Skip to main content

Advertisement

Log in

BPA induces placental trophoblast proliferation inhibition and fetal growth restriction by inhibiting the expression of SRB1

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Bisphenol-A (BPA) is a common environmental toxicant that is known to be associated with fetal growth restriction (FGR). However, the mechanisms of how BPA induce FGR is poorly characterized. We conducted proteomics to identify the abnormal expression of SRB1 in female placental tissues with high BPA-induced FGR and further verified its decreased expression in human placenta and BeWo cells. Next, the effect of BPA on fetal development was further confirmed in pregnant C57BL/6 mice. The expression of SRB1 was consistently downregulated in human FGR placentas, BPA-exposed trophoblasts and mouse placentas. In addition, we found that SRB1 interacted with PCNA, and BPA exposure indirectly reduced the expression of PCNA and further inhibited placental proliferation. In vitro studies showed that BPA exposure reduced the expression of CDK1, CDK2, cyclin B and phosphorylated Rb in placental trophoblast cells, indicating cell cycle arrest after exposure to BPA. In addition, the expression of γ-H2AX and phosphorylated ATM was upregulated in BPA-exposed trophoblasts, indicating increased DNA damage. Our results indicate that BPA-induced FGR is achieved by reducing the expression of SRB1, inhibiting placental proliferation and increasing DNA damage. Our findings not only explain the mechanism of BPA-associated developmental toxicity but also shed light upon developing novel therapeutic targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data openly available in a public repository.

References

  • Ahmed F, Chehade L, Garneau L, Caron A, Aguer C (2020) The effects of acute BPA exposure on skeletal muscle mitochondrial function and glucose metabolism. Mol Cell Endocrinol 499:110580

    CAS  Google Scholar 

  • Balakrishnan B, Henare K, Thorstensen EB, Ponnampalam AP, Mitchell MD (2010) Transfer of bisphenol A across the human placenta. Am J Obstet Gynecol 202(393):e1-7

    Google Scholar 

  • Barrientos G, Pussetto M, Rose M, Staff AC, Blois SM, Toblli JE (2017) Defective trophoblast invasion underlies fetal growth restriction and preeclampsia-like symptoms in the stroke-prone spontaneously hypertensive rat. Mol Hum Reprod 23:509–519

    CAS  Google Scholar 

  • Benachour N, Aris A (2009) Toxic effects of low doses of Bisphenol-A on human placental cells. Toxicol Appl Pharmacol 241:322–328

    CAS  Google Scholar 

  • Bolt HM, Stewart JD (2011) Highlight report: the bisphenol A controversy. Arch Toxