Skip to main content

Advertisement

Log in

The comparative effects of visible light and UV-A radiation on the combined toxicity of P25 TiO2 nanoparticles and polystyrene microplastics on Chlorella sp.

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The ubiquitous presence of TiO2 nanoparticles (nTiO2) and microplastics (MPs) in marine ecosystems has raised serious concerns about their combined impact on marine biota. This study investigated the combined toxic effect of nTiO2 (1 mg/L) and NH2 and COOH surface functionalized polystyrene MPs (PSMPs) (2.5 and 10 mg/L) on Chlorella sp. All the experiments were carried out under both visible light and UV-A radiation conditions to elucidate the impact of light on the combined toxicity of these pollutants. Growth inhibition results indicated that pristine nTiO2 exhibited a more toxic effect (38%) under UV-A radiation when compared to visible light conditions (27%). However, no significant change in the growth inhibitory effects of pristine PSMPs was observed between visible light and UVA radiation conditions. The combined pollutants (nTiO2 + 10 mg/L PSMPs) under UV-A radiation exhibited more growth inhibition (nTiO2 + NH2 PSMPs 66%; nTiO2 + COOH PSMPs 50%) than under visible light conditions (nTiO2 + NH2 PSMPs 55%; TiO2 + COOH PSMPs 44%). Independent action modeling indicated that the mixture of nTiO2 with PSMPs (10 mg/L) exhibited an additive effect on the algal growth inhibition under both the light conditions. The photoactive nTiO2 promoted increased production of reactive oxygen species under UV-A exposure, resulting in cellular damage, lipid peroxidation, and impaired photosynthesis. The effects were more pronounced in case of the mixtures where PSMPs added to the oxidative stress. The toxic effects of the binary mixtures of nTiO2 and PSMPs were further confirmed through the field emission electron microscopy, revealing specific morphological abnormalities. This study provides valuable insights into the potential risks associated with the combination of nTiO2 and MPs in marine environments, considering the influence of environmentally relevant light conditions and the test medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data employed in support of the outcomes of the study are included in the article.

References

  • Abdulrahman A-A, Zhang L, Yang J et al (2021) Toxicity assessment of synthesized titanium dioxide nanoparticles in fresh water algae Chlorella pyrenoidosa and a zebrafish liver cell line. Ecotoxicol Environ Saf 211:111948

    Google Scholar 

  • Adochite C, Andronic L (2020) Aquatic toxicity of photocatalyst nanoparticles to green microalgae Chlorella vulgaris. Water (Basel) 13:77

    Google Scholar 

  • Ali I, Tan X, Li J et al (2022) Interaction of microplastics and nanoplastics with natural organic matter (NOM) and the impact of NOM on the sorption behavior of anthropogenic contaminants—a critical review. J Clean Prod 376:134314. https://doi.org/10.1016/j.jclepro.2022.134314

    Article  CAS  Google Scholar 

  • Arrojo MÁ, Regaldo L, Calvo Orquín J et al (2022) Potential of the microalgae Chlorella fusca (Trebouxiophyceae, Chlorophyta) for biomass production and urban wastewater phycoremediation. AMB Express 12:43

    CAS  Google Scholar 

  • Awashra M, Młynarz P (2023) The toxicity of nanoparticles and their interaction with cells: an in vitro metabolomic perspective. Nanoscale Adv 5:2674–2723

    CAS  Google Scholar 

  • Bai F, Jia Y, Yang C et al (2019) Multiple physiological response analyses aid the understanding of sensitivity variation between Microcystis aeruginosa and Chlorella sp. under paraquat exposures. Environ Sci Eur 31:1–17

    CAS  Google Scholar 

  • Bais AF, Lucas RM, Bornman JF et al (2018) Environmental effects of ozone depletion, UV radiation and interactions with climate change: UNEP Environmental Effects Assessment Panel, update 2017. Photochem Photobiol Sci 17:127–179

    CAS  Google Scholar 

  • Bergmann M, Almroth BC, Brander SM et al (2022) A global plastic treaty must cap production. Science 376:469–470

