, Tsarpali V, Dailianis S, Manariotis ID (2015) Effect of cultivation media on the toxicity of ZnO nanoparticles to freshwater and marine microalgae. Ecotoxicol Environ Saf 114:109–116

  • Aruoja V, Kahru A, Dubourguier HC (2008) Toxicity of ZnO, TiO2 and CuO nanoparticles to microalgae Pseudokirchneriella subcapitata. Toxicol Lett (180):S220

  • Aruoja V, Dubourguier HC, Kasemets K, Kahru A (2009) Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata. Sci Total Environ 407(4):1461–1468

  • Araujo-Lima CF, Carvalho RDCC, Peres RB, de Almeida Fiuza LF, Galvão BVD, Castelo-Branco FS, ..., Soeiro MDNC (2023) In silico and in vitro assessment of anti-Trypanosoma cruzi efficacy, genotoxicity and pharmacokinetics of pentasubstituted pyrrolic Atorvastatin-aminoquinoline hybrid compounds. Acta Tropica 242:106924

  • Bathi JR, Wright L, Khan E (2022) Critical review of engineered nanoparticles: environmental concentrations and toxicity. Curr Pollut Rep 8:498–518

    Article  CAS  Google Scholar 

  • Bhatia S (20170 Photocatalytic activity of ZnO nanoparticles with optimization of defects. Elsevier

  • Bhuvaneshwari M, Iswarya V, Archanaa S et al (2015) Cytotoxicity of ZnO NPs towards fresh water algae Scenedesmus obliquus at low exposure concentrations in UV-C, visible and dark conditions. Aquat Toxicol 162:29–38

    Article  PubMed  CAS  Google Scholar 

  • Bhuvaneshwari M, Iswarya V, Chandrasekaran N, Mukherjee A (2018) A review on ecotoxicity of zinc oxide nanoparticles on freshwater algae. Nanomaterials: Ecotoxicity, Safety, and Public Perception 191–206

  • Campos F, Silva PV, Soares AM, Martins R, Loureiro S (2023) Harmonizing nanomaterial exposure methodologies in ecotoxicology: the effects of two innovative nanoclays in the freshwater microalgae Raphidocelis subcapitata. Nanotoxicology 17(5):401–419

  • Casas-Beltran DA, Hernández-Pedraza M, Alvarado-Flores J (2020) Estimation of the discharge of sunscreens in aquatic environments of the Mexican Caribbean. Environments 7:15

    Article  Google Scholar 

  • Castro-Bugallo A, González-Fernández Á, Guisande C, Barreiro A (2014) Comparative responses to metal oxide nanoparticles in marine phytoplankton. Archives of Environ Contam Toxicol 67:483–493

  • Chen C, Huang W (2017) Aggregation kinetics of diesel soot nanoparticles in wet environments. Environ Sci Technol 51:2077–2086

    Article  PubMed  ADS  CAS  Google Scholar 

  • Chen P, Powell B (2012) Adaptive interactions between zinc oxide nanoparticles and Chlorella sp. ACS Publications 46:12178–12185. https://doi.org/10.1021/es303303g

    Article  CAS  Google Scholar 

  • Chen F, Aqeel M, Maqsood MF, Khalid N, Irshad MK, Ibrahim M, ..., Lam SS (2022) Mitigation of lead toxicity in Vigna radiata genotypes by silver nanoparticles. Environ Pollut 308:11960

  • Chintamani A, Mohanty P (1988) Zinc induced changes in growth of the cyanobacterium Synechococcus (6031): characteristics of adaptation to elevated zinc concentration. Phykos(Algiers) 27:65–71

    CAS  Google Scholar 

  • Cilia G, Bortolotti L, Albertazzi S et al (2022) Honey bee (Apis mellifera L.) colonies as bioindicators of environmental SARS-CoV-2 occurrence. Sci Total Environ 805:150327

    Article  PubMed  ADS  CAS  Google Scholar 

  • Corma A, Atienzar P, Garcia H, Chane-Ching J-Y (2004) Hierarchically mesostructured doped CeO2 with potential for solar-cell use. Nat Mater 3:394–397

