Skip to main content
Log in

Insights into the quantitative structure–activity relationship for ionic liquids: a bibliometric mapping analysis

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Environmental protection and sustainability is the development goal that countries all over the world are pursuing. Ionic liquids (ILs), as a new type of green material, have a great application prospect. And the quantitative structure–activity relationship (QSAR) is significant for the research of ILs. To better understand the role played by QSAR in the research of ILs, 4139 literatures published in the WOS database from 2002 to 2022 were used for bibliometric analysis, and different types of knowledge maps were mapped to obtain the current status and trends of IL research applied QSAR. The distribution pattern of the literature output chronology, country, institution, author cooperation, and major source journals can be obtained through the research of the distribution of literature. Through core literature, dual-map overlays, and evolutionary path analysis, the research knowledge base was obtained mainly including ionic liquid toxicological properties research, environmental protection and sustainability, ionic liquid design, and mild steel corrosion inhibition; through the co-occurrence and evolution of keywords, the current research hotspots are basic properties of ILs, corrosion inhibition of mild steel, the effect of toxicity on the environment, QSAR modeling methods, solvent application of ILs, and drug design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

Not applicable.

References

  • Abbas M, Adil M, Ehtisham-Ul-Haque S, Munir B, Yameen M, Ghaffar A, Shar GA, Asif Tahir M, Iqbal M (2018) Vibrio fischeri bioluminescence inhibition assay for ecotoxicity assessment: a review. Sci Total Environ 626:1295–1309

    CAS  Google Scholar 

  • Aldieri L, Kotsemir M, Vinci CP (2018) The impact of research collaboration on academic performance: an empirical analysis for some European countries. Socioecon Plann Sci 62:13–30

    Google Scholar 

  • Amde M, Liu JF, Pang L (2015) Environmental application, fate, effects, and concerns of ionic liquids: a review. Environ Sci Technol 49:12611–12627

    CAS  Google Scholar 

  • Bini R, Chiappe C, Duce C, Micheli A, Solaro R, Starita A, Tine MR (2008a) Ionic liquids: prediction of their melting points by a recursive neural network model. Green Chem 10:306–309

    CAS  Google Scholar 

  • Bini R, Malvaldi M, Pitner WR, Chiappe C (2008b) QSPR correlation for conductivities and viscosities of low-temperature melting ionic liquids. J Phys Org Chem 21:622–629

    CAS  Google Scholar 

  • Broadus RN (1987) Toward a definition of “bibliometrics.” Scientometrics 12:373–379

    Google Scholar 

  • Bubalo MC, Radosevic K, Redovnikovic IR, Halambek J, Srcek VG (2014) A brief overview of the potential environmental hazards of ionic liquids. Ecotoxicol Environ Saf 99:1–12

    Google Scholar 

  • Callon M, Courtial JP, Laville F (1991) Co-word analysis as a tool for describing the network of interactions between basic and technological research - the case of polymer chemistry. Scientometrics 22:155–205

    Google Scholar 

  • Carrera GVSM, Branco LC, Aires-De-Sousa J, Afonso CAM (2008) Exploration of quantitative structure-property relationships (QSPR) for the design of new guanidinium ionic liquids. Tetrahedron 64:2216–2224

    CAS  Google Scholar 

  • Chakraborti AK, Roy SR, Kumar D, Chopra P (2008) Catalytic application of room temperature ionic liquids: [bmim][MeSO4] as a recyclable catalyst for synthesis of bis(indolyl) methanes. Ion-fishing by MALDI-TOF-TOF MS and MS/MS studies to probe the proposed mechanistic model of catalysis. Green Chem 10:1111–1118

    CAS  Google Scholar 

  • Chantereau G, Sharma M, Abednejad A, Neves BM, Sebe G, Coma V, Freire MG, Freire CSR, Silvestre AJD (2019) Design of nonsteroidal anti-inflammatory drug-based ionic liquids with improved water solubility and drug delivery. Acs Sustain Chem Eng 7:14126–14134

    CAS  Google Scholar 

  • Chatterjee M, Roy K (2022) Recent advances on modelling the toxicity of environmental pollutants for risk assessment: from single pollutants to mixtures. Curr Pollut Rep 8:81–97

