Skip to main content
Log in

Fabrication of ordered layered SnO2/TiO2 heterostructures and their photocatalytic performance for methyl blue degradation

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The rapid growth in population and industrialization has given rise to serious environmental issues, especially the water pollution. Photocatalysis with the assist of semiconductor photocatalysts has been considered as an advanced oxidation technique for degrading a variety of pollutants under solar irradiation. In this work, we have fabricated SnO2-TiO2 heterostructures with different ordered layers of SnO2 and TiO2 via the sol–gel dip-coating technique and utilized in photocatalysis for degradation of methyl blue dye under UV irradiation. The influence of the layer’s position on SnO2 and TiO2 properties is investigated via the various techniques. The grazing incidence X-ray diffraction (GIXRD) analysis reveals that the as-prepared films exhibit pure anatase TiO2 and kesterite SnO2 phases. The 2SnO2/2TiO2 heterostructure exhibit the maximum crystallite size and smallest deviation from the ideal structure. Scanning electron microscopy cross-section images manifest good adhesion of the layers to each other and to the substrate. Fourier transform infrared spectroscopy reveals the characteristic vibration modes of SnO2 and TiO2 phases. UV–visible spectroscopy measurements indicate that all films exhibit high transparency (T = 80%) and the SnO2 film reveals a direct band gap of 3.6 eV, while the TiO2 film exhibits an indirect band gap of 2.9 eV. The optimal 2SnO2/2TiO2 heterostructure film revealed best photocatalytic degradation performance and the reaction rate constant for methylene blue solution under UV irradiation. This work will trigger the development of highly efficient heterostructure photocatalysts for environmental remediation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The data will be available from the corresponding author on reasonable request.

References

Download references

Acknowledgements

The authors would like to thank Prince Sultan University for support.

Author information

Authors and Affiliations

Authors

Contributions

Walid Serbout, Fayçal Bensouici, Omar Meglali, and Sabrina Iaiche: writing—original draft, conceptualization, investigation, data curation, methodology, Mohamed Bououdina, Steffano Bellucci, and Muhammad Humayun: writing—review and editing. resources, funding acquisition.

Corresponding author

Correspondence to Muhammad Humayun.

Ethics declarations

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent to publish

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: George Z. Kyzas

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Serbout, W., Bensouici, F., Meglali, O. et al. Fabrication of ordered layered SnO2/TiO2 heterostructures and their photocatalytic performance for methyl blue degradation. Environ Sci Pollut Res 30, 85792–85802 (2023). https://doi.org/10.1007/s11356-023-28451-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-023-28451-7

Keywords

Navigation