Skip to main content
Log in

Facile synthesis of polyethyleneimine-modified cellulose nanocrystal/silica hybrid aerogel for CO2 adsorption

  • Challenges in Environmental Science & Engineering: Water Sustainability Through the Application of Advanced and Nature-Based Systems
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Cellulose nanocrystal (CNC)/silica hybrid aerogel (CSA) was synthesized from CNC and sodium silicate hybridization using the one-step sol–gel method under atmospheric drying. At a weight ratio of CNC to silica of 1:1, the obtained CSA-1 had a highly porous network, a high specific area of 479 m2 g−1, and a CO2 adsorption capacity of 0.25 mmol g−1. Then, polyethyleneimine (PEI) was impregnated on CSA-1 to improve CO2 adsorption performance. The parameters governing CO2 adsorption performance on CSA-PEI, such as temperatures (70–120 °C) and PEI concentrations (40–60 wt%), were investigated systematically. The optimum adsorbent (CSA-PEI50) exhibited an excellent CO2 adsorption capacity of 2.35 mmol g−1 at 70 °C and a PEI concentration of 50 wt%. The adsorption mechanism of CSA-PEI50 was elucidated by analyzing many adsorption kinetic models. The CO2 adsorption behaviors of CSA-PEI at various temperatures and PEI concentrations had the goodness of fit with the Avrami kinetic model, which can correspond to the multiple adsorption mechanism. The Avrami model also showed fractional reaction orders in a range of 0.352–0.613, and the root mean square error is negligible. Moreover, the rate-limiting kinetic analysis showed that film diffusion and intraparticle diffusion resistance controlled the adsorption speed and dominated the subsequent adsorption stages, respectively. The CSA-PEI50 also exhibited excellent stability after ten adsorption–desorption cycles. This study illustrated that CSA-PEI was a potential adsorbent for CO2 capture from flue gas.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The datasets obtained and analyzed during this work have been mentioned in the submitted article and supplementary materials.

Abbreviations

CNC:

Cellulose nanocrystal

CSA:

Cellulose nanocrystal/silica hybrid aerogel

PEI:

Polyethyleneimine

SEM:

Scanning electron microscopy

HR-TEM:

High-resolution transmission electron microscopy

EDX:

Energy dispersive X-ray spectroscopy

TGA:

Thermogravimetric analyzer

BET:

Brunauer-Emmett-Teller

BJH:

Barrett Joyner Halenda

ATR-FTIR:

Attenuated total reflectance—Fourier transform infrared spectrometer

RMSE:

Root mean square error

References

  • Awual MR (2019) Efficient phosphate removal from water for controlling eutrophication using novel composite adsorbent. J Clean Prod 228:1311–1319

    Article  CAS  Google Scholar 

  • Awual MR, Hasan MM, Islam A, Rahman MM, Asiri AM, Khaleque MA, Sheikh MC (2019a) Introducing an amine functionalized novel conjugate material for toxic nitrite detection and adsorption from wastewater. J Clean Prod 228:778–785

    Article  CAS  Google Scholar 

  • Awual MR, Hasan MM, Rahman MM, Asiri AM (2019b) Novel composite material for selective copper (II) detection and removal from aqueous media. J Mol Liq 283:772–780

    Article  CAS  Google Scholar 

  • Bai G, Han Y, Du P, Fei Z, Chen X, Zhang Z, Tang J, Cui M, Liu Q, Qiao X (2019) Polyethylenimine (PEI)-impregnated resin adsorbent with high efficiency and capacity for CO2 capture from flue gas. New J Chem 43:18345–18354

    Article  CAS  Google Scholar 

  • Begag R, Krutka H, Dong W, Mihalcik D, Rhine W, Gould G, Baldic J, Nahass P (2013) Superhydrophobic amine functionalized aerogels as sorbents for CO2 capture. Greenh Gases: Sci Technol 3:30–39