    CAS  Google Scholar 

  • Chen C, Leydesdorff L (2014) Patterns of connections and movements in dual-map overlays: a new method of publication portfolio analysis. J Am Soc Inf Sci 65:334–351

    Google Scholar 

  • Chen J, Spear SK, Huddleston JG, Rogers RD (2005) Polyethylene glycol and solutions of polyethylene glycol as green reaction media. Green Chem 7:64–82

    CAS  Google Scholar 

  • Clarke CJ, Tu WC, Levers O, Brohl A, Hallett JP (2018) Green and sustainable solvents in chemical processes. Chem Rev 118:747–800

    CAS  Google Scholar 

  • Cobo MJ, Lopez-Herrera AG, Herrera-Viedma E, Herrera F (2011) Science mapping software tools: review, analysis, and cooperative study among tools. J Am Soc Inform Sci Technol 62:1382–1402

    Google Scholar 

  • Cobo MJ, Chiclana F, Collop A, de Ona J, Herrera-Viedma E (2014) A bibliometric analysis of the intelligent transportation systems research based on science mapping. Ieee T Intell Transp 15:901–908

    Google Scholar 

  • Couling DJ, Bernot RJ, Docherty KM, Dixon JK, Maginn EJ (2006) Assessing the factors responsible for ionic liquid toxicity to aquatic organisms via quantitative structure–property relationship modeling. Green Chem 8:82–90

    CAS  Google Scholar 

  • Das RN, Roy K (2013) Advances in QSPR/QSTR models of ionic liquids for the design of greener solvents of the future. Mol Divers 17:151–196

    CAS  Google Scholar 

  • Dibetsoe M, Olasunkanmi LO, Fayemi OE, Yesudass S, Ramaganthan B, Bahadur I, Adekunle AS, Kabanda MM, Ebenso EE (2015) Some phthalocyanine and naphthalocyanine derivatives as corrosion inhibitors for aluminium in acidic medium: experimental, quantum chemical calculations, QSAR studies and synergistic effect of iodide ions. Molecules 20:15701–15734

    CAS  Google Scholar 

  • Ding WL, Zhang T, Wang Y, Xin J, Yuan X, Ji L, He H (2022) Machine learning screening of efficient ionic liquids for targeted cleavage of the beta-O-4 bond of lignin. J Phys Chem B 126:3693–3704

    CAS  Google Scholar 

  • Docherty KM, Kulpa JCF (2005) Toxicity and antimicrobial activity of imidazolium and pyridinium ionic liquids. Green Chem 7:185–189

    CAS  Google Scholar 

  • Docherty KM, Dixon JK, Kulpa CF Jr (2007) Biodegradability of imidazolium and pyridinium ionic liquids by an activated sludge microbial community. Biodegradation 18:481–493

    CAS  Google Scholar 

  • Domanska U, Krolikowska M, Paduszynski K (2011) Physico-chemical properties and phase behaviour of piperidinium-based ionic liquids. Fluid Phase Equilibr 303:1–9

    CAS  Google Scholar 

  • Dupont J, Suarez PA (2006) Physico-chemical processes in imidazolium ionic liquids. Phys Chem Chem Phys 8:2441–2452

    CAS  Google Scholar 

  • Egorova KS, Ananikov VP (2014) Toxicity of ionic liquids: eco(cyto)activity as complicated, but unavoidable parameter for task-specific optimization. Chemsuschem 7:336–360

    CAS  Google Scholar 

  • Egorova KS, Gordeev EG, Ananikov VP (2017) Biological activity of ionic liquids and their application in pharmaceutics and medicine. Chem Rev 117:7132–7189

    CAS  Google Scholar 

  • Fang ZZ, Zheng XZ, Li L, Qi JP, Wu W, Lu Y (2022) Ionic liquids: emerging antimicrobial agents. Pharm Res 39(10):2391–2404

    CAS  Google Scholar 

  • Fatemi MH, Izadiyan P (2011) Cytotoxicity estimation of ionic liquids based on their effective structural features. Chemosphere 84:553–563

