Skip to main content
Log in

Physical and virtual water transfers in China and their implication for water planetary boundary

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

China is an extremely water-scarce country with an uneven distribution of regional water resources. We define two absolute sustainability indicators, using the multi-regional input‒output (MRIO) model to outline the contribution of China’s physical and virtual water transfers in mitigating the problem of regional water boundary-exceeding. Although the overall use of freshwater resources is within the safe operation space, 55% of province’s water resource development transgresses the local water planetary boundary. Physical and virtual water transfers effectively mitigate the stress of water supply to the water planetary boundary in China’s water-scarce regions. Among them, the role of virtual water transfers occupies the main part. The cost of using physical water in water-receiving regions and the situation of virtual water flowing from water-scarce regions to developed water-rich regions cannot be ignored, and a small number of provinces are responsible for most of the virtual water net imports and exports. The obtained results are helpful for the redistribution of water planetary boundary transgressing responsibilities among provinces and the formulation of absolute sustainable water resources management policies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets used or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Adom PK, Yeo J, Zhang L (2021) Is water use sustainable and efficient in China? Evidence from a macro level analysis. Appl Econ 53:6166–6183. https://doi.org/10.1080/00036846.2021.1937496

    Article  Google Scholar 

  • Aeschbach-Hertig W, Gleeson T (2012) Regional strategies for the accelerating global problem of groundwater depletion. Nature Geosci 5:853–861. https://doi.org/10.1038/ngeo1617

    Article  ADS  CAS  Google Scholar 

  • Allan T (1993) Fortunately there are substitutes for water: otherwise our hydropolitical futures would be impossible. Overseas Development Administration

  • Cai B, Wang C, Zhang B (2017) Worse than imagined: unidentified virtual water flows in China. J Environ Manage 196, 681–691. 10/gbhszr

  • Cai B, Zhang W, Hubacek K, Feng K, Li Z, Liu Yawen, Liu Yu (2019) Drivers of virtual water flows on regional water scarcity in China. J Clean Prod 207, 1112–1122. 10/gkzs4b

  • Chapagain AK, Orr S (2009) An improved water footprint methodology linking global consumption to local water resources: a case of Spanish tomatoes. J Environ Manage 90:1219–1228. https://doi.org/10.1016/j.jenvman.2008.06.006

    Article  CAS  PubMed  Google Scholar 

  • Chen W, Wu S, Lei Y, Li S (2018) Virtual water export and import in china’s foreign trade: a quantification using input-output tables of China from 2000 to 2012. Resour Conserv Recycl 132:278–290. https://doi.org/10.1016/j.resconrec.2017.02.017

    Article  Google Scholar 

  • Clift R, Sim S, King H, Chenoweth JL, Christie I, Clavreul J, Mueller C, Posthuma L, Boulay A-M, Chaplin-Kramer R, Chatterton J, DeClerck F, Druckman A, France C, Franco A, Gerten D, Goedkoop M, Hauschild MZ, Huijbregts MAJ, Koellner T, Lambin EF, Lee J, Mair S, Marshall S, McLachlan MS, Milà i Canals L, Mitchell C, Price E, Rockström J, Suckling J, Murphy R (2017) The challenges of applying planetary boundaries as a basis for strategic decision-making in companies with global supply chains. Sustainability 9, 279. 10/f9zsnj

  • Deng G, Ma Y, Li X (2016) Regional water footprint evaluation and trend analysis of China—based on interregional input–output model. J Clean Prod 112, 4674–4682. 10/f769fr

  • Deng J, Li C, Wang L, Yu S, Zhang X, Wang Z (2021) The impact of water scarcity on Chinese inter-provincial virtual water trade. Sustain Prod Consump 28, 1699–1707. 10/gnhsfm

  • Dong H, Geng Y, Fujita T, Fujii M, Hao D, Yu X (2014) Uncovering regional disparity of China’s water footprint and inter-provincial virtual water flows. Sci Total Environ 500–501, 120–130. 10/gnrgsm

  • Dong H, Geng Y, Yu Y, Chen Y (2019) Virtual water flow feature of water-rich province and the enlightenments: case of Yunnan in China. J Clean Prod 235, 328–336. 10/ggkcpj

  • Du Y, Fang K, Zhao D, Liu Q, Xu Z, Peng J (2022) How far are we from possible ideal virtual water transfer? Evidence from assessing vulnerability of global virtual water trade. Sci Total Environ 828:154493. https://doi.org/10.1016/j.scitotenv.2022.154493

    Article  ADS  CAS  PubMed  Google Scholar 

  • Fang K, Wang S, He J, Song J, Fang C, Jia X (2021) Mapping the environmental footprints of nations partnering the Belt and Road Initiative. Resourc, Conserv Recyc 164, 105068. 10/gnqsq8

  • FAO (2022) AQUASTAT Core Database. Food and Agriculture Organization of the United Nations [WWW Document]. URL http://www.fao.org/aquastat/en/databases/maindatabase (accessed 5.31.22)

  • Feng B, Zhuo L, Mekonnen MM, Marston LT, Yang X, Xu Z, Liu Y, Wang W, Li Z, Li M, Ji X, Wu P (2022) Inputs for staple crop production in China drive burden shifting of water and carbon footprints transgressing part of provincial planetary boundaries. Water Res 221:118803. https://doi.org/10.1016/j.watres.2022.118803

    Article  CAS  PubMed  Google Scholar 

  • Feng K, Hubacek K, Pfister S, Yu Y, Sun L (2014) Virtual scarce water in China. Environ Sci Technol. 48, 7704–7713. 10/f6bfz9

  • General Office of the State Council, 2012. Opinions of the State Council on implementing the strictest water resources management system [WWW Document]. URL http://www.gov.cn/zwgk/2012-02/16/content_2067664.htm (accessed 6.23.22)

  • Gerten D, Hoff H, Rockström J, Jägermeyr J, Kummu M, Pastor AV (2013) Towards a revised planetary boundary for consumptive freshwater use: role of environmental flow requirements. Current Opinion in Environmental Sustainability 5, 551–558. 10/f5rm7q

  • Gerten D, Rockström J, Heinke J, Steffen W, Richardson K, Cornell S (2015) Response to Comment on Planetary boundaries: guiding human development on a changing planet. Science 348, 1217–1217. 10/ggtn8x

  • Gleick PH (1996) Basic water requirements for human activities: meeting basic needs. Water International 21:83–92. https://doi.org/10.1080/02508069608686494

    Article  Google Scholar 

  • Gu S, Jenkins A, Gao S-J, Lu Y, Li H, Li Y, Ferrier RC, Bailey M, Wang Y, Zhang Y, Qi X, Yu L, Ding L, Daniell T, Williams R, Hannaford J, Acreman M, Kirk S, Liu H, Liu Z, Luo L, Yan D, Liu X, Yu F, Wang D, Zhang B, Ding A, Xie X, Liu J, Ma C, Jobson A (2017) Ensuring water resource security in China; the need for advances in evidence-based policy to support sustainable management. Environ Sci Policy 75:65–69. https://doi.org/10.1016/j.envsci.2017.05.008

    Article  Google Scholar 

  • Guan D, Hubacek K (2007) Assessment of regional trade and virtual water flows in China. Ecological Economics 61, 159–170. 10/bw3vcm

  • Han X, Fang W, Li H, An H (2022) Exploring the provincial-level consumption drivers of the sustainability gap in China under the framework of carbon planetary boundary: The carbon exceedance footprint. Sustain Prod Consump 33:283–297. https://doi.org/10.1016/j.spc.2022.07.003

    Article  Google Scholar 

  • Han X, Zhao Y, Gao X, Jiang S, Lin L, An T (2021) Virtual water output intensifies the water scarcity in Northwest China: current situation, problem analysis and countermeasures. Sci Total Environ 765, 144276. 10/gnhsfd