    Google Scholar 

  • Carmona-Valdivieso DE, Valdivieso T, Carmona-Galindo VD (2023) Detection of secondary microplastics in an aquatic mesocosm by means of object-based image analysis. Microplastics 2:268–277

    Google Scholar 

  • Davarpanah E, Guilhermino L (2019) Are gold nanoparticles and microplastics mixtures more toxic to the marine microalgae Tetraselmis chuii than the substances individually? Ecotoxicol Environ Saf 181:60–68

  • Diffey BL (2002) Sources and measurement of ultraviolet radiation. Methods 28:4–13. https://doi.org/10.1016/S1046-2023(02)00204-9

    Article  CAS  Google Scholar 

  • Dong F, Lin Q, Li C et al (2021) Impacts of pre-oxidation on the formation of disinfection byproducts from algal organic matter in subsequent chlor(am)ination: a review. Sci Total Environ 754:141955. https://doi.org/10.1016/j.scitotenv.2020.141955

    Article  CAS  Google Scholar 

  • Filová A, Fargašová A, Molnárová M (2021) Cu, Ni, and Zn effects on basic physiological and stress parameters of Raphidocelis subcapitata algae. Environ Sci Pollut Res 28:58426–58441. https://doi.org/10.1007/s11356-021-14778-6

    Article  CAS  Google Scholar 

  • Fu L, Hamzeh M, Dodard S et al (2015) Effects of TiO2 nanoparticles on ROS production and growth inhibition using freshwater green algae pre-exposed to UV irradiation. Environ Toxicol Pharmacol 39:1074–1080. https://doi.org/10.1016/j.etap.2015.03.015

    Article  CAS  Google Scholar 

  • Gao G, Zhao X, Jin P et al (2021) Current understanding and challenges for aquatic primary producers in a world with rising micro-and nano-plastic levels. J Hazard Mater 406:124685

    CAS  Google Scholar 

  • Giri S, Christudoss AC, Chandrasekaran N et al (2023) The role of algal EPS in reducing the combined toxicity of BPA and polystyrene nanoparticles to the freshwater algae Scenedesmus obliquus. Plant Physiol Biochem 197:107664

    CAS  Google Scholar 

  • Gottschalk F, Debray B, Klaessig F et al (2023) Predicting accidental release of engineered nanomaterials to the environment. Nat Nanotechnol 18:412–418

    CAS  Google Scholar 

  • Gunasekaran D, Chandrasekaran N, Jenkins D, Mukherjee A (2020a) Plain polystyrene microplastics reduce the toxic effects of ZnO particles on marine microalgae Dunaliella salina. J Environ Chem Eng 8:104250. https://doi.org/10.1016/j.jece.2020.104250

    Article  CAS  Google Scholar 

  • Guzzetti E, Sureda A, Tejada S, Faggio C (2018) Microplastic in marine organism: environmental and toxicological effects. Environ Toxicol Pharmacol 64:164–171. https://doi.org/10.1016/j.etap.2018.10.009

    Article  CAS  Google Scholar 

  • Hazeem LJ, Kuku G, Dewailly E et al (2019) Toxicity effect of silver nanoparticles on photosynthetic pigment content, growth, ROS production and ultrastructural changes of microalgae Chlorella vulgaris. Nanomaterials 9:914

    CAS  Google Scholar 

  • Huang X, Huang Y, Wang D et al (2021) Cellular response of freshwater algae to halloysite nanotubes: alteration of oxidative stress and membrane function. Environ Sci Nano 8:3262–3272

    CAS  Google Scholar 

  • Jung MR, Horgen FD, Orski SV et al (2018) Validation of ATR FT-IR to identify polymers of plastic marine debris, including those ingested by marine organisms. Mar Pollut Bull 127:704–716. https://doi.org/10.1016/j.marpolbul.2017.12.061

    Article  CAS  Google Scholar 

  • Khalifeh F, Salari H, Zamani H (2022) Mechanism of MnO2 nanorods toxicity in marine microalgae Chlorella sorokiniana during long-term exposure. Mar Environ Res 179:105669. https://doi.org/10.1016/j.marenvres.2022.105669

    Article  CAS  Google Scholar 

  • Kim J, Lee S, Kim C et al (2014) Non-monotonic concentration–response relationship of TiO2 nanoparticles in freshwater cladocerans under environmentally relevant UV-A light. Ecotoxicol Environ Saf 101:240–247

    CAS  Google Scholar 

  • Koski M, Søndergaard J, Christensen AM, Nielsen TG (2021) Effect of environmentally relevant concentrations of potentially toxic microplastic on coastal copepods. Aquatic Toxicology 230:105713

    CAS  Google Scholar 

  • Kumar A, Mishra S, Pandey R, Yu ZG, Kumar M, Khoo KS, Thakur TK, Show PL (2023) Microplastics in terrestrial ecosystems: Un-ignorable impacts on soil characterises, nutrient storage and its cycling. Trends Anal Chem 158. https://doi.org/10.1016/j.trac.2022.116869

  • Lagarde F, Olivier O, Zanella M et al (2016) Microplastic interactions with freshwater microalgae: hetero-aggregation and changes in plastic density appear strongly dependent on polymer type. Environ Pollut 215:331–339

    CAS  Google Scholar 

  • Li D, Tang X, Xu X, Zhao Y, Li L, Zhang B, Zhao Y (2023) UV-B radiation alleviated detrimental effects of polymethyl methacrylate microplastics on marine diatom Thalassiosira pseudonana. Sci Total Envi 892. https://doi.org/10.1016/j.scitotenv.2023.164388

  • Li J, Mao S, Ye Y et al (2021a) Micro-polyethylene particles reduce the toxicity of nano zinc oxide in marine microalgae by adsorption. Environ Pollut 290:118042

    CAS  Google Scholar 

  • Li S, Wang P, Zhang C et al (2020a) Influence of polystyrene microplastics on the growth, photosynthetic efficiency and aggregation of freshwater microalgae Chlamydomonas reinhardtii. Sci Total Environ 714:136767. https://doi.org/10.1016/j.scitotenv.2020.136767

    Article  CAS  Google Scholar 

  • Li X, Qiu H, Zhang P et al (2023b) Role of heteroaggregation and internalization in the toxicity of differently sized and charged plastic nanoparticles to freshwater microalgae. Environ Pollut 316:120517

    CAS  Google Scholar 

  • Li Z, Hu M, Song H et al (2021b) Toxic effects of nano-TiO2 in bivalves—a synthesis of meta-analysis and bibliometric analysis. J Environ Sci 104:188–203

    CAS  Google Scholar 

  • Li Zhou, Juneau Philippe, Lian Yingli, Zhang Wei, Wang Shanquan, Wang Cheng, Shu Longfei, Yan Qingyun, He Zhili, Kui Xu (2020) Effects of Titanium Dioxide Nanoparticles on Photosynthetic and Antioxidative Processes of Scenedesmus obliquus. Plants 9(12):1748. https://doi.org/10.3390/plants9121748

    Article  CAS  Google Scholar 

  • Li Z, Yi X, Zhou H et al (2020c) Combined effect of polystyrene microplastics and dibutyl phthalate on the microalgae Chlorella pyrenoidosa. Environ Pollut 257:113604. https://doi.org/10.1016/j.envpol.2019.113604

    Article  CAS  Google Scholar 

  • Liu F, Gao Z, Chu W, Wang S (2022) Polystyrene nanoplastics alleviate the toxicity of CuO nanoparticles to the marine algae Platymonas helgolandica var. tsingtaoensis. Front Mar Sci 9:1089282

    Google Scholar 

  • Liu Y, Wang S, Wang Z et al (2018) TiO2, SiO2 and ZrO2 nanoparticles synergistically provoke cellular oxidative damage in freshwater microalgae. Nanomaterials 8:95

    Google Scholar 

  • Maltsev Y, Maltseva K, Kulikovskiy M, Maltseva S (2021) Influence of light conditions on microalgae growth and content of lipids, carotenoids, and fatty acid composition. Biology (Basel) 10:1060