    CAS  Google Scholar 

  • Gao W, Ma X, Yang H, Luan Y, Ai H (2022) Molecular engineering and activity improvement of acetylcholinesterase inhibitors: insights from 3D-QSAR, docking, and molecular dynamics simulation studies. J Mol Graph Model 116:108239

    CAS  Google Scholar 

  • Garcia-Lorenzo A, Tojo E, Tojo J, Teijeira M, Rodriguez-Berrocal FJ, Gonzalez MP, Martinez-Zorzano VS (2008) Cytotoxicity of selected imidazolium-derived ionic liquids in the human Caco-2 cell line. Sub-structural toxicological interpretation through a QSAR study. Green Chem 10:508–516

    CAS  Google Scholar 

  • Glienke J, Stelter M, Braeutigam P (2022) Influence of chemical structure of organic micropollutants on the degradability with ozonation. Water Res 222:118866. https://doi.org/10.1016/j.watres.2022.118866

  • Gou XQ, Liu H, Qiang YJ, Lang ZH, Wang HN, Ye D, Wang ZW, Wang H (2022) In-depth analysis on safety and security research based on system dynamics: a bibliometric mapping approach-based study. Saf Sci 147:105617. https://doi.org/10.1016/j.ssci.2021.105617

  • Gutowski KE, Broker GA, Willauer HD, Huddleston JG, Swatloski RP, Holbrey JD, Rogers RD (2003) Controlling the aqueous miscibility of ionic liquids: aqueous biphasic systems of water-miscible ionic liquids and water-structuring salts for recycle, metathesis, and separations. J Am Chem Soc 125:6632–6633

    CAS  Google Scholar 

  • Hallett JP, Welton T (2011) Room-temperature ionic liquids: solvents for synthesis and catalysis. 2. Chem Rev 111:3508–3576

    CAS  Google Scholar 

  • Hamzehzadeh S, Touri S (2018) The role of ionic liquid C(4)C(1)im Br as an adjuvant on the two -phase formation and the extraction of L-phenylalanine in ABS composed of PEG400 and potassium citrate at different temperatures. Biotechnol Prog 34:1149–1166

    CAS  Google Scholar 

  • Handy S (2005) Room temperature ionic liquids: different classes and physical properties. Curr Org Chem 9:959–988

    CAS  Google Scholar 

  • Hansch C, Maloney PP, Fujita T, Muir RM (1962) Correlation of biological activity of phenoxyacetic acids with hammett substituent constants and partition coefficients. Nature 194:178–180

    CAS  Google Scholar 

  • Hong R, Liu H, Xiang C, Song Y, Lv C (2020) Visualization and analysis of mapping knowledge domain of oxidation studies of sulfide ores. Environ Sci Pollut Res Int 27:5809–5824

    CAS  Google Scholar 

  • Huang R, Liu H, Ma HL, Qiang YJ, Pan K, Gou XQ, Wang X, Ye D, Wang HN, Glowacz A (2022) Accident prevention analysis: exploring the intellectual structure of a research field. Sustainability-Basel 14(14):1–26

    Google Scholar 

  • Huddleston JG, Willauer HD, Rogers RD (2002) The solvatochromic properties, α, β, and π*, of PEG-salt aqueous biphasic systems. Phys Chem Chem Phys 4:4065–4070

    CAS  Google Scholar 

  • Irabien A, Garea A, Luis P (2009) Hybrid molecular QSAR model for toxicity estimation: application to ionic liquids. In: 19th European Symposium on Computer Aided Process Engineering. Computer-Aided Chemical Engineering, Cracow, Poland, pp 63–67

  • Jiao T, Zhuang X, He H, Zhao L, Li C, Chen H, Zhang S (2015) An ionic liquid extraction process for the separation of indole from wash oil. Green Chem 17:3783–3790

    CAS  Google Scholar 

  • Katritzky AR, Tamm K, Kuanar M, Fara DC, Oliferenko A, Oliferenko P, Huddleston JG, Rogers RD (2004) Aqueous biphasic systems. Partitioning of organic molecules: a QSPR treatment. J Chem Inf Comput Sci 44:136–142