  • Häyhä T, Lucas PL, van Vuuren DP, Cornell SE, Hoff H (2016) From planetary boundaries to national fair shares of the global safe operating space — how can the scales be bridged? Global Environmental Change 40, 60–72. 10/f3tfhw

  • Heistermann M (2017) HESS Opinions: A planetary boundary on freshwater use is misleading. Hydrol Earth Syst Sci. 21, 3455–3461. 10/gcc6cj

  • Hoekstra AY, Mekonnen MM, Chapagain AK, Mathews RE, Richter BD (2012) Global monthly water scarcity: blue water footprints versus blue water availability. PLoS ONE 7:e32688. https://doi.org/10.1371/journal.pone.0032688

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang J, Ridoutt BG, Sun Z, Lan K, Thorp KR, Wang X, Yin X, Huang J, Chen F, Scherer L (2020) Balancing food production within the planetary water boundary. J Clean Prod 253, 119900. 10/gh6fzb

  • Lade SJ, Steffen W, De Vries W, Carpenter SR, Donges JF, Gerten D, Hoff H, Newbold T, Richardson K, Rockstroem J (2020) Human impacts on planetary boundaries amplified by Earth system interactions. Nat Sustain. 3, 119–128. 10/gghhcz

  • Laurent A, Owsianiak M (2017) Potentials and limitations of footprints for gauging environmental sustainability. Curr Opin Environ Sustain 25:20–27. https://doi.org/10.1016/j.cosust.2017.04.003

    Article  Google Scholar 

  • Lenzen M, Moran D, Bhaduri A, Kanemoto K, Bekchanov M, Geschke A, Foran B (2013) International trade of scarce water. Ecol Econ 94:78–85. https://doi.org/10.1016/j.ecolecon.2013.06.018

    Article  Google Scholar 

  • Li M, Wiedmann T, Liu J, Wang Y, Hu Y, Zhang Z, Hadjikakou M (2020) Exploring consumption-based planetary boundary indicators: an absolute water footprinting assessment of Chinese provinces and cities. Water Research 184, 116163. 10/ghpt3z

  • Liu Y, Chen B (2020) Water-energy scarcity nexus risk in the national trade system based on multiregional input-output and network environ analyses. Applied Energy 268, 114974. 10/ggs2wc

  • Liu Z, Liu S, Jin H, Qi W (2017) Rural population change in China: spatial differences, driving forces and policy implications. J Rural Stud 51:189–197. https://doi.org/10.1016/j.jrurstud.2017.02.006

    Article  Google Scholar 

  • Lucas PL, Wilting HC, Hof AF, van Vuuren DP (2020) Allocating planetary boundaries to large economies: distributional consequences of alternative perspectives on distributive fairness. Global Environ Change 60, 102017. 10/gmg35k

  • Motoshita M, Pfister S, Finkbeiner M (2020) Regional carrying capacities of freshwater consumption—current pressure and its sources. Environ Sci Technol. 54, 9083–9094. 10/gnpbz9

  • Nykvist B, Moberg Å, Persson F, Cornell S, Rockström J (2013) National environmental performance on planetary boundaries: a study for the Swedish Environmental Protection Agency.

  • Pfister S, Koehler A, Hellweg S (2009) Assessing the environmental impacts of freshwater consumption in LCA. Environ Sci Technol 43:4098–4104. https://doi.org/10.1021/es802423e

    Article  ADS  CAS  PubMed  Google Scholar 

  • Raskin P, Gleick P, Kirshen P, Pontius G, Strzepek K, 1997. Water futures: assessment of long-range patterns and problems. Comprehensive assessment of the freshwater resources of the world. SEI

  • Ridoutt BG, Baird D, Anastasiou K, Hendrie GA (2021) An assessment of the water use associated with Australian diets using a planetary boundary framework. Public Health Nutr 24, 1570–1575. 10/gk3xfk