    Article  PubMed  ADS  CAS  Google Scholar 

  • Dai H, Han T, Cui J et al (2022) Stability, aggregation, and sedimentation behaviors of typical nano metal oxide particles in aqueous environment. J Environ Manag 316:115217

    Article  CAS  Google Scholar 

  • Das S, Thiagarajan V, Chandrasekaran N et al (2022) Nanoplastics enhance the toxic effects of titanium dioxide nanoparticle in freshwater algae Scenedesmus obliquus. Comp Biochem Physiol c: Toxicol Pharmacol 256:109305

    PubMed  CAS  Google Scholar 

  • Dastjerdi R, Montazer M (2010) A review on the application of inorganic nano-structured materials in the modification of textiles: focus on anti-microbial properties. Colloids Surf B Biointerfaces 79:5–18

    Article  PubMed  CAS  Google Scholar 

  • de Almeida ACO, dos Santos LF, Vicentini DS et al (2021) Evaluation of toxicity of zinc oxide nanorods on green microalgae of freshwater and marine ecosystems. Environ Chem Ecotoxicol 3:85–90

    Article  CAS  Google Scholar 

  • de Godos Crespo I, Álvaro AG, Palomar CR et al (2023) Algal-bacterial consortiums, from fundamental interactions to environmental applications . In: Marine organisms: a solution to environmental pollution? Uses in bioremediation and in biorefinery. Springer, pp 65–77

  • Dedman CJ, Rizk MM, Christie-Oleza JA, Davies GL (2021) Investigating the impact of cerium oxide nanoparticles upon the ecologically significant marine cyanobacterium Prochlorococcus. Front Mar Sci 8:668097

  • Djearamane S, Lim YM, Wong LS, Lee PF (2018) Cytotoxic effects of zinc oxide nanoparticles on cyanobacterium Spirulina (Arthrospira) platensis. PeerJ 6:e4682

    Article  PubMed  PubMed Central  Google Scholar 

  • Djearamane S, Lim YM, Wong LS, Lee PF (2019) Cellular accumulation and cytotoxic effects of zinc oxide nanoparticles in microalga Haematococcus pluvialis. PeerJ 7:e7582

    Article  PubMed  PubMed Central  Google Scholar 

  • Fang R, Gong J, Cao W, Chen Z, Huang D, Ye J, Cai Z (2022) The combined toxicity and mechanism of multi-walled carbon nanotubes and nano copper oxide toward freshwater algae: Tetradesmus obliquus. J Environ Sci 112:376–387

  • Feizi S, Kosari-Nasab M, Divband B et al (2022) Comparison of the toxicity of pure and samarium-doped zinc oxide nanoparticles to the green microalga Chlorella vulgaris. Environ Sci Pollut Res 29:32002–32015

    Article  CAS  Google Scholar 

  • Franklin NM, Rogers NJ, Apte SC, Batley GE, Gadd GE, Casey PS (2007) Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): the importance of particle solubility. Environ Sci Technol 41(24):8484–8490

  • Frederickson CJ, Bush AI (2001) Synaptically released zinc: physiological functions and pathological effects. Biometals 14:353–366. https://doi.org/10.1023/A:1012934207456

    Article  PubMed  CAS  Google Scholar 

  • Gottschalk F, Sonderer T, Scholz RW, Nowack B (2009) Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions. Environ Sci Technol 43:9216–9222

    Article  PubMed  ADS  CAS  Google Scholar 

  • Gunawan C, Sirimanoonphan A, Teoh WY et al (2013) Submicron and nano formulations of titanium dioxide and zinc oxide stimulate unique cellular toxicological responses in the green microalga Chlamydomonas reinhardtii. J Hazard Mater 260:984–992

    Article  PubMed  CAS  Google Scholar 

  • Gupta GS, Shanker R, Dhawan A, Kumar A (2017) Impact of nanomaterials on the aquatic food chain. Nanosci Food Agric 5:309–333

    Article  Google Scholar 

  • Hao L, Chen L, Hao J, Zhong N (2013) Bioaccumulation and sub-acute toxicity of zinc oxide nanoparticles in juvenile carp (Cyprinus carpio): a comparative study with its bulk counterparts. Ecotoxicol Environ Saf 91:52–60

    Article  PubMed  CAS  Google Scholar 

  • Hazeem LJ, Waheed FA, Rashdan S, Bououdina M, Brunet L, Slomianny C, ..., Elmeselmani WA (2015) Effect of magnetic iron oxide (Fe 3 O 4) nanoparticles on the growth and photosynthetic pigment content of Picochlorum sp. Environ Sci Pollut Res 22:11728–11739

  • Hazeem LJ, Bououdina M, Rashdan S, Brunet L, Slomianny C, Boukherroub R (2016) Cumulative effect of zinc oxide and titanium oxide nanoparticles on growth and chlorophyll a content of Picochlorum sp. Environ Sci Pollut Res 23:2821–2830

  • Hazeem L (2022) Single and combined toxicity effects of zinc oxide nanoparticles: uptake and accumulation in marine microalgae, toxicity mechanisms, and their fate in the marine environment. Water (basel) 14:2669

    CAS  Google Scholar 

  • Hou J, Wu Y, Li X et al (2018) Toxic effects of different types of zinc oxide nanoparticles on algae, plants, invertebrates, vertebrates and microorganisms. Chemosphere 193:852–860

    Article  PubMed  ADS  CAS  Google Scholar 

  • Huang C, Wu D, Khan FA et al (2022) Zinc oxide nanoparticle causes toxicity to the development of mouse oocyte and early embryo. Toxicol Lett 358:48–58

    Article  PubMed  CAS  Google Scholar 

  • Hund-Rinke K, Simon M (2006) Ecotoxic effect of photocatalytic active nanoparticles (TiO2) on algae and daphnids (8 pp). Environ Sci Pollut Res 13:225–232

    Article  CAS  Google Scholar 

  • Ishwarya R, Tamilmani G, Jayakumar R et al (2023) Synthesis of zinc oxide nanoparticles using Vigna mungo seed husk extract: an enhanced antibacterial, anticancer activity and eco-friendly bio-toxicity assessment on algae and zooplankton. J Drug Deliv Sci Technol 79:104002

    Article  CAS  Google Scholar 

  • Jan H, Shah M, Usman H, Khan MA, Zia M, Hano C, Abbasi BH (2023) Biogenic synthesis and characterization of antimicrobial and antiparasitic zinc oxide (ZnO) nanoparticles using aqueous extracts of the Himalayan Columbine. (Aquilegia pubiflora). Front Mater 7:249

  • Ji X, Wang T, Guo L, Xiao J, Li Z, Zhang L, ..., He N (2013) Effect of nanoscale-ZnO on the mechanical property and biocompatibility of electrospun poly (L-lactide) acid/nanoscale-ZnO mats. J Biomed Nanotechnology 9(3):417–423

  • Keller AA, McFerran S, Lazareva A, Suh S (2013) Global life cycle releases of engineered nanomaterials. J Nanopart Res 15:1–17

    Article  Google Scholar 

  • Khare P, Sonane M, Pandey R et al (2011) Adverse effects of TiO2 and ZnO nanoparticles in soil nematode, Caenorhabditis elegans. J Biomed Nanotechnol 7:116–117

    Article  PubMed  CAS  Google Scholar 

  • Kim D-Y, Vijayan D, Praveenkumar R et al (2016) Cell-wall disruption and lipid/astaxanthin extraction from microalgae: Chlorella and Haematococcus. Bioresour Technol 199:300–310

    Article  PubMed  CAS  Google Scholar 

  • Klingshirn C, Hauschild R, Fallert J, Kalt H (2007) Room-temperature stimulated emission of ZnO: alternatives to excitonic lasing. Phys Rev B Condens Matter Mater Phys 75. https://doi.org/10.1103/PHYSREVB.75.115203

  • Kołodziejczak-Radzimska A, Jesionowski J (2014) Zinc oxide—from synthesis to application: a review. Materials 7:2833–2881. https://doi.org/10.3390/ma7042833

    Article  PubMed  PubMed Central  ADS  CAS  Google Scholar 

  • Kong FY, Zhang JW, Li RF, Wang ZX, Wang WJ, Wang W (2017) Unique roles of gold nanoparticles in drug delivery, targeting and imaging applications. Mol 22(9):1445