    CAS  Google Scholar 

  • Katritzky AR, Kuanar M, Stoyanova-Slavova IB, Slavov SH, Dobchev DA, Karelson M, Acree WE (2008) Quantitative structure-property relationship studies on Ostwald solubility and partition coefficients of organic solutes in ionic liquids. J Chem Eng Data 53:1085–1092

    CAS  Google Scholar 

  • Khan A, Goodell JW, Hassan MK, Paltrinieri A (2022) A bibliometric review of finance bibliometric papers. Financ Res Lett 47:102520

    Google Scholar 

  • Kulacki KJ, Lamberti GA (2008) Toxicity of imidazolium ionic liquids to freshwater algae. Green Chem 10:104–110

    CAS  Google Scholar 

  • Kumar S, Sharma D, Rao S, Lim WM, Mangla SK (2022) Past, present, and future of sustainable finance: insights from big data analytics through machine learning of scholarly research. Ann Oper Res. https://doi.org/10.1007/s10479-021-04410-8

  • Lang ZH, Liu H, Meng N, Wang HN, Wang H, Kong FY (2021a) Mapping the knowledge domains of research on fire safety - an informetrics analysis. Tunn Undergr Sp Tech 108:103676. https://doi.org/10.1016/j.tust.2020.103676

  • Lang ZH, Wang DG, Liu H, Gou XQ (2021b) Mapping the knowledge domains of research on corrosion of petrochemical equipment: an informetrics analysis-based study. Eng Fail Anal 129:105716. https://doi.org/10.1016/j.engfailanal.2021.105716

  • Lazzús JA (2009) ρ(T, p) model for ionic liquids based on quantitative structure-property relationship calculations. J Phys Org Chem 22:1193–1197

    Google Scholar 

  • Le T, Epa VC, Burden FR, Winkler DA (2012) Quantitative structure-property relationship modeling of diverse materials properties. Chem Rev 112:2889–2919

    CAS  Google Scholar 

  • Lee BS, Lin ST (2013) Prediction of phase behaviors of ionic liquids over a wide range of conditions. Fluid Phase Equilibr 356:309–320

    CAS  Google Scholar 

  • Li J, Goerlandt F, Reniers G (2021) An overview of scientometric mapping for the safety science community: methods, tools, and framework. Saf Sci 134:105093. https://doi.org/10.1016/j.ssci.2020.105093

  • Li YW, Liu H, Pan K, Gou XQ, Zhou K, Shao DN, Qi Y, Gao Q, Yu Y, Tian JX (2023) Inhibition effect of imidazolium-based ionic liquids on pyrophorisity of FeS. J Mol Liq 369:120944. https://doi.org/10.1016/j.molliq.2022.120944

  • Liang HK, Zhang SJ, Su YK (2020) The structure and emerging trends of construction safety management research: a bibliometric review. Int J Occup Saf Ergon 26:469–488

    Google Scholar 

  • Liu H, Xie YQ, Liu YZ, Nie RS, Li XL (2019) Mapping the knowledge structure and research evolution of urban rail transit safety studies. Ieee Access 7:186437–186455

    Google Scholar 

  • Liu H, Chen HL, Hong R, Liu HG, You WJ (2020a) Mapping knowledge structure and research trends of emergency evacuation studies. Saf Sci 121:348–361

    Google Scholar 

  • Liu H, Yu ZH, Chen C, Hong R, Jin K, Yang C (2018) Visualization and bibliometric analysis of research trends on human fatigue assessment. J Med Syst 42:179. https://doi.org/10.1007/s10916-018-1033-3

  • Liu H, Hong R, Xiang CL, Lv C, Li HH (2020b) Visualization and analysis of mapping knowledge domains for spontaneous combustion studies. Fuel 262:116598. https://doi.org/10.1016/j.fuel.2019.116598

  • Lu Y, Qi JP, Wu W (2011) Ionic liquids-based drug delivery: a perspective. Pharm Rese 39:2329–2334. https://doi.org/10.1007/s11095-022-03362-3

