Skip to main content
Log in

Interactive effects of polyethylene microplastics and cadmium on growth of Glycine max

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The interaction of microplastics (MPs) and heavy metals (HMs) can lead to aggravation of detrimental effects in the plants, animals, and even human beings. Keeping this in view, the present study was designed to assess the combined toxic effects of polyethylene MPs (PE-MPs) and cadmium (Cd) on germination indices and seedling growth of soybean (Glycine max). Particle sizes of 13 and 6.5 μm and six treatments (control, Cd, 6.5 μm PE, 6.5 μm PE + Cd, 13 μm PE, and 13 μm PE + Cd) were set to simulate the effects of PE-MPs and Cd on the growth of soybean when used alone or in combined form. As compared to the control, 6.5 μm PE treatment showed significant effect on most of the germination indices, i.e., decrease in the germination index by 31%, 44% decrease in the vigor index, and 28% decrease in germination rate whereas mean germination time showed no significant differences. Treatment of smaller-size PE-MPs and Cd significantly inhibited both dry and fresh weights. All treatment groups resulted in significant effect on catalase, peroxidase, and superoxide dismutase activities of seedlings depicting adverse effects of interaction of PE-MPs and Cd. Our findings demonstrated the phyto-toxicity of PE-MPs and Cd in G. max, and it would lead to serious implications in human beings. Our study is important as it provides preliminary information regarding MP absorption and their accumulation in different levels of food chain. It can also form the basis for future research on single the combined effects of different types and sizes of MPs and heavy metals on the terrestrial plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

All related data are provided within the manuscript.

References

  • Ali B, Wang B, Ali S, Ghani MA, Hayat MT, Yang C, Xu L, Zhou WJ (2013a) 5-Aminolevulinic acid ameliorates the growth, photosynthetic gas exchange capacity and ultrastructural changes under cadmium stress in Brassica napus L. J Plant Growth Regul. https://doi.org/10.1007/s00344-013-9328-6

    Article  Google Scholar 

  • Ali B, Tao QJ, Zhou YF, Gill RA, Ali S, Rafiq MT, Xu L, Zhou WJ (2013b) 5-Aminolevolinic acid mitigates the cadmium-induced changes in Brassica napus as revealed by the biochemical and ultra-structural evaluation of roots. Ecotoxicol Environ Safety 92:271–280

    CAS  Google Scholar 

  • Ali B, Huang CR, Qi ZY, Ali S, Daud MK, Geng XX, Liu HB, Zhou WJ (2013c) 5-Aminolevulinic acid ameliorates cadmium-induced morphological, biochemical, and ultrastructural changes in seedlings of oilseed rape. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-013-1735-5

    Article  Google Scholar 

  • Atugoda T, Vithanage M, Wijesekara H, Bolan N, Sarmah AK, Bank MS, You S, Ok YS (2021) Interactions between microplastics, pharmaceuticals and personal care products: implications for vector transport. Environ Int 149:106367

    CAS  Google Scholar 

  • Boots B, Russell CW, Green DS (2019) Effects of microplastics in soil ecosystems: above and below ground. Environ Sci Technol 53:11496–11506

    CAS  Google Scholar 

  • Bosker T, Bouwman LJ, Brun NR, Behrens P, Vijver MG (2019) Microplastics accumulate on pores in seed capsule and delay germination and root growth of the terrestrial vascular plant Lepidium sativum. Chemosphere 226:774–781

    CAS  Google Scholar 

  • Calero E, West SH, Hinson K (1981) Water absorption of soybean seeds and associated causal factors. Crop Sci 21:926–933

    Google Scholar 

  • Chae Y, An YJ (2018) Current research trends on plastic pollution and ecological impacts on the soil ecosystem: a review. Environ Pollut 240:387–395

    CAS  Google Scholar 

  • Chamas A, Moon H, Zheng J, Qiu Y, Tabassum T, Jang JH, Abu-Omar M, Scott SL, Suh S (2020) Degradation rates of plastics in the environment. ACS Sustain Chem Eng 8:3494–3511

    CAS  Google Scholar 

  • Consumer Reports (2019) You are literally eating micro-plastics. How you can cut down exposure to them. The Washington Post. https://www.google.com/amp/s/www.washingtonpost.com/health/youre-literallyeatingmicroplastics-howyou-can-cut-down-exposure-to-them/2019/10/04/22ebdfb6-e1711e9. Accessed 23 Mar 2023

  • de Souza Machado AA, Kloas W, Zarfl C, Hempel S, Rillig MC (2018) Microplastics as an emerging threat to terrestrial ecosystems. Glob Chang Biol 24:1405–1416

    Google Scholar 

  • de Souza Machado AA, Lau CW, Kloas W, Bergmann J, Bachelier JB, Faltin E, Becker R, Görlich AS, Rillig MC (2019) Microplastics can change soil properties and affect plant performance. Environ Sci Technol 53:6044–6052

    Google Scholar 

  • Debeaujon I, Leon-Kloosterziel KM, Koornneef M (2000) Influence of testa on seed dormany, germination and longevity in Arabidopsis. Plant Physiol 122:403–414

    CAS  Google Scholar 

  • Dong Y, Gao M, Song Z, Qiu W (2020) Microplastic particles increase arsenic toxicity to rice seedlings. Environ Pollut 259:113892

    CAS  Google Scholar 

  • Enyoh CE, Wang Q, Eze VC, Rabin MH, Rakib MRJ, Verla AW, Ibe FC, Duru CE, Verla EN (2022) Assessment of potentially toxic metals adsorbed on small macroplastics in urban roadside soils in southeastern Nigeria. J Hazard Mater Adv 7:100122

    CAS  Google Scholar 

  • Fajardo C, Martín C, Costa G, Sánchez-Fortún S, Rodríguez C, de Lucas Burneo JJ, Nande M, Mengs G, Martín M (2022) Assessing the role of polyethylene microplastics as a vector for organic pollutants in soil: ecotoxicological and molecular approaches. Chemosphere 288:132460

    CAS  Google Scholar 

  • Fan P, Yu H, Xi B, Tan W (2022) A review on the occurrence and influence of biodegradable microplastics in soil ecosystems: are biodegradable plastics substitute or threat? Environ Int 163:107244

    Google Scholar 

  • Gao M, Xu Y, Liu Y, Wang S, Wang C, Dong Y, Song Z (2021) Effect of polystyrene on di-butyl phthalate (DBP) bioavailability and DBP-induced phyto-toxicity in lettuce. Environ Pollut 268:115870

    CAS  Google Scholar 

  • Gong W, Zhang W, Jiang M, Li S, Liang G, Bu Q, Xu L, Zhu H, Lu A (2021) Species-dependent response of food crops to polystyrene nanoplastics and microplastics. Sci Total Environ 796:148750

    CAS  Google Scholar 

  • Gopinath PM, Saranya V, Vijayakumar S, Meera MM, Ruprekha S, Kunal R, Pranay A, Thomas J, Mukherjee A, Chandrasekaran N (2019) Assessment on interactive prospectives of nano-plastics with plasma proteins and the toxicological impacts of virgin, coronated and environmentally released-nanoplastics. Sci Rep 9:8860

    Google Scholar 

  • Gu X, Xu X, Xian Z, Zhang Y, Wang C, Gu C (2021) Joint toxicity of aged polyvinyl chloride microplastics and cadmium to the wheat plant. Environ Chem 40:2633–2639

    CAS  Google Scholar 

  • Han Z, Osman R, Liu Y, Wei Z, Wang L, Xu M (2023) Analyzing the impacts of cadmium alone and in co-existence with polypropylene microplastics on wheat growth. Front Plant Sci 14:1240472. https://doi.org/10.3389/fpls.2023.1240472

    Article  Google Scholar 

  • Hüffer T, Metzelder F, Sigmund G, Slawek S, Schmidt TC, Hofmann T (2021) Polyethylene microplastics influence the transport of organic contaminants in soil. Sci Total Environ 657:242–247

    Google Scholar 

  • Iqbal S et al (2020) Unraveling Consequences of soil micro- and nano-plastic pollution on soil-plant system: implications for nitrogen (n) cycling and soil microbial activity. Chemosphere 260:127578

    CAS  Google Scholar 

  • Jiang X, Chen H, Liao Y, Ye Z, Li M, Klobučar G (2019) Ecotoxicity and genotoxicity of polystyrene microplastics on higher plant Vicia Faba. Environ Pollut 250:831–838