    CAS  Google Scholar 

  • Mao Y, Ai H, Chen Y et al (2018) Phytoplankton response to polystyrene microplastics: perspective from an entire growth period. Chemosphere 208:59–68

    CAS  Google Scholar 

  • Middepogu A, Hou J, Gao X, Lin D (2018) Effect and mechanism of TiO2 nanoparticles on the photosynthesis of Chlorella pyrenoidosa. Ecotoxicol Environ Saf 161:497–506

    CAS  Google Scholar 

  • Mo L, Yang Y, Zhao D et al (2022) Time-dependent toxicity and health effects mechanism of cadmium to three green algae. Int J Environ Res Public Health 19:10974

    CAS  Google Scholar 

  • Moma J, Baloyi J (2019) Modified titanium dioxide for photocatalytic applications. Photocatalysts-Appl Attributes 18:10–5772

    Google Scholar 

  • Natarajan L, Jenifer MA, Chandrasekaran N et al (2022) Polystyrene nanoplastics diminish the toxic effects of Nano-TiO2 in marine algae Chlorella sp. Environ Res 204:112400

    CAS  Google Scholar 

  • Nava V, Leoni B (2021) A critical review of interactions between microplastics, microalgae and aquatic ecosystem function. Water Res 188:116476

    CAS  Google Scholar 

  • Negi S, Perrine Z, Friedland N et al (2020) Light regulation of light-harvesting antenna size substantially enhances photosynthetic efficiency and biomass yield in green algae. Plant J 103:584–603

    CAS  Google Scholar 

  • Nolte TM, Hartmann NB, Kleijn JM et al (2017) The toxicity of plastic nanoparticles to green algae as influenced by surface modification, medium hardness and cellular adsorption. Aquat Toxicol 183:11–20

    CAS  Google Scholar 

  • OECD (2011) OECD guidelines for the testing of chemicals. Organ Econ Coop Dev, Freshwater alga and cyanobacteria, Growth inhibition test. https://doi.org/10.1787/9789264203785-en

    Book  Google Scholar 

  • Okoye CO, Addey CI, Oderinde O, Okoro JO, Uwamungu JY, Ikechukwu CK, Okeke ES, Ejeromedoghene O, Odii EC (2022) Toxic Chemicals and Persistent Organic Pollutants Associated with Micro-and Nanoplastics Pollution. Chem Eng J Advances 11:100310. https://doi.org/10.1016/j.ceja.2022.100310

  • Oladipupo P, Raman A, Pekny JF (2023) Minimum production scale for economic feasibility of a titanium dioxide plant. J Adv Manuf Proc 5(4). https://doi.org/10.1002/amp2.10167

  • Pattanaik P, Sahoo MK (2014) TiO2 photocatalysis: progress from fundamentals to modification technology. Desalination Water Treat 52:6567–6590

    CAS  Google Scholar 

  • Pencik O, Durdakova M, Molnarova K et al (2023) Microplastics and nanoplastics toxicity assays: a revision towards to environmental-relevance in water environment. J Hazard Mater 454:131476. https://doi.org/10.1016/j.jhazmat.2023.131476

    Article  CAS  Google Scholar 

  • Pikula K, Johari SA, Santos-Oliveira R, Golokhvast K (2022) Individual and binary mixture toxicity of five nanoparticles in marine microalga Heterosigma akashiwo. Int J Mol Sci 23:990

    CAS  Google Scholar 

  • Pirsaheb M, Hossini H, Makhdoumi P (2020) Review of microplastic occurrence and toxicological effects in marine environment: experimental evidence of inflammation. Process Saf Environ Protect 142:1–14

    CAS  Google Scholar 

  • Pourebrahimi S, Pirooz M (2023) Microplastic pollution in the marine environment: a review. J Hazard Mater Adv 10:100327. https://doi.org/10.1016/j.hazadv.2023.100327

    Article  CAS  Google Scholar 

  • Prata JC, Lavorante BR, Maria da Conceição BSM, Guilhermino L (2018) Influence of microplastics on the toxicity of the pharmaceuticals procainamide and doxycycline on the marine microalgae Tetraselmis chuii. Aquat Toxicol 197:143–152. https://doi.org/10.1016/j.aquatox.2018.02.015

    Article  CAS  Google Scholar 

  • Qi N, Wang P, Wang C, Ao Y (2018) Effect of a typical antibiotic (tetracycline) on the aggregation of TiO2 nanoparticles in an aquatic environment. J Hazard Mater 341:187–197. https://doi.org/10.1016/j.jhazmat.2017.07.046

    Article  CAS  Google Scholar 

  • Qian W, Chen CC, Zhou S et al (2020) TiO2 nanoparticles in the marine environment: enhancing bioconcentration, while limiting biotransformation of arsenic in the mussel Perna viridis. Environ Sci Technol 54:12254–12261. https://doi.org/10.1021/acs.est.0c01620

    Article  CAS  Google Scholar 

  • Rezayian M, Niknam V, Ebrahimzadeh H (2019) Oxidative damage and antioxidative system in algae. Toxicol Rep 6:1309–1313

    CAS  Google Scholar 

  • Roy B, Chandrasekaran H, Suresh PK et al (2018a) UVΑ pre-irradiation to P25 titanium dioxide nanoparticles enhanced its toxicity towards freshwater algae Scenedesmus obliquus. Environ Sci Pollut Res 25:16729–16742. https://doi.org/10.1007/s11356-018-1860-2

    Article  CAS  Google Scholar 

  • Roy B, Suresh PK, Chandrasekaran N, Mukherjee A (2020) UVB pre-irradiation of titanium dioxide nanoparticles is more detrimental to freshwater algae than UVA pre-irradiation. J Environ Chem Eng 8:104076. https://doi.org/10.1016/j.jece.2020.104076

    Article  CAS  Google Scholar 

  • Sachdev S, Ansari SA, Ansari MI (2023) Photosynthetic apparatus: major site of oxidative damage. In: Reactive Oxygen Species in Plants: The Right Balance. Springer, pp 75–92

    Google Scholar 

  • Sendra M, Moreno-Garrido I, Yeste MP et al (2017a) Toxicity of TiO2, in nanoparticle or bulk form to freshwater and marine microalgae under visible light and UV-A radiation. Environ Pollut 227:39–48. https://doi.org/10.1016/j.envpol.2017.04.053

    Article  CAS  Google Scholar 

  • Sendra M, Yeste MP, Gatica JM et al (2017c) Homoagglomeration and heteroagglomeration of TiO2, in nanoparticle and bulk form, onto freshwater and marine microalgae. Sci Total Environ 592:403–411. https://doi.org/10.1016/j.scitotenv.2017.03.127

    Article  CAS  Google Scholar 

  • Sirohi P, Verma H, Singh SK et al (2022) Microalgal carotenoids: therapeutic application and latest approaches to enhance the production. Curr Issues Mol Biol 44:6257–6279

    CAS  Google Scholar 

  • Song X, Kong F, Liu B-F et al (2023) Thallium-mediated NO signaling induced lipid accumulation in microalgae and its role in heavy metal bioremediation. Water Res 239:120027

    CAS  Google Scholar 

  • St Mary L (2020) Time-related formation of bioactive polycyclic aromatic hydrocarbon (PAH) photoproducts upon interaction with TiO2 nanoparticles in the aqueous phase (Doctoral dissertation, Heriot-Watt University)

  • Strokal M, Vriend P, Bak MP et al (2023) River export of macro-and microplastics to seas by sources worldwide. Nat Commun 14:4842

    CAS  Google Scholar 

  • Su Y, Cheng Z, Hou Y et al (2022) Biodegradable and conventional microplastics posed similar toxicity to marine algae Chlorella vulgaris. Aquat Toxicol 244:106097

    CAS  Google Scholar 

  • Thiagarajan V, Alex SA, Seenivasan R et al (2021) Toxicity evaluation of nano-TiO2 in the presence of functionalized microplastics at two trophic levels: algae and crustaceans. Sci Total Environ 784:147262

    CAS  Google Scholar 

  • Thiagarajan V, Iswarya VPAJ, Seenivasan R, Chandrasekaran N, Mukherjee A (2019a) Influence of differently functionalized polystyrene microplastics on the toxic effects of P25 TiO2 NPs towards marine algae Chlorella sp. Aquat Toxicol 207:208–216. https://doi.org/10.1016/j.aquatox.2018.12.014

    Article  CAS  Google Scholar 

  • Thiagarajan V, Natarajan L, Seenivasan R et al (2019c) Tetracycline affects the toxicity of P25 n-TiO2 towards marine microalgae Chlorella sp. Environ Res 179:108808. https://doi.org/10.1016/j.envres.2019.108808

    Article  CAS  Google Scholar 

  • Wan J-K, Chu W-L, Kok Y-Y, Lee C-S (2021) Influence of polystyrene microplastic and nanoplastic on copper toxicity in two freshwater microalgae. Environ Sci Pollut Res 28:33649–33668

    CAS  Google Scholar 

  • Wang H, Xia X, Wang Z et al (2021) Contribution of dietary uptake to pah bioaccumulation in a simplified pelagic food chain: Modeling the influences of continuous vs intermittent feeding in zooplankton and fish. Environ Sci Technol 55:1930–1940

    CAS  Google Scholar 

  • Wang L, Zhang J, Huang W, He Y (2023) Laboratory simulated aging methods, mechanisms and characteristic changes of microplastics: A review. Chemosphere 315. https://doi.org/10.1016/j.chemosphere.2023.137744

  • Wang T, Huang X, Jiang X et al (2019) Differential in vivo hemocyte responses to nano titanium dioxide in mussels: effects of particle size. Aquat Toxicol 212:28–36. https://doi.org/10.1016/j.aquatox.2019.04.012

    Article  CAS  Google Scholar 

  • Worm B, Lotze HK, Jubinville I et al (2017) Plastic as a persistent marine pollutant. Annu Rev Environ Resour 42:1–26

    Google Scholar 

  • Wu D, Yang S, Du W et al (2019) Effects of titanium dioxide nanoparticles on Microcystis aeruginosa and microcystins production and release. J Hazard Mater 377:1–7

    CAS  Google Scholar 

  • Wu W, Shan G, Wang S et al (2016) Environmentally relevant impacts of nano-TiO2 on abiotic degradation of bisphenol A under sunlight irradiation. Environ Pollut 216:166–172

    CAS  Google Scholar 

  • Xia B, Zhu L, Han Q et al (2017a) Effects of TiO2 nanoparticles at predicted environmental relevant concentration on the marine scallop Chlamys farreri: an integrated biomarker approach. Environ Toxicol Pharmacol 50:128–135

    CAS  Google Scholar 

  • Xiao R, Zheng Y (2016) Overview of microalgal extracellular polymeric substances (EPS) and their applications. Biotechnol Adv 34:1225–1244. https://doi.org/10.1016/j.biotechadv.2016.08.004

    Article  CAS  Google Scholar 

  • Yang W, Gao P, Nie Y et al (2021) Comparison of the effects of continuous and accumulative exposure to nanoplastics on microalga Chlorella pyrenoidosa during chronic toxicity. Sci Total Environ 788:147934

    CAS  Google Scholar 

  • Yang W, Gao X, Wu Y et al (2020) The combined toxicity influence of microplastics and nonylphenol on microalgae Chlorella pyrenoidosa. Ecotoxicol Environ Saf 195:110484

    CAS  Google Scholar 

  • Yao J, Wen J, Li H, Yang Y (2022) Surface functional groups determine adsorption of pharmaceuticals and personal care products on polypropylene microplastics. J Hazard Mater 423:127131. https://doi.org/10.1016/j.jhazmat.2021.127131

    Article  CAS  Google Scholar 

  • Yasir AM, Ma J, Ouyang X et al (2022) Effects of selected functional groups on nanoplastics transport in saturated media under diethylhexyl phthalate co-contamination conditions. Chemosphere 286:131965. https://doi.org/10.1016/j.chemosphere.2021.131965

    Article  CAS  Google Scholar 

  • Yu H, Yang B, Waigi MG et al (2020) The effects of functional groups on the sorption of naphthalene on microplastics. Chemosphere 261:127592. https://doi.org/10.1016/j.chemosphere.2020.127592

    Article  CAS  Google Scholar 

  • Zhang C, Chen X, Wang J, Tan L (2017) Toxic effects of microplastic on marine microalgae Skeletonema costatum: Interactions between microplastic and algae. Environ Pollut 220:1282–1288. https://doi.org/10.1016/j.envpol.2016.11.005

    Article  CAS  Google Scholar 

  • Zhang C, Lin X, Gao P, Zhao X, Ma C, Wang L, Sun H, Sun L, Liu C (2023) Combined effects of microplastics and excess boron on Microcystis aeruginosa. Sci Total Envi 891. https://doi.org/10.1016/j.scitotenv.2023.164298

  • Zhang F, Fan Y, Zhang D et al (2020a) Effect and mechanism of the algicidal bacterium Sulfitobacter porphyrae ZFX1 on the mitigation of harmful algal blooms caused by Prorocentrum donghaiense. Environ Pollut 263:114475

    CAS  Google Scholar 

  • Zhang F, Wang Z, Song L et al (2020b) Aquatic toxicity of iron-oxide-doped microplastics to Chlorella pyrenoidosa and Daphnia magna. Environ Pollut 257:113451. https://doi.org/10.1016/j.envpol.2019.113451

    Article  CAS  Google Scholar 

  • Zhang J, Xie X, Li Q et al (2023b) Combined toxic effects of TiO2 nanoparticles and organochlorines on Chlorella pyrenoidosa in karst area natural waters. Aquat Toxicol 257:106442

    CAS  Google Scholar 

  • Zhang X, Peng M, Zhang Q et al (2023c) UV-photoaging behavior of polystyrene microplastics enhanced by thermally-activated persulfate. J Environ Chem Eng 11:110508

    CAS  Google Scholar 

  • Zheng X, Zhang L, Jiang C et al (2023) Acute effects of three surface-modified nanoplastics against Microcystis aeruginosa: growth, microcystin production, and mechanisms. Sci Total Environ 855:158906. https://doi.org/10.1016/j.scitotenv.2022.158906

    Article  CAS  Google Scholar 

  • Zhu L, Booth AM, Feng S et al (2022a) UV-B radiation enhances the toxicity of TiO 2 nanoparticles to the marine microalga Chlorella pyrenoidosa by disrupting the protection function of extracellular polymeric substances. Environ Sci Nano 9:1591–1604

    CAS  Google Scholar 

  • Zhu X, Zhao W, Chen X et al (2020a) Growth inhibition of the microalgae Skeletonema costatum under copper nanoparticles with microplastic exposure. Mar Environ Res 158:105005

    CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge Vellore Institute of Technology, Vellore, India, for field emission scanning electron microscopy (FE-SEM) facility used in this study.

Author information

Authors and Affiliations

Authors

Contributions

Camil Rex M: investigation, methodology, visualization, formal analysis, and writing—original draft. Amitava Mukherjee: conceptualization, methodology, supervision, project administration, and writing—review and editing.

Corresponding author

Correspondence to Amitava Mukherjee.

Ethics declarations

Ethics approval

Not applicable.

Informed consent

It is declared that the study involved no human participants.

Consent to participate

Not applicable.

Consent for publication

All authors have given consent to the publication of the manuscript.

Additional information

Responsible Editor: Diane Purchase

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 1737 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rex M, C., Mukherjee, A. The comparative effects of visible light and UV-A radiation on the combined toxicity of P25 TiO2 nanoparticles and polystyrene microplastics on Chlorella sp.. Environ Sci Pollut Res 30, 122700–122716 (2023). https://doi.org/10.1007/s11356-023-30910-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-023-30910-0

Keywords

Navigation