  • Kráľová K, Masarovičová E, Györyová K (2004) The physiological response of green algae (Chlorella vulgaris) to pH-dependent inhibitory activity of some zinc(II) compounds: carboxylato- and halogenocarboxylatozinc(II) complexes. Chem Pap 58:353–356

    Google Scholar 

  • Lee W (2013) Effects of zinc oxide and titanium dioxide nanoparticles on green algae under visible, UVA, and UVB irradiations: no evidence of enhanced algal toxicity under UV pre. Elsevier

  • Lee WM, An YJ (2013) Effects of zinc oxide and titanium dioxide nanoparticles on green algae under visible, UVA, and UVB irradiations: no evidence of enhanced algal toxicity under UV pre-irradiation. Chemosphere 91(4):536–544

  • Li Y, Niu J, Shang E, Crittenden JC (2016) Influence of dissolved organic matter on photogenerated reactive oxygen species and metal-oxide nanoparticle toxicity. Water Res 98:9–18

    Article  PubMed  CAS  Google Scholar 

  • Li J, Schiavo S, Rametta G, Miglietta ML, La Ferrara V, Wu C, Manzo S (2017) Comparative toxicity of nano ZnO and bulk ZnO towards marine algae Tetraselmis suecica and Phaeodactylum tricornutum. Environ Sci Pollut Res 24:6543–6553

  • Lin Y, Wang J, Dai H et al (2023) Salinity moderated the toxicity of zinc oxide nanoparticles (ZnO NPs) towards the early development of Takifugu obscurus. Int J Environ Res Public Health 20:3209

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu J, Zhang C, Jia H et al (2023) Abiotic transformation of polycyclic aromatic hydrocarbons via interaction with soil components: a systematic review. Crit Rev Environ Sci Technol 53:676–699

    Article  CAS  Google Scholar 

  • Lone JA, Kumar A, Kundu S et al (2013) Characterization of tolerance limit in Spirulina platensis in relation to nanoparticles. Water Air Soil Pollut 224:1–6

    Article  CAS  Google Scholar 

  • Lu PJ, Huang SC, Chen YP, Chiueh LC, Shih DYC (2015) Analysis of titanium dioxide and zinc oxide nanoparticles in cosmetics. J Food and Drug Anal 23(3):587–594

  • Magdolenova Z, Collins A, Kumar A, Dhawan A, Stone V, Dusinska M (2014) Mechanisms of genotoxicity. A review of in vitro and in vivo studies with engineered nanoparticles. Nanotoxicology 8(3):233–278

  • Mahanta M, Kaushik KK (2023) Nanoparticles in aquatic environment: an overview with special reference to their ecotoxicity. Modern nanotechnology: volume 2: green synthesis, sustainable energy and impacts 385–404

  • Mahaye N, Musee N (2023) Evaluation of apical and molecular effects of algae pseudokirchneriellasubcapitata to cerium oxide nanoparticles. Toxics 11(3)–283

  • Mahawar H, Prasanna R, Singh SB, Nain L (2018) Influence of silver, zinc oxide and copper oxide nanoparticles on the cyanobacterium Calothrix elenkinii. Bionanoscience 8:802–810

    Article  Google Scholar 

  • Manzo S, Miglietta ML, Rametta G et al (2013) Toxic effects of ZnO nanoparticles towards marine algae Dunaliella tertiolecta. Sci Total Environ 445:371–376

    Article  PubMed  ADS  Google Scholar 

  • Mao Z, Shi Q, Zhang L, Cao H (2009) The formation and UV-blocking property of needle-shaped ZnO nanorod on cotton fabric. Thin Solid Films 517(8):2681–2686

  • Marella TK, Saxena A, Tiwari A (2020) Diatom mediated heavy metal remediation: a review. Bioresour Technol 305:123068

    Article  Google Scholar 

  • Mei LI, Qin ZHU, Hu C-W et al (2007) Cobalt and manganese stress in the microalga Pavlova viridis (Prymnesiophyceae): effects on lipid peroxidation and antioxidant enzymes. J Environ Sci 19:1330–1335