    CAS  Google Scholar 

  • Johansson LH, Borg LAH (1988) A spectro-photometric method for determination of catalase activity in small tissue samples. Anal Biochem 174:331–336

    CAS  Google Scholar 

  • Kalcíkova G, Zgajnar AG, Kladnik A, Jemec A (2017) Impact of polyethylene microbeads on the floating freshwater plant duckweed Lemna minor. Environ Pollut 230:1108–1115

    Google Scholar 

  • Kalcíkova G, Skalar T, Marolt G, Kokalj AJ (2020) An environmental concentration of aged microplastics with adsorbed silver significantly affects aquatic organisms. Water Res 175:115644

    Google Scholar 

  • Kaur M, Shen C, Wang L, Xu M (2022) Exploration of single and co-toxic effects of polypropylene micro-plastics and cadmium on rice (Oryza sativa L.). Nanomaterials. 12:3967

    CAS  Google Scholar 

  • Khalid N, Aqeel M, Noman A (2020) Microplastics could be a threat to plants in terrestrial systems directly or indirectly. Environ Pollut 267:115653

    CAS  Google Scholar 

  • Kim SW, Kim D, Chae Y, Kim D, An YJ (2019) Crop-dependent changes in water absorption of expanded polystyrene in soil environments. Chemosphere 219:345–350

    CAS  Google Scholar 

  • Kim D, An S, Kim L, Byeon YM, Lee J, Choi M-J, An Y-J (2022) Translocation and chronic effects of microplastics on pea plants (Pisum sativum) in copper-contaminated soil. J Hazard Mater 436:129194

    CAS  Google Scholar 

  • Lian Y, Liu W, Shi R, Zeb A, Wang Q, Li J, Zheng Z, Tang J (2022) Effects of polyethylene and polylactic acid microplastics on plant growth and bacterial community in the soil. J Hazard Mat 435:129057

    CAS  Google Scholar 

  • Martín C, Fajardo C, Costa G, Sánchez-Fortún S, San Andrés MD, González F, Mengs G, Martín M (2021) Bioassays to assess the ecotoxicological impact of polyethylene microplastics and two organic pollutants, simazine and ibuprofen. Chemosphere 274:129704

    Google Scholar 

  • Martín C, Pirredda M, Fajardo C, Costa G, Sebastiá S-F, Nande M, Mengs G, Martín M (2023) Transcriptomic and physiological effects of polyethylene microplastics on Zea mays seedlings and their role as a vector for organic pollutants. Chemosphere. https://doi.org/10.1016/j.chemosphere.2023.138167

    Article  Google Scholar 

  • Masayasu M, Hiroshi Y (1979) A simplified assay method of superoxide dismutase activity for clinical use. Clin Chim Acta 92:337–342

    Google Scholar 

  • Meng F et al (2021) Response of common bean (Phaseolus vulgaris l.) growth to soil contaminated with microplastics. Sci Total Environ 755:142516

    CAS  Google Scholar 

  • Moreno MM, Moreno A (2008) Effect of different biodegradable and polyethylene mulches on soil properties and production in a tomato crop. Sci Hort 116:256–263

    CAS  Google Scholar 

  • Ng EL, Huerta Lwanga E, Eldridge SM, Johnston P, Hu W, Geissen V, Chen DL (2018) An overview of microplastic and nanoplastic pollution in agroecosystems. Sci Total Environ 627:1377–1388

    CAS  Google Scholar 

  • Nizzetto L, Futter M, Langaas S (2016) Are agricultural soils DuMPs for microplastics of urban origin? Environ Sci Technol 50:10777–10779

    CAS  Google Scholar 

  • Oliveri C, Gea et al (2020) Micro- and nano-plastics in edible fruit and vegetables. the first diet risks assessment for the general population. Environ Res 187:109677

    Google Scholar 

  • Papoyan A, Piñeros M, Kochian LV (2007) Plant Cd2+ and Zn2+ status effects on root and shoot heavy metal accumulation in Thlaspi caerulescens. New Phytol 175:51–58

  • Patil S, Bafana A, Naoghare PK, Krishnamurthi K, Sivanesan S (2021) Environmental prevalence, fate, impacts, and mitigation of microplastics—a critical review on present understanding and future research scope. Environ Sci Pollut Res 28:4951–4974