    Article  CAS  Google Scholar 

  • Chen C, Park D-W, Ahn W-S (2014) CO2 capture using zeolite 13X prepared from bentonite. Appl Surf Sci 292:63–67

    Article  CAS  Google Scholar 

  • Choi W, Park J, Kim C, Choi M (2021) Structural effects of amine polymers on stability and energy efficiency of adsorbents in post-combustion CO2 capture. Chem Eng J 408:127289

    Article  CAS  Google Scholar 

  • Cui S, Cheng W, Shen X, Fan M, Russell AT, Wu Z, Yi X (2011) Mesoporous amine-modified SiO2 aerogel: a potential CO2 sorbent. Energy Environ Sci 4:2070–2074

    Article  CAS  Google Scholar 

  • Demilecamps A, Beauger C, Hildenbrand C, Rigacci A, Budtova T (2015) Cellulose–silica aerogels. Carbohyd Polym 122:293–300

    Article  CAS  Google Scholar 

  • Doan TKQ, Chiang KY (2022) Characteristics and kinetics study of spherical cellulose nanocrystal extracted from cotton cloth waste by acid hydrolysis. Sustain Environ Res 32:1–14

    Article  Google Scholar 

  • Gaikwad S, Kim S-J, Han S (2019) CO2 capture using amine-functionalized bimetallic mil-101 mofs and their stability on exposure to humid air and acid gases. Microporous Mesoporous Mater 277:253–260

    Article  CAS  Google Scholar 

  • Gu H, Liu C, Zhu J, Gu J, Wujcik EK, Shao L, Wang N, Wei H, Scaffaro R, Zhang J (2018) Introducing advanced composites and hybrid materials. Springer, pp 1–5

    Google Scholar 

  • Guo Y, Tan C, Wang P, Sun J, Yan J, Li W, Zhao C, Lu P (2019) Kinetic study on CO2 adsorption behaviors of amine-modified co-firing fly ash. J Taiwan Inst Chem Eng 96:374–381

    Article  CAS  Google Scholar 

  • Hasan MM, Kubra KT, Hasan MN, Awual ME, Salman MS, Sheikh MC, Rehan AI, Rasee AI, Waliullah RM, Islam MS, Khandaker S, Islam A, Hossain MS, Alsukaibi AKD, Alshammari HM, Awual MR (2023) Sustainable ligand-modified based composite material for the selective and effective cadmium (II) capturing from wastewater. J Mol Liq 371:121125

    Article  CAS  Google Scholar 

  • Hasan MN, Salman MS, Islam A, Znad H, Hasan MM (2021a) Sustainable composite sensor material for optical cadmium (II) monitoring and capturing from wastewater. Microchem J 161:105800

    Article  CAS  Google Scholar 

  • Hasan MN, Shenashen M, Hasan MM, Znad H, Awual MR (2021b) Assessing of cesium removal from wastewater using functionalized wood cellulosic adsorbent. Chemosphere 270:128668

    Article  CAS  Google Scholar 

  • Hsan N, Dutta PK, Kumar S, Bera R, Das N (2019) Chitosan grafted graphene oxide aerogel: synthesis, characterization and carbon dioxide capture study. Int J Biol Macromol 125:300–306

    Article  CAS  Google Scholar 

  • Islam A, Teo SH, Taufiq-Yap YH, Ng CH, Vo D-VN, Ibrahim ML, Hasan MM, MaR K, Nur ASM, Awual MR (2021) Step towards the sustainable toxic dyes removal and recycling from aqueous solution- a comprehensive review. Resour Conserv Recycl 175:105849

    Article  CAS  Google Scholar 

  • Jeong-Potter C, Farrauto R (2021) Feasibility study of combining direct air capture of CO2 and methanation at isothermal conditions with dual function materials. Appl Catal B 282:119416

    Article  CAS  Google Scholar 

  • Jiang F, Hu S, Hsieh Y-L (2018) Aqueous synthesis of compressible and thermally stable cellulose nanofibril–silica aerogel for CO2 adsorption. ACS Appl Nano Mater 1:6701–6710