    Article  CAS  Google Scholar 

  • Luis P, Garea A, Irabien A (2010) Quantitative structure-activity relationships (QSARs) to estimate ionic liquids ecotoxicity EC50 (Vibrio fischeri). J Mol Liq 152:28–33

    CAS  Google Scholar 

  • Luke BT (2002) Evolutionary programming applied to the development of quantitative structure-activity relationships and quantitative structure-property relationships. J Chem Inf Comput Sci 34:1279–1287

    Google Scholar 

  • Mai Y, Eisenberg A (2012) Self-assembly of block copolymers. Chem Soc Rev 41:5969–5985

    CAS  Google Scholar 

  • Martins MA, Frizzo CP, Moreira DN, Zanatta N, Bonacorso HG (2008) Ionic liquids in heterocyclic synthesis. Chem Rev 108:2015–2050

    CAS  Google Scholar 

  • Montalban MG, Hidalgo JM, Collado-Gonzalez M, Diaz Banos FG, Villora G (2016) Assessing chemical toxicity of ionic liquids on Vibrio fischeri: correlation with structure and composition. Chemosphere 155:405–414

    CAS  Google Scholar 

  • Mukherjee D, Lim WM, Kumar S, Donthu N (2022a) Guidelines for advancing theory and practice through bibliometric research. J Bus Res 148:101–115

    Google Scholar 

  • Mukherjee RK, Kumar V, Roy K (2022b) Ecotoxicological QSTR and QSTTR modeling for the prediction of acute oral toxicity of pesticides against multiple avian species. Environ Sci Technol 56:335–348

    CAS  Google Scholar 

  • Nkuna AA, Akpan ED, Obot IB, Verma C, Ebenso EE, Murulana LC (2020) Impact of selected ionic liquids on corrosion protection of mild steel in acidic medium: experimental and computational studies. J Mol Liq 314:113609. https://doi.org/10.1016/j.molliq.2020.113609

  • Olasunkanmi LO, Obot IB, Kabanda MM, Ebenso EE (2015) Some quinoxalin-6-yl derivatives as corrosion inhibitors for mild steel in hydrochloric acid: experimental and theoretical studies. J Phys Chem C 119:16004–16019

    CAS  Google Scholar 

  • Olasunkanmi LO, Obot IB, Ebenso EE (2016) Adsorption and corrosion inhibition properties of N-{n-[1-R-5-(quinoxalin-6-yl)-4,5-dihydropyrazol-3-yl]phenyl} methanesulfonamides on mild steel in 1 M HCl: experimental and theoretical studies. Rsc Adv 6:86782–86797

    CAS  Google Scholar 

  • Palomar J, Torrecilla JS, Ferro VR, Rodriguez F (2008) Development of an a priori ionic liquid design tool. 1. Integration of a novel COSMO-RS molecular descriptor on neural networks. Ind Eng Chem Res 47:4523–4532

    CAS  Google Scholar 

  • Pan K, Liu H, Gou X, Huang R, Ye D, Wang H, Glowacz A, Kong J (2022) Towards a systematic description of fault tree analysis studies using informetric mapping. Sustainability 14(8):11430. https://doi.org/10.3390/su141811430

  • Pedro SN, Freire CSR, Silvestre AJD, Freire MG (2020) The role of ionic liquids in the pharmaceutical field: an overview of relevant applications. Int J Mol Sci 21(21):8298. https://doi.org/10.3390/ijms21218298

  • Peric B, Sierra J, Marti E, Cruanas R, Garau MA, Arning J, Bottin-Weber U, Stolte S (2013) (Eco)toxicity and biodegradability of selected protic and aprotic ionic liquids. J Hazard Mater 261:99–105

    CAS  Google Scholar 

  • Petkovic M, Ferguson JL, Gunaratne HQN, Ferreira R, Leitao MC, Seddon KR, Rebelo LPN, Pereira CS (2010) Novel biocompatible cholinium-based ionic liquids-toxicity and biodegradability. Green Chem 12:643–649

    CAS  Google Scholar 

  • Petkovic M, Seddon KR, Rebelo LP, Silva Pereira C (2011) Ionic liquids: a pathway to environmental acceptability. Chem Soc Rev 40:1383–1403