    CAS  Google Scholar 

  • Peng X, Chen M, Chen S, Dasgupta S, Xu H, Ta K, Du M, Li J, Guo Z, Bai S (2018) Microplastics contaminate the deepest part of the world’s ocean. Geochem Perspect Lett 9:1–5

    Google Scholar 

  • Pignattelli S, Broccoli A, Renzi M (2020) Physiological responses of garden cress (L. sativum) to different types of microplastics. Sci Total Environ 727:138609

    CAS  Google Scholar 

  • Plastic Disposal Issues (2019) Compostable materials. World centric. https://www.worldcentric.com/journal/plastic-disposal-issues. Assessed 24 Mar 2023

  • Plastics Europe (2021) Plastics-the facts: an analysis of European plastics production, demand and waste data. Plastics Europe, Brussels

    Google Scholar 

  • Qi Y, Yang X, Mejia PA, Huerta LE, Beriot N, Garbeva P, Geissen V (2018) Macro- and micro-plastics in soil–plant system: effects of plastic mulch film residues on wheat (Triticum aestivum) growth. Sci Total Environ 645:1048–1056

    CAS  Google Scholar 

  • Qureshi MI, Abdin MZ, Qadir S, Iqbal M (2007) Lead-induced oxidative stress and metabolic alterations in Cassia angustifolia Vahl. Biol Plant 51:121–128

    CAS  Google Scholar 

  • Rahman A, Sarkar A, Yadav OP, Achari G, Slobodnik J (2021) Potential human health risks due to environmental exposure to nano- and microplastics and knowledge gaps: a scoping review. Sci Total Environ 757:143872

    CAS  Google Scholar 

  • Reisser J, Shaw J, Wilcox, C, Hardesty BD, Proietti M, Thums M, Pattiaratchi C (2013) Marine plastic pollution in waters around Australia: characteristics, concentrations, and pathways. PLoS ONE 8. https://doi.org/10.1371/journal.pone.0080466

  • Ren Z, Gui X, Xu X, Zhao L, Qiu H, Cao X (2021) Microplastics in the soil-groundwater environment: aging, migration, and co-transport of contaminants—a critical review. J Hazard Mater 419:126455

    CAS  Google Scholar 

  • Reuveni R (1992) Peroxidase activity as a biochemical marker for resistance of muskmelon (Cucumismelo) to Pseudoperono sporacubensis. Phytopathology 82:749–753

    CAS  Google Scholar 

  • Rillig MC, Lehmann A (2020) Microplastic in terrestrial ecosystems. Science 368:1430–1431

    CAS  Google Scholar 

  • Sahasa RGK, Dhevagi P, Poornima R, Ramya A, Moorthy PS, Alagirisamy B, Karthikeyan S (2023) Effect of polyethylene microplastics on seed germination of Blackgram (Vigna mungo L.) and Tomato (Solanum lycopersicum L.). Environ Adv 11:100349

    CAS  Google Scholar 

  • Sara P et al (2020) Physiological responses of garden cress (l. sativum) to different types of microplastics. Sci Total Environ 727:138609

    Google Scholar 

  • Smith M et al (2018) Microplastics in seafood and the implications for human health. Current Environ Health Rep 5:375–386

    CAS  Google Scholar 

  • Spitz DR, Oberley LW (1989) An assay for superoxide dismutase activity in mammalian tissue homogenates. Anal Biochem 179:8–18

    CAS  Google Scholar 

  • Sun X-D, Yuan X-Z, Jia Y, Feng L-J, Zhu F-P, Dong S-S, Liu J, Kong X, Tian H, Duan J-L et al (2020) Differentially charged nanoplastics demonstrate distinct accumulation in Arabidopsis thaliana. Nat Nanotechnol 15:755–760

    CAS  Google Scholar 

  • Tang S, Lin L, Wang X, Feng A, Yu A (2020) Pb (II) uptake onto nylon microplastics: interaction mechanism and adsorption performance. J Hazard Mater 386:121960

    CAS  Google Scholar 

  • Teng L, Zhu Y, Li H, Song X, Shi L (2022) The phytotoxicity of microplastics to the photosynthetic performance and transcriptome profiling of Nicotiana tabacum seedlings. Ecotoxicol Environ Saf 231:113155