  • Rockström J, Steffen W, Noone K, Persson A, Chapin FS, Lambin EF, Lenton TM, Scheffer M, Folke C, Schellnhuber HJ, Nykvist B, de Wit CA, Hughes T, van der Leeuw S, Rodhe H, Sörlin S, Snyder PK, Costanza R, Svedin U, Falkenmark M, Karlberg L, Corell RW, Fabry VJ, Hansen J, Walker B, Liverman D, Richardson K, Crutzen P, Foley JA (2009a) A safe operating space for humanity. Nature 461, 472–475. 10/bjgw48

  • Rockström J, Steffen W, Noone K, Persson Å, Chapin FSI, Lambin E, Lenton TM, Scheffer M, Folke C, Schellnhuber HJ, Nykvist B, de Wit CA, Hughes T, van der Leeuw S, Rodhe H, Sörlin S, Snyder PK, Costanza R, Svedin U, Falkenmark M, Karlberg L, Corell RW, Fabry VJ, Hansen J, Walker B, Liverman D, Richardson K, Crutzen P, Foley J (2009b) Planetary boundaries: exploring the safe operating space for humanity. E&S 14, art32. 10/gd53h4

  • Seckler D, Amarasinghe U, Molden D, de Silva R, Barker R (1998) World water demand and supply, 1990 to 2025: scenarios and issues

  • Smakhtin V, Revenga C, Döll P (2004) Taking into account environmental water requirements in global-scale water resources assessments. Comprehensive Assessment of Water Management in Agriculture-Report 2. International Water Management Institute (IWMI).

  • Steffen, W., Richardson, K., Rockstrom, J., Cornell, S.E., Fetzer, I., Bennett, E.M., Biggs, R., Carpenter, S.R., de Vries, W., de Wit, C.A., Folke, C., Gerten, D., Heinke, J., Mace, G.M., Persson, L.M., Ramanathan, V., Reyers, B., Sorlin, S., 2015. Planetary boundaries: guiding human development on a changing planet. Science 347, 1259855–1259855. 10/f3m6n9

  • Sullivan CA, Meigh JR, Giacomello AM (2003) The water poverty index: development and application at the community scale. Natural Resources Forum 27:189–199. https://doi.org/10.1111/1477-8947.00054

    Article  Google Scholar 

  • Sun JX, Yin YL, Sun SK, Wang YB, Yu X, Yan K (2021) Review on research status of virtual water: the perspective of accounting methods, impact assessment and limitations. Agric Water Manage 243, 106407. 10/gnhsd6

  • Tamea S, Carr JA, Laio F, Ridolfi L (2014) Drivers of the virtual water trade. Water Resour Res 50:17–28. https://doi.org/10.1002/2013WR014707

    Article  ADS  Google Scholar 

  • Tian P, Lu H, Reinout H, Li D, Zhang K, Yang Y (2022) Water-energy-carbon nexus in China’s intra and inter-regional trade. Sci Total Environ 806, 150666. 10/gnmpsk

  • UNESCO World Water Assessment Programme, 2020. The United Nations World Water Development Report 2020 :water and climate change. UNESCO

  • Veldkamp TIE, Wada Y, Aerts JCJH, Döll P, Gosling SN, Liu J, Masaki Y, Oki T, Ostberg S, Pokhrel Y, Satoh Y, Kim H, Ward PJ (2017) Water scarcity hotspots travel downstream due to human interventions in the 20th and 21st century. Nat Commun 8:15697. https://doi.org/10.1038/ncomms15697

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Zou Z, Liang S, Xu M (2020) Virtual scarce water flows and economic benefits of the Belt and Road Initiative. J Clean Prod 253:119936. https://doi.org/10.1016/j.jclepro.2019.119936

    Article  Google Scholar 

  • Wiedmann T (2009) A review of recent multi-region input–output models used for consumption-based emission and resource accounting. Ecological Economics, Special Section: Analyzing the global human appropriation of net primary production - processes, trajectories, implications 69, 211–222. 10/bnz8sk

  • Wiedmann T, Lenzen M, Turner K, Barrett J (2007) Examining the global environmental impact of regional consumption activities — Part 2: review of input–output models for the assessment of environmental impacts embodied in trade. Ecological Economics 61, 15–26. 10/c796fj