    Article  Google Scholar 

  • Miao A, Zhang X, Luo Z et al (2010) Zinc oxide–engineered nanoparticles: dissolution and toxicity to marine phytoplankton. Environ Toxicol Chem 29:2814–2822

    Article  PubMed  CAS  Google Scholar 

  • Miller RJ, Lenihan HS, Muller EB et al (2010) Impacts of metal oxide nanoparticles on marine phytoplankton. Environ Sci Technol 44:7329–7334

    Article  PubMed  ADS  CAS  Google Scholar 

  • Mofeed J (2017) Biosorption of heavy metals from aqueous industrial effluent by non-living biomass of two marine green algae Ulva lactuca and Dunaliella salina as Biosorpents. Catrina Int J Environ Sci 16:43–52

    Article  Google Scholar 

  • Mofeed J (2020) Impacts of ZnO nanoparticles on growth and antioxidant enzymes of the green alga Scenedesmus obliquus. Afr J Biol Sci 2(4):33–44

  • Mourad FS, El-Azim A (2019) Use of green alga Ulva lactuca (L.) as an indicator to heavy metal pollution at intertidal waters in Suez Gulf, Aqaba Gulf and Suez Canal, Egypt. Egypt J Aquat Biol Fish 23:437–449

    Article  Google Scholar 

  • Nguyen MK, Moon J-Y, Lee Y-C (2020) Microalgal ecotoxicity of nanoparticles: an updated review. Ecotoxicol Environ Saf 201:110781

    Article  PubMed  CAS  Google Scholar 

  • Nguyen-Deroche TLN, Caruso A, Le TT, Bui TV, Schoefs B, Tremblin G, Morant-Manceau A (2012) Zinc affects differently growth, photosynthesis, antioxidant enzyme activities and phytochelatin synthase expression of four marine diatoms. The Sci World J 2012

  • Nowack B, Bucheli TD (2012) The occurrence, behavior, and effects of engineered nanomaterials in theenvironment. Adv Nanotechnol Environ 150(1):183–218

  • Omar WMW (2010) Perspectives on the use of algae as biological indicators for monitoring and protecting aquatic environments, with special reference to Malaysian freshwater ecosystems. Trop Life Sci Res 21:51

    PubMed  PubMed Central  Google Scholar 

  • Osmond MJ, Mccall MJ (2010) Zinc oxide nanoparticles in modern sunscreens: an analysis of potential exposure and hazard. Nanotoxicology 4:15–41

    Article  PubMed  CAS  Google Scholar 

  • Oukarroum A, Halimi I, Siaj M (2019) Cellular responses of Chlorococcum Sp. algae exposed to zinc oxide nanoparticles by using flow cytometry. Water, Air, & Soil Pollut 230:1–7

  • Padmapriya V, Anand N (2010) The influence of metals on the antioxidant enzyme, superoxide dismutase, present in the cyanobacterium, Anabaena variabilis KÜTZ. ARPN J Agr Biol Sci 5:4–9

    Google Scholar 

  • Park J, Bergey EA, Han T, Pandey LK (2020) Diatoms as indicators of environmental health on Korean islands. Aquat Toxicol 227:105594

    Article  PubMed  CAS  Google Scholar 

  • Parveen A, Bhatnagar P, Bisht B, Kumar S, Joshi S, Gautam P, ..., Anna K (2023) Algal nanobionics to enhance value added products-a review. Curr Res Biotechnol 100124

  • Pendashte H, Shariati F, Keshavarz A, Ramzanpour Z (2013) Toxicity of zinc oxide nanoparticles to Chlorella vulgaris and Scenedesmus dimorphus algae species. World J Fish Mar Sci 5(5):563–570

  • Peng X, Palma S, Fisher NS, Wong SS (2011) Effect of morphology of ZnO nanostructures on their toxicity to marine algae. Aquat Toxicol 102:186–196

    Article  PubMed  CAS  Google Scholar 

  • Peng Y-H, Tsai Y-C, Hsiung C-E et al (2017) Influence of water chemistry on the environmental behaviors of commercial ZnO nanoparticles in various water and wastewater samples. J Hazard Mater 322:348–356