    CAS  Google Scholar 

  • Tian SK, Lu LL, Yang XE, Huang HG, Wang K, Brown PH (2012) Root adaptations to cadmium-induced oxidative stress contribute to Cd tolerance in the hyper accumulator Sedum alfredii. Biol Plant 56:344–350

    CAS  Google Scholar 

  • Trejo-Escamillaa I, Lópeza LM, Gisbertb E, Sancheza S, Rodarte D, Álvarezc VCA, Galaviz MA (2021) Soybean protein concentrates as a protein source for totoaba (Totoaba macdonaldi) juveniles: effect on intermediary metabolism and liver histological organization. Comp Biochem Physiol Part A Mol Integr Physiol COMP BIOCHEM PHYS A. https://doi.org/10.1016/j.cbpa.2021.111062

    Article  Google Scholar 

  • UNEP (2021) Plastic planet: how tiny plastic particles are polluting our soil UN Environment Programmehttps://www.unep.org/news-and-stories/story/plastic-planet-how-tiny-plastic-particles-are-polluting-our-soil. Accessed 12 Mar 2023

  • Urbina MA, Correa F, Aburto F, Ferrio JP (2020) Adsorption of polyethylene micro-beads and physiological effects on hydroponic maize. Sci Total Environ 741:140216

    CAS  Google Scholar 

  • Van Cauwenberghe L, Lisa D, François G, Johan R, Janssen CR (2015) Microplastics in sediments: a review of techniques occurrence and effects. Mar Environ Res 1115–17

  • van Sebille E, Wilcox C, Lebreton L, Maximenko N, Hardesty BD, van Franeker JA, Eriksen M, Siegel D, Galgani F, Law KL (2015) A global inventory of small floating plastic debris. Environ Res Lett 10:124006

    Google Scholar 

  • Verla AW, Enyoh CE, Verla EN (2019a) Microplastics, an emerging concern: a review of analytical techniques for detecting and quantifying microplatic. Anal Methods Environ Chem J 2:15–32

    Google Scholar 

  • Verla AW, Enyoh CE, Verla EN, Nwarnorh KO (2019b) Microplastic–toxic chemical interaction: a review study on quantified levels, mechanism and implication. SN Appl Sci 1:1–30

    CAS  Google Scholar 

  • Wan Y, Wu C, Xue Q, Hui X (2019) Effects of plastic contamination on water evaporation and desiccation cracking in soil. Sci Total Environ 654:576–582

    CAS  Google Scholar 

  • Wang F, Yang W, Cheng P, Zhang S, Zhang S, Jiao W, Sun Y (2019) Adsorption characteristics of cadmium onto microplastics from aqueous solutions. Chemosphere 235:1073–1080

    CAS  Google Scholar 

  • Wang F, Zhang X, Zhang S, Zhang S, Adams CA, Sun Y (2020a) Effects of co-contamination of microplastics and Cd on plant growth and Cd accumulation. Toxics 8:36

    Google Scholar 

  • Wang Q, Zhang Y, Wangjin X, Wang Y, Meng G, Chen Y (2020b) The adsorption behavior of metals in aqueous solution by microplastics affected by UV radiation. J Environ Sci 87:272–280

    CAS  Google Scholar 

  • Wang L, Gao Y, Jiang W, Chen J, Chen Y, Zhang X, Wang G (2021) Microplastics with cadmium inhibit the growth of Vallisneria natans (Lour.) Hara rather than reduce cadmium toxicity. Chemosphere 266:128979

    CAS  Google Scholar 

  • Wang L, Liu Y, Kaur M, Yao Z, Chen T, Xu M (2021b) Phytotoxic effects of polyethylene microplastics on the growth of food crops soybean (Glycine max) and mung bean (Vigna radiata). Int J Environ Res Public Health 182:10629

    Google Scholar 

  • World Economic Forum (2016) The new plastics economy: rethinking the future of plastics; Ellen MacArthur Foundation and McKinsey & Company: Geneva, Switzerland. https://www.ellenmacarthurfoundation.org/the-new-plastics-economy-rethinking-the-future-of-plastics. Accessed 2 Mar 2023

  • Wu X, Hou H, Liu Y, Yin S, Bian S, Liang S, Wan C, Yuan S, Xiao K, Liu B et al (2022) Microplastics affect rice (Oryza sativa L.) quality by interfering metabolite accumulation and energy expenditure pathways: a field study. J Hazard Mater 422:126834

    CAS  Google Scholar 

  • Xin X, Zhao F, Rho JY, Goodrich SL, Sumerlin BS, Hea Z (2020) Use of polymeric nanoparticles to improve seed germination and plant growth under copper stress. Sci Total Environ 745:141055

    CAS  Google Scholar 

  • Xu Z, Bai X, Li Y, Weng Y, Li F (2023) New insights into the decrease in Cd2+ bioavailability in sediments by microplastics: role of geochemical properties. J Hazard Mater 442:130103

    CAS  Google Scholar 

  • Yang M, Huang D-Y, Tian Y-B, Zhu Q-H, Zhang Q, Zhu H-H, Xu C (2023) Influences of different source microplastics with different particle sizes and application rates on soil properties and growth of Chinese cabbage (Brassica chinensis L.). Ecotoxicol Environ Saf 222:112480

    Google Scholar 

  • Zhang T-R, Wang C-X, Dong F-Q, Gao Z-Y, Zhang C-J, Zhang X-J, Fu L-M, Wang Y, Zhang J-P (2019) Uptake and translocation of styrene maleic anhydride nanoparticles in Murraya Exotica plants as revealed by noninvasive, real-time optical bio-imaging. Environ Sci Technol 53:1471–1481

    CAS  Google Scholar 

  • Zhang B, Yang X, Chen L, Chao J, Teng J, Wang Q (2020a) Microplastics in soils: a review of possible sources, analytical methods, and ecological impacts. J Chem Technol Biotechnol 95:2052–2068

    CAS  Google Scholar 

  • Zhang S, Han B, Sun Y, Wang F (2020b) Microplastics influence the adsorption and desorption characteristics of Cd in an agricultural soil. J Hazard Mater 388:121775

    CAS  Google Scholar 

  • Zhang Z, Li Y, Qiu T, Duan C, Chen L, Zhao S, Zhang X, Fang L (2021) Microplastics addition reduced the toxicity and uptake of cadmium to Brassica chinensis L. Sci Total Environ 852:158353

    Google Scholar 

  • Zhang C, Xia S, Zhang Y et al (2022) Identification of soybean peptides and their effect on the growth and metabolism of Limosilactobacillus reuteri LRo8. Food Chem 369:130923

    CAS  Google Scholar 

  • Zhao JH, Qing G, Xueyuan L, Hongling Z, Zhang JH (2021) Effects of cadmium stress on growth and physiological characteristics of sassafras seedlings. Sci Reports 11:(1). https://doi.org/10.1038/s41598-021-89322-0

  • Zhu F, Zhu C, Wang C et al (2019) Occurrence and ecological impacts of microplastics in soil systems: a review. Bull Environ Contam Toxicol 102:741–749

    CAS  Google Scholar 

  • Zou J, Wang C, Li J, Wei J, Liu Y, Hu L, Liu H, Bian H, Sun D (2022) Effect of polyethylene (LDPE) microplastic on remediation of cadmium contaminated soil by Solanum nigrum L. J Geosci Environ Prot 10:49–64

    Google Scholar 

Download references

Acknowledgements

The authors would also like to acknowledge the College of Geography and Environment Science, Henan University, China for required laboratory facilities and timely help.

Funding

The authors would like to thank the National Key Research and Development Program of China (grant number: 2018YFA0606502) for funding this project.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, W.L.; Investigation, Y.K.; Methodology, W.L.; Formal analysis, M.K. and Y.K.; Resources, W.L.; Software, W.L.; Supervision, W.L. and M.X.; Visualization, W.L. and M.X.; Writing—original draft, M.K. and W.L.; Writing—review and editing, M.K. All authors have read and agreed to the published version of the manuscript. M.K. and Y.K have contributed equally to this work. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Lin Wang.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Gangrong Shi

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, M., Yang, K., Wang, L. et al. Interactive effects of polyethylene microplastics and cadmium on growth of Glycine max. Environ Sci Pollut Res 30, 101178–101191 (2023). https://doi.org/10.1007/s11356-023-29534-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-023-29534-1

Keywords

Navigation