  • Wu L, Huang K, Ren Y, Yu Y, Huang B (2022) Toward a better understanding of virtual water trade: comparing the volumetric and impact-oriented virtual water transfers in China. Resour Conserv Recycl 186:106573. https://doi.org/10.1016/j.resconrec.2022.106573

    Article  Google Scholar 

  • Wu L, Huang K, Ridoutt BG, Yu Y, Chen Y (2021) A planetary boundary-based environmental footprint family: from impacts to boundaries. Sci Total Environ 785, 147383. 10/gk34xr

  • Yang X, Liang S, Qi J, Feng C, Qu S, Xu M (2021) Identifying sectoral impacts on global scarce water uses from multiple perspectives. J Industrial Ecol n/a. 10/gngkx7

  • Yang Y, Cheng Y (2021) Evaluating the ability of transformed urban agglomerations to achieve Sustainable Development Goal 6 from the perspective of the water planetary boundary: evidence from Guanzhong in China. J Clean Prod 314, 128038. 10/gk3xbm

  • Zhang C, Anadon LD (2014) A multi-regional input–output analysis of domestic virtual water trade and provincial water footprint in China. Ecol Econ 100, 159–172. 10/f5xs79

  • Zhang Q, Wiedmann T, Fang K, Song J, He J, Chen X (2022) Bridging planetary boundaries and spatial heterogeneity in a hybrid approach: a focus on Chinese provinces and industries. Science of The Total Environment 804, 150179. 10/gmtfh5

  • Zhang Z, Shi M, Chen KZ, Yang H, Wang S (2021) Water scarcity will constrain the formation of a world-class megalopolis in North China. npj Urban Sustain 1, 1–10. 10/gmsq54

  • Zhao X, Li YP, Yang H, Liu WF, Tillotson MR, Guan D, Yi Y, Wang H (2018) Measuring scarce water saving from interregional virtual water flows in China. Environ Res Lett 13, 054012. 10/gh5wvh

  • Zhao X, Liu J, Liu Q, Tillotson MR, Guan D, Hubacek K (2015) Physical and virtual water transfers for regional water stress alleviation in China. PNAS 112, 1031–1035. 10/ggwgcn

  • Zheng H, Zhang Z, Wei W, Song M, Dietzenbacher E, Wang X, Meng J, Shan Y, Ou J, Guan D (2020) Regional determinants of China’s consumption-based emissions in the economic transition. Environ Res Lett. 15, 074001. 10/ggm4sh

  • Zipper SC, Jaramillo F, Wang-Erlandsson L, Cornell SE, Gleeson T, Porkka M, Häyhä T, Crépin A-S, Fetzer I, Gerten D, Hoff H, Matthews N, Ricaurte-Villota C, Kummu M, Wada Y, Gordon L (2020). Integrating the water planetary boundary with water management from local to global scales. Earth’s Future 8, e2019EF001377. 10/gh6fr5

Download references

Funding

This research is supported by the Beijing Social Science Fund Project (Grant No. 20GLB016), the National Natural Science Foundation of China (Grant Nos. 72373137 and 71991480),  the Fundamental Research Funds for the Central Universities (Grant Nos. 3–7-6–2021-14, 35842020061, 2652019087, and 2652019241), the program of China Scholarship Council (Grant No. 202106400074), and the Natural Science Foundation of Hebei Province (Grant No. G2021201004).

Author information

Authors and Affiliations

Authors

Contributions

Weiqiang Zhang: conceptualization, methodology, software, data curation, writing—original draft, and writing—review and editing. Wei Fang: supervision, project administration, and funding acquisition.

Corresponding author

Correspondence to Wei Fang.

Ethics declarations

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Marcus Schulz

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5242 kb)

Supplementary file2 (DOCX 20 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Fang, W. Physical and virtual water transfers in China and their implication for water planetary boundary. Environ Sci Pollut Res 31, 13622–13637 (2024). https://doi.org/10.1007/s11356-024-31979-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-024-31979-x

Keywords

Navigation