    Article  CAS  Google Scholar 

  • Jiang X, Kong Y, Zou H, Zhao Z, Zhong Y, Shen X (2021) Amine grafted cellulose aerogel for CO2 capture. J Porous Mater 28:93–97

    Article  CAS  Google Scholar 

  • Kaur P, Sharma N, Munagala M, Rajkhowa R, Aallardyce B, Shastri Y, Agrawal R (2021) Nanocellulose: resources, physiochemical properties, current uses and future applications. Front Nanotech 3:747329

  • Keshavarz L, Ghaani MR, Macelroy JD, English NJ (2021) A comprehensive review on the application of aerogels in CO2-adsorption: materials and characterisation. Chem Eng J 412:128604

    Article  CAS  Google Scholar 

  • Khedkar MV, Somvanshi SB, Humbe AV, Jadhav K (2019) Surface modified sodium silicate based superhydrophobic silica aerogels prepared via ambient pressure drying process. J Non-Cryst Solids 511:140–146

    Article  CAS  Google Scholar 

  • Kiliyankil VA, Fugetsu B, Sakata I, Wang Z, Endo M (2021) Aerogels from copper (II)-cellulose nanofibers and carbon nanotubes as absorbents for the elimination of toxic gases from air. J Colloid Interface Sci 582:950–960

    Article  Google Scholar 

  • Kong Y, Shen X, Cui S (2016a) Amine hybrid zirconia/silica composite aerogel for low-concentration co2 capture. Microporous Mesoporous Mater 236:269–276

    Article  CAS  Google Scholar 

  • Kong Y, Shen X, Cui S, Fan M (2015) Facile synthesis of an amine hybrid aerogel with high adsorption efficiency and regenerability for air capture via a solvothermal-assisted sol–gel process and supercritical drying. Green Chem 17:3436–3445

    Article  CAS  Google Scholar 

  • Kong Y, Shen X, Fan M, Yang M, Cui S (2016b) Dynamic capture of low-concentration CO2 on amine hybrid silsesquioxane aerogel. Chem Eng J 283:1059–1068

    Article  CAS  Google Scholar 

  • Kubra KT, Salman MS, Hasan MN (2021) Enhanced toxic dye removal from wastewater using biodegradable polymeric natural adsorbent. J Mol Liq 328:115468

    Article  CAS  Google Scholar 

  • Lee S-Y, Park S-J (2015) A review on solid adsorbents for carbon dioxide capture. J Ind Eng Chem 23:1–11

    Article  Google Scholar 

  • Li M, Jiang H, Xu D, Yang Y (2017) A facile method to prepare cellulose whiskers–silica aerogel composites. J Sol-Gel Sci Technol 83:72–80

    Article  CAS  Google Scholar 

  • Li Y, Grishkewich N, Liu L, Wang C, Tam KC, Liu S, Mao Z, Sui X (2019) Construction of functional cellulose aerogels via atmospheric drying chemically cross-linked and solvent exchanged cellulose nanofibrils. Chem Eng J 366:531–538

    Article  CAS  Google Scholar 

  • Linneen NN, Pfeffer R, Lin Y (2014) CO2 adsorption performance for amine grafted particulate silica aerogels. Chem Eng J 254:190–197

    Article  CAS  Google Scholar 

  • Liu J, Xie H, Wang Q, Chen S, Hu Z (2020) Influence of pore structure on shale gas recovery with CO2 sequestration: insight into molecular mechanisms. Energy Fuels 34:1240–1250

    Article  CAS  Google Scholar 

  • Mazrouaa AM, Mansour NA, Abed MY, Youssif MA, Shenashen MA, Awual MR (2019) Nano-composite multi-wall carbon nanotubes using poly(p-phenylene terephthalamide) for enhanced electric conductivity. J Environ Chem Eng 7:103002

    Article  Google Scholar 

  • Miao Y, Luo H, Pudukudy M, Zhi Y, Zhao W, Shan S, Jia Q, Ni Y (2020a) CO2 capture performance and characterization of cellulose aerogels synthesized from old corrugated containers. Carbohyd Polym 227:115380

    Article  CAS  Google Scholar 

  • Miao Y, Pudukudy M, Zhi Y, Miao Y, Shan S, Jia Q, Ni Y (2020b) A facile method for in situ fabrication of silica/cellulose aerogels and their application in CO2 capture. Carbohyd Polym 236:116079

    Article  CAS  Google Scholar 

  • Mohd NH, Kargazadeh H, Miyamoto M, Uemiya S, Sharer N, Baharum A, Peng TL, Ahmad I, Yarmo MA, Othaman R (2021) Aminosilanes grafted nanocrystalline cellulose from oil palm empty fruit bunch aerogel for carbon dioxide capture. J Market Res 13:2287–2296

    CAS  Google Scholar 

  • Papa E, Medri V, Paillard C, Contri B, Murri AN, Vaccari A, Landi E (2019) Geopolymer-hydrotalcite composites for CO2 capture. J Clean Prod 237:117738

    Article  CAS  Google Scholar 

  • Salman MS, Hasan MN, Hasan MM, Kubra KT, Sheikh MC, Rehan AI, Waliullah RM, Rasee AI, Awual ME, Hossain MS, Alsukaibi AKD, Alshammari HM, Awual MR (2023a) Improving copper (II) ion detection and adsorption from wastewater by the ligand-functionalized composite adsorbent. J Mol Struct 1282:135259

    Article  CAS  Google Scholar 

  • Salman MS, Sheikh MC, Hasan MM, Hasan MN, Kubra KT, Rehan AI, Awual ME, Rasee AI, Waliullah RM, Hossain MS, Khaleque MA, Alsukaibi AKD, Alshammari HM, Awual MR (2023b) Chitosan-coated cotton fiber composite for efficient toxic dye encapsulation from aqueous media. Appl Surf Sci 622:157008

    Article  CAS  Google Scholar 

  • Salman MS, Znad H, Hasan MN, Hasan MM (2021) Optimization of innovative composite sensor for Pb (II) detection and capturing from water samples. Microchem J 160:105765

    Article  CAS  Google Scholar 

  • Sanz R, Calleja G, Arencibia A, Sanz-Pérez E (2010) CO2 adsorption on branched polyethyleneimine-impregnated mesoporous silica SBA-15. Appl Surf Sci 256:5323–5328

    Article  CAS  Google Scholar 

  • Sepahvand S, Jonoobi M, Ashori A, Gauvin F, Brouwers H, Oksman K, Yu Q (2020) A promising process to modify cellulose nanofibers for carbon dioxide (CO2) adsorption. Carbohyd Polym 230:115571

    Article  CAS  Google Scholar 

  • Serna-Guerrero R, Sayari A (2010) Modeling adsorption of CO2 on amine-functionalized mesoporous silica. 2: Kinetics and breakthrough curves. Chem Eng J 161:182–190

    Article  CAS  Google Scholar 

  • Shi J, Lu L, Guo W, Zhang J, Cao Y (2013) Heat insulation performance, mechanics and hydrophobic modification of cellulose–SiO2 composite aerogels. Carbohyd Polym 98:282–289

    Article  CAS  Google Scholar 

  • Song G, Zhu X, Chen R, Liao Q, Ding Y-D, Chen L (2016) An investigation of CO2 adsorption kinetics on porous magnesium oxide. Chem Eng J 283:175–183

    Article  CAS  Google Scholar 

  • Sun J, Shang M, Zhang M, Yu S, Yuan Z, Yi X, Filatov S, Zhang J (2022) Konjac glucomannan/cellulose nanofibers composite aerogel supported HKUST-1 for CO2 adsorption. Carbohyd Polym 293:119720