    Article  PubMed  CAS  Google Scholar 

  • Prach M, Stone V, Proudfoot L (2013) Zinc oxide nanoparticles and monocytes: impact of size, charge and solubility on activation status. Toxicol Appl Pharmacol 266:19–26

    Article  PubMed  CAS  Google Scholar 

  • Rajput VD, Kumari A, Upadhyay SK, Minkina T, Mandzhieva S, Ranjan A, ..., Verma KK (2023) Can nanomaterials improve the soil microbiome and crop productivity? Agric 13(2):231

  • Rasmussen JW, Martinez E, Louka P, Wingett DG (2010) Zinc oxide nanoparticles for selective destruction of tumor cells and potential for drug delivery applications. Expert Opin Drug Deliv 7:1063–1077. https://doi.org/10.1517/17425247.2010.502560

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rex MC, Anand S, Rai PK, Mukherjee A (2023) Engineered nanoparticles (ENPs) in the aquatic environment: an overview of their fate and transformations. Water Air Soil Pollut 234:462

    Article  ADS  Google Scholar 

  • Samei M, Sarrafzadeh M-H, Faramarzi MA (2019) The impact of morphology and size of zinc oxide nanoparticles on its toxicity to the freshwater microalga, Raphidocelis subcapitata. Environ Sci Pollut Res 26:2409–2420

    Article  CAS  Google Scholar 

  • Sangchay W (2016) The self-cleaning and photocatalytic properties of TiO2 doped with SnO2 thin films preparation by sol-gel method. Energy Procedia 89:170–176

    Article  CAS  Google Scholar 

  • Sanpradit P, Byeon E, Lee JS, Peerakietkhajorn S (2023) Ecotoxicological, ecophysiological, and mechanistic studies on zinc oxide (ZnO) toxicity in freshwater environment. Comp Biochem Physiol Part C: Toxicol Pharmacol 109720

  • Sathe P, Richter J, Myint M et al (2016) Self-decontaminating photocatalytic zinc oxide nanorod coatings for prevention of marine microfouling: a mesocosm study. Taylor & Francis 32:383–395.https://doi.org/10.1080/08927014.2016.1146256

  • Saxena P (2018) Nanoecotoxicological reports of engineered metal oxide nanoparticles on algae. Curr Pollut Rep 4:128–142

    Article  Google Scholar 

  • Saxena P, Harish (2019) Toxicity assessment of ZnO nanoparticles to freshwater microalgae Coelastrella terrestris. Environ Sci Pollut Res 26:26991–27001

  • Saxena P, Sangela V, Harish (2020) Toxicity evaluation of iron oxide nanoparticles and accumulation by microalgae Coelastrella terrestris. Environ Sci Pollut Res 27:19650–19660. https://doi.org/10.1007/S11356-020-08441-9

    Article  CAS  Google Scholar 

  • Schiavo S, Oliviero M, Miglietta M et al (2016) Genotoxic and cytotoxic effects of ZnO nanoparticles for Dunaliella tertiolecta and comparison with SiO2 and TiO2 effects at population growth inhibition levels. Sci Total Environ 550:619–627

    Article  PubMed  ADS  CAS  Google Scholar 

  • Schiavo S, Oliviero M, Li J, Manzo S (2018) Testing ZnO nanoparticle ecotoxicity: linking time variable exposure to effects on different marine model organisms. Environ Sci Pollut Res 25:4871–4880

  • Segets D, Gradl J, Taylor RK et al (2009a) Analysis of optical absorbance spectra for the determination of ZnO nanoparticle size distribution, solubility, and surface energy. ACS Nano 3:1703–1710. https://doi.org/10.1021/NN900223B

    Article  PubMed  CAS  Google Scholar 

  • Segets D, Tomalino LM (2009b) Real-time monitoring of the nucleation and growth of ZnO nanoparticles using an optical hyper-Rayleigh scattering method. ACS Publications 113:11995–12001. https://doi.org/10.1021/jp9009965

  • Shevlin D, O’Brien N, Cummins E (2018) Silver engineered nanoparticles in freshwater systems–likely fate and behaviour through natural attenuation processes. Sci Total Environ 621:1033–1046