    CAS  Google Scholar 

  • Pham TP, Cho CW, Yun YS (2010) Environmental fate and toxicity of ionic liquids: a review. Water Res 44:352–372

    CAS  Google Scholar 

  • Pletnev IV, Smirnova SV, Sharov AV, Zolotov YA (2021) New generation extraction solvents: from ionic liquids and aqueous biphasic systems to deep eutectic solvents. Russ Chem Rev 90:1109–1141

    Google Scholar 

  • Pretti C, Chiappe C, Pieraccini D, Gregori M, Abramo F, Monni G, Intorre L (2006) Acute toxicity of ionic liquids to the zebrafish (Danio rerio). Green Chem 8:238–240

    CAS  Google Scholar 

  • Pretti C, Chiappe C, Baldetti I, Brunini S, Monni G, Intorre L (2009) Acute toxicity of ionic liquids for three freshwater organisms: Pseudokirchneriella subcapitata, Daphnia magna and Danio rerio. Ecotoxicol Environ Saf 72:1170–1176

    CAS  Google Scholar 

  • Qiu Y, Wang LM (2021) Photochemical transformation of pyridinium ionic liquids in aqueous phase: kinetics, products and mechanism. J Environ Chem Eng 9(6):106638. https://doi.org/10.1016/j.jece.2021.106638

  • Ranke J, Stolte S, Stormann R, Arning J, Jastorff B (2007) Design of sustainable chemical products–the example of ionic liquids. Chem Rev 107:2183–2206

    CAS  Google Scholar 

  • Romero A, Santos A, Tojo J, Rodriguez A (2008) Toxicity and biodegradability of imidazolium ionic liquids. J Hazard Mater 151:268–273

    CAS  Google Scholar 

  • Roy K, Arnbure P (2016) The “double cross-validation” software tool for MLR QSAR model development. Chemometr Intell Lab 159:108–126

    CAS  Google Scholar 

  • Roy K, Kar S, Ambure P (2015) On a simple approach for determining applicability domain of QSAR models. Chemometr Intell Lab 145:22–29

    CAS  Google Scholar 

  • Roy K, Das RN, Ambure P, Aher RB (2016) Be aware of error measures. Further studies on validation of predictive QSAR models. Chemometr Intell Lab 152:18–33

    CAS  Google Scholar 

  • Sheldon RA (2017) The E factor 25 years on: the rise of green chemistry and sustainability. Green Chem 19:18–43

    CAS  Google Scholar 

  • Sheldon RA, Woodley JM (2018) Role of biocatalysis in sustainable chemistry. Chem Rev 118:801–838

    CAS  Google Scholar 

  • Stanislaus A, Marafi A, Rana MS (2010) Recent advances in the science and technology of ultra low sulfur diesel (ULSD) production. Catal Today 153:1–68

    CAS  Google Scholar 

  • Stolte S, Arning J, Bottin-Weber U, Matzke M, Stock F, Thiele K, Uerdingen M, Welz-Biermann U, Jastorff B, Ranke J (2006) Anion effects on the cytotoxicity of ionic liquids. Green Chem 8:621–629

    CAS  Google Scholar 

  • Stolte S, Arning J, Bottin-Weber U, Müller A, Pitner W-R, Welz-Biermann U, Jastorff B, Ranke J (2007a) Effects of different head groups and functionalised side chains on the cytotoxicity of ionic liquids. Green Chem 9:760–767

    CAS  Google Scholar 

  • Stolte S, Matzke M, Arning J, Böschen A, Pitner W-R, Welz-Biermann U, Jastorff B, Ranke J (2007b) Effects of different head groups and functionalised side chains on the aquatic toxicity of ionic liquids. Green Chem 9:1170–1179

    CAS  Google Scholar 

  • Sun P, Armstrong DW (2010) Ionic liquids in analytical chemistry. Anal Chim Acta 661:1–16

    CAS  Google Scholar 

  • Taha M, e Silva FA, Quental MV, Ventura SP, Freire MG, Coutinho JA (2014) Good’s buffers as a basis for developing self-buffering and biocompatible ionic liquids for biological research. Green Chem 16:3149–3159

    CAS  Google Scholar 

  • Tang S, Baker GA, Zhao H (2012) Ether- and alcohol-functionalized task-specific ionic liquids: attractive properties and applications. Chem Soc Rev 41:4030–4066

    CAS  Google Scholar 

  • Tian JX, Pan K, Lang ZH, Huang R, Sun WR, Chu HY, Ren HT, Dong LY, Li YW, Wang HN, Liu H (2022) Thermodynamics of imidazolium-based ionic liquids for inhibiting the spontaneous combustion of sulfide ore. Sustainability-Basel 14(13):1–16

    CAS  Google Scholar 

  • Toropov AA, Toropova AP (2017) The index of ideality of correlation: a criterion of predictive potential of QSPR/QSAR models? Mutat Res Genet Toxicol Environ Mutagen 819:31–37

    CAS  Google Scholar 

  • Toropova AP, Toropov AA, Lombardo A, Lavado G, Benfenati E (2022) Paradox of “ideal correlations”: improved model for air half-life of persistent organic pollutants. Environ Technol 43:2510–2515

    CAS  Google Scholar 

  • Torrecilla JS, Garcia J, Rojo E, Rodriguez F (2009) Estimation of toxicity of ionic liquids in leukemia rat cell line and acetylcholinesterase enzyme by principal component analysis, neural networks and multiple lineal regressions. J Hazard Mater 164:182–194

    CAS  Google Scholar 

  • Ventura SP, Marques CS, Rosatella AA, Afonso CA, Goncalves F, Coutinho JA (2012) Toxicity assessment of various ionic liquid families towards Vibrio fischeri marine bacteria. Ecotoxicol Environ Saf 76:162–168

    CAS  Google Scholar 

  • Ventura SP, Goncalves AM, Sintra T, Pereira JL, Goncalves F, Coutinho JA (2013) Designing ionic liquids: the chemical structure role in the toxicity. Ecotoxicology 22:1–12

    CAS  Google Scholar 

  • Verma C, Olasunkanrni LO, Ebenso EE, Quraishi MA, Obot IB (2016) Adsorption behavior of glucosamine-based, pyrimidine-fused heterocycles as green corrosion inhibitors for mild steel: experimental and theoretical studies. J Phys Chem C 120:11598–11611

    CAS  Google Scholar 

  • Verma C, Ebenso EE, Quraishi MA (2017) Ionic liquids as green and sustainable corrosion inhibitors for metals and alloys: an overview. J Mol Liq 233:403–414

    CAS  Google Scholar 

  • Wang X, Ohlin CA, Lu Q, Fei Z, Hu J, Dyson PJ (2007) Cytotoxicity of ionic liquids and precursor compounds towards human cell line HeLa. Green Chem 9:1191–1197

    CAS  Google Scholar 

  • Wang H, Liu H, Yao JY, Ye D, Lang ZH, Glowacz A (2021) Mapping the knowledge domains of new energy vehicle safety: informetrics analysis-based studies. Journal of Energy Storage 35:102275. https://doi.org/10.1016/j.est.2021.102275

  • Wang X, Liu H, Pan K, Huang R, Gou XQ, Qiang YJ (2023) Exploring thermal hazard of lithium-ion batteries by bibliometric analysis. J Energy Storage 67:107578. https://doi.org/10.1016/j.est.2023.107578

  • Winkler DA, Breedon M, Hughes AE, Burden FR, Barnard AS, Harvey TG, Cole I (2014) Towards chromate-free corrosion inhibitors: structure-property models for organic alternatives. Green Chem 16:3349–3357

    CAS  Google Scholar 

  • Wu J-F, Tsai H-L (2022) An explication of HistCiteTM: updates, modifications, and a variety of applications. Ser Rev 48:41–48. https://doi.org/10.1080/00987913.2022.2101821

    Article  Google Scholar 

  • Yan CQ, Han MJ, Wan H, Guan GF (2010) QSAR correlation of the melting points for imidazolium bromides and imidazolium chlorides ionic liquids. Fluid Phase Equilibr 292:104–109

    CAS  Google Scholar 

  • Yan FY, Shang QY, Xia SQ, Wang Q, Ma PS (2015) Application of topological index in predicting ionic liquids densities by the quantitative structure property relationship method. J Chem Eng Data 60:734–739

    CAS  Google Scholar 

  • Yan X, Lan T, Jia QZ, Yan FY, Wang Q (2020) A norm index-based QSPR model to predict the standard absolute entropy of organic compounds in three phase states. Fluid Phase Equilibr 526:112815. https://doi.org/10.1016/j.fluid.2020.112815

  • Yang Y, Reniers G, Chen G, Goerlandt F (2019) A bibliometric review of laboratory safety in universities. Saf Sci 120:14–24

    Google Scholar 

  • Yesudass S, Olasunkanmi LO, Bahadur I, Kabanda MM, Obot IB, Ebenso EE (2016) Experimental and theoretical studies on some selected ionic liquids with different cations/anions as corrosion inhibitors for mild steel in acidic medium. J Taiwan Inst Chem E 64:252–268

    CAS  Google Scholar 

  • Yousefi A, Javadian S, Dalir N, Kakemam J, Akbari J (2015) Imidazolium-based ionic liquids as modulators of corrosion inhibition of SDS on mild steel in hydrochloric acid solutions: experimental and theoretical studies. Rsc Adv 5:11697–11713

    CAS  Google Scholar 

  • Zaharia A, Popescu G, Vreja LO (2016) Energy scientific production in the context of the green development models. Econ Comput Econ Cyb 50:151–168

    Google Scholar 

  • Zhao D, Liao Y, Zhang Z (2007) Toxicity of ionic liquids. CLEAN – Soil. Air, Water 35:42–48

    Google Scholar 

  • Zhao YS, Zhang XP, Zhao JH, Zhang HZ, Kang XJ, Dong F (2012) Research of QSPR/QSAR for ionic liquids. Prog Chem 24:1236–1244

    CAS  Google Scholar 

  • Zhao Y, Zhao J, Huang Y, Zhou Q, Zhang X, Zhang S (2014) Toxicity of ionic liquids: database and prediction via quantitative structure-activity relationship method. J Hazard Mater 278:320–329

    CAS  Google Scholar 

  • Zhao RT, Pei D, Yu PL, Wei JT, Wang NL, Di DL, Liu YW (2020) Aqueous two-phase systems based on deep eutectic solvents and their application in green separation processes. J Sep Sci 43:348–359

    CAS  Google Scholar 

  • Zhu H, Tropsha A, Fourches D, Varnek A, Papa E, Gramatica P, Oberg T, Dao P, Cherkasov A, Tetko IV (2008) Combinatorial QSAR modeling of chemical toxicants tested against Tetrahymena pyriformis. J Chem Inf Model 48:766–784

    CAS  Google Scholar 

Download references

Funding

This work was supported in part by the Zhejiang Provincial Natural Science Foundation of China (LY22E040001), the Science and Technology Project of Department of Education of Zhejiang Province (Y202249429) and the Fundamental Research Funds for the Provincial Universities of Zhejiang (2022YW92, 2021YW92).

Author information

Authors and Affiliations

Authors

Contributions

The research is designed and performed by Hui Liu and Rui Huang. The data was collected by Rui Huang. Analysis of data was performed by Rui Huang, Hui Liu, Ze Wei, Yi Jiang, Kai Pan, Xin Wang, and Jie Kong. Finally, the paper is written by Rui Huang, Ze Wei, Yi Jiang, and Hui Liu. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Hui Liu.

Ethics declarations

Ethical approval

Not applicable.

Consent to participate

All authors have confirmed their participation.

Consent for publication

All authors agree to publication.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Philippe Garrigues

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, R., Liu, H., Wei, Z. et al. Insights into the quantitative structure–activity relationship for ionic liquids: a bibliometric mapping analysis. Environ Sci Pollut Res 30, 95054–95076 (2023). https://doi.org/10.1007/s11356-023-29285-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-023-29285-z

Keywords

Navigation