    Article  CAS  Google Scholar 

  • Tang L, Zhuang S, Hong B, Cai Z, Chen Y, Huang B (2019) Synthesis of light weight, high strength biomass-derived composite aerogels with low thermal conductivities. Cellulose 26:8699–8712

    Article  CAS  Google Scholar 

  • Wang C, Okubayashi S (2019) Polyethyleneimine-crosslinked cellulose aerogel for combustion CO2 capture. Carbohyd Polym 225:115248

    Article  Google Scholar 

  • Wang X, He C, He H, Xie W (2022) Simulation and experimental research on nonlinear ultrasonic testing of composite material porosity. Appl Acoust 188:108528

    Article  Google Scholar 

  • Wickramaratne NP, Jaroniec M (2013) Activated carbon spheres for CO2 adsorption. ACS Appl Mater Interfaces 5:1849–1855

    Article  CAS  Google Scholar 

  • Wörmeyer K, Smirnova I (2013) Adsorption of CO2, moisture and ethanol at low partial pressure using aminofunctionalised silica aerogels. Chem Eng J 225:350–357

    Article  Google Scholar 

  • Yang F, Zhu X, Wu J, Wang R, Ge T (2022) Kinetics and mechanism analysis of CO2 adsorption on lix@ zif-8 with core shell structure. Powder Technol 399:117090

    Article  CAS  Google Scholar 

  • Yoro KO, Amosa MK, Sekoai PT, Mulopo J, Daramola MO (2020) Diffusion mechanism and effect of mass transfer limitation during the adsorption of CO2 by polyaspartamide in a packed-bed unit. Int J Sustain Eng 13:54–67

    Article  Google Scholar 

  • Yu F, Wu Y, Zhang W, Cai T, Xu Y, Chen X (2016) A novel aerogel sodium-based sorbent for low temperature CO2 capture. Greenh Gases: Sci Technol 6:561–573

    Article  CAS  Google Scholar 

  • Zhang T, Zhang W, Zhang Y, Shen M, Zhang J (2020) Gas phase synthesis of aminated nanocellulose aerogel for carbon dioxide adsorption. Cellulose 27:2953–2958

    Article  CAS  Google Scholar 

  • Zheng Q, Cai Z, Gong S (2014) Green synthesis of polyvinyl alcohol (PVA)–cellulose nanofibril (CNF) hybrid aerogels and their use as superabsorbents. J Mater Chem A 2:3110–3118

    Article  CAS  Google Scholar 

  • Zhou G, Wang K, Liu R, Tian Y, Kong B, Qi G (2021) Synthesis and CO2 adsorption performance of tepa-loaded cellulose whisker/silica composite aerogel. Colloids Surf, A 631:127675

    Article  CAS  Google Scholar 

  • Zhou L, Zhai Y-M, Yang M-B, Yang W (2019) Flexible and tough cellulose nanocrystal/polycaprolactone hybrid aerogel based on the strategy of macromolecule cross-linking via click chemistry. ACS Sustain Chem Eng 7:15617–15627

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author is very thankful to the Taiwan Ministry of Science and Technology (MOST) for its financial support and the Center for Advanced Instrumentation, National Central University, Taiwan, for providing analytical facilities to execute this study.

Funding

This work was supported by the Taiwan Ministry of Science and Technology (MOST) (Grand number: MOST-109–2221-E-008–023-MY2).

Author information

Authors and Affiliations

Authors

Contributions

Quyen Kim Thi Doan: conceptualization; writing—original draft; writing—review and editing. Kung-Yuh Chiang: reviewing; revising; supervising. All authors are read and approved the final manuscript.

Corresponding author

Correspondence to Kung Yuh Chiang.

Ethics declarations

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Tito Roberto Cadaval Jr

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 872 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doan, Q.K.T., Chiang, K.Y. Facile synthesis of polyethyleneimine-modified cellulose nanocrystal/silica hybrid aerogel for CO2 adsorption. Environ Sci Pollut Res (2023). https://doi.org/10.1007/s11356-023-28359-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11356-023-28359-2

Keywords

Navigation