    Article  PubMed  ADS  CAS  Google Scholar 

  • Sibi G, Kumar DA, Gopal T et al (2017) Metal nanoparticle triggered growth and lipid production in Chlorella vulgaris. Int J Sci Res Environ Sci Toxicol 2:1–8

    Google Scholar 

  • Silva A, Figueiredo SA, Sales MG, Delerue-Matos C (2009) Ecotoxicity tests using the green algae Chlorella vulgaris—a useful tool in hazardous effluents management. J Hazard Mater 167:179–185

    Article  PubMed  CAS  Google Scholar 

  • Somasundaran P, Fang X, Ponnurangam S, Li B (2010) Nanoparticles: characteristics, mechanisms and modulation of biotoxicity. Kona Powder Part J 28:38–49

    Article  CAS  Google Scholar 

  • Song W, Zhang J, Guo J et al (2010) Role of the dissolved zinc ion and reactive oxygen species in cytotoxicity of ZnO nanoparticles. Toxicol Lett 199:389–397

    Article  PubMed  CAS  Google Scholar 

  • Sukhanova A, Bozrova S, Sokolov P et al (2018) Dependence of nanoparticle toxicity on their physical and chemical properties. Nanoscale Res Lett 13:1–21

    Article  CAS  Google Scholar 

  • Suman TY, Rajasree SRR, Kirubagaran R (2015) Evaluation of zinc oxide nanoparticles toxicity on marine algae Chlorella vulgaris through flow cytometric, cytotoxicity and oxidative stress analysis. Ecotoxicol Environ Saf 113:23–30

    Article  PubMed  CAS  Google Scholar 

  • Tan CWJ, Gouramanis C, Pham TD et al (2021) Ostracods as pollution indicators in Lap An Lagoon, central Vietnam. Environ Pollut 278:116762

    Article  PubMed  CAS  Google Scholar 

  • Tang Y, Li S, Qiao J et al (2013) Synergistic effects of nano-sized titanium dioxide and zinc on the photosynthetic capacity and survival of Anabaena sp. Int J Mol Sci 14:14395–14407

    Article  PubMed  PubMed Central  Google Scholar 

  • Tang Y, Xin H, Yang S et al (2018) Environmental risks of ZnO nanoparticle exposure on Microcystis aeruginosa: toxic effects and environmental feedback. Aquat Toxicol 204:19–26

    Article  PubMed  CAS  Google Scholar 

  • Wang F, Guan W, Xu L et al (2019) Effects of nanoparticles on algae: adsorption, distribution, ecotoxicity and fate. Appl Sci 9:1534

    Article  CAS  Google Scholar 

  • Wang X, Sun T, Zhu H et al (2020a) Roles of pH, cation valence, and ionic strength in the stability and aggregation behavior of zinc oxide nanoparticles. J Environ Manag 267:110656

    Article  CAS  Google Scholar 

  • Wang Z, Jin S, Zhang F, Wang D (2020b) Combined toxicity of TiO2 nanospherical particles and TiO2 nanotubes to two microalgae with different morphology. Nanomaterials 10:2559

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang WX (2011) Trace metal ecotoxicology and biogeochemistry 1–322

  • Wang Z, Li J, Zhao J, Xing B (2011) Toxicity and internalization of CuO nanoparticles to prokaryotic alga Microcystis aeruginosa as affected by dissolved organic matter. Environ Sci Technol 45(14):6032–6040

  • Wong SWY, Leung KMY (2014) Temperature-dependent toxicities of nano zinc oxide to marine diatom, amphipod and fish in relation to its aggregation size and ion dissolution. Nanotoxicology 8:24–35

    Article  PubMed  CAS  Google Scholar 

  • Wu B, Wu J, Liu S, Shen Z, Chen L, Zhang XX, Ren HQ (2019a) Combined effects of graphene oxide and zinc oxide nanoparticle on human A549 cells: bioavailability, toxicity and mechanisms. Environ Sci: Nano 6(2):635–645

  • Wu Y, Guo P, Zhang X, Zhang Y, Xie S, Deng J (2019b) Effect of microplastics exposure on the photosynthesis system of freshwater algae. J Hazard Mater 374:219–227

  • Xia B, Liu K, Gong Z et al (2009) Rapid toxicity prediction of organic chemicals to Chlorella vulgaris using quantitative structure–activity relationships methods. Ecotoxicol Environ Saf 72:787–794

    Article  PubMed  CAS  Google Scholar 

  • Xiong D, Fang T, Yu L, Sima X, Zhu W (2011) Effects of nano-scale TiO2, ZnO and their bulk counterparts on zebrafish: acute toxicity, oxidative stress and oxidative damage. Sci Total Environ 409(8):1444–1452

  • Ye N, Wang Z, Fang H et al (2017) Combined ecotoxicity of binary zinc oxide and copper oxide nanoparticles to Scenedesmus obliquus. J Environ Sci Health A Tox Hazard Subst Environ Eng 52:555–560. https://doi.org/10.1080/10934529.2017.1284434

    Article  PubMed  CAS  Google Scholar 

  • Ye N, Wang Z, Wang S, Peijnenburg WJGM (2018) Toxicity of mixtures of zinc oxide and graphene oxide nanoparticles to aquatic organisms of different trophic level: particles outperform dissolved ions. Nanotoxicology 12:423–438. https://doi.org/10.1080/17435390.2018.1458342

    Article  PubMed  CAS  Google Scholar 

  • Yung MMN, Wong SWY, Kwok KWH et al (2015) Salinity-dependent toxicities of zinc oxide nanoparticles to the marine diatom Thalassiosira pseudonana. Aquat Toxicol 165:31–40

    Article  PubMed  CAS  Google Scholar 

  • Yung MMN, Kwok KWH, Djurišić AB et al (2017) Influences of temperature and salinity on physicochemical properties and toxicity of zinc oxide nanoparticles to the marine diatom Thalassiosira pseudonana. Sci Rep 7:3662

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  • Yung MMN, Mouneyrac C, Leung KMY (2014) Ecotoxicity of zinc oxide nanoparticles in the marine environment. Encyclopedia of nanotechnology 1–17

  • Zhang H, Miao C, Huo Z, Luo T (2022) Effects of zinc oxide nanoparticles transformation in sulfur-containing water on its toxicity to microalgae: physicochemical analysis, photosynthetic efficiency and potential mechanisms. Water Res 223:119030

  • Zhang H, Li X, Wu D, Yu B, Lu S, Wang J, Ding J (2023) A novel strategy for efficient capture of intact harmful algal cells using Zinc oxide modified carbon nitride composites. Algal Res 69:102932

  • Zhou H, Wang X, Zhou Y et al (2014) Evaluation of the toxicity of ZnO nanoparticles to Chlorella vulgaris by use of the chiral perturbation approach. Anal Bioanal Chem 406:3689–3695

    Article  PubMed  CAS  Google Scholar 

  • Zhu X, Tan L, Zhao T et al (2022) Alone and combined toxicity of ZnO nanoparticles and graphene quantum dots on microalgae Gymnodinium. Environ Sci Pollut Res 29:47310–47322. https://doi.org/10.1007/S11356-022-19267-Y

    Article  CAS  Google Scholar 

Download references

Funding

The study was carried out in the laboratory “Soil Health” of the Southern Federal University with the financial support of the Ministry of Science and Higher Education of the Russian Federation, agreement no. 075–15-2022–1122.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: P.S., Harish, T.M., V.D.R.; methodology: P.S., Harish, T.M., V.D.R., S.M., S.S.; data curation: P.S., K.V., D.S., V.S.; writing the draft: P.S., Harish, R.M., K.V., D.S., A.K.S; editing the original draft: Pallavi Saxena., Harish, T.M., V.D.R.; figures: P.S., Harish, S.M.; table: P.S., V.S., R.M. A.K.S., S.S.; supervision: Tatiana Minkina. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Pallavi Saxena.

Ethics declarations

Ethics approval

This is not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible Editor: Gangrong Shi

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saxena, P., Harish, Shah, D. et al. A critical review on fate, behavior, and ecotoxicological impact of zinc oxide nanoparticles on algae. Environ Sci Pollut Res 31, 19105–19122 (2024). https://doi.org/10.1007/s11356-024-32439-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-024-32439-2

Keywords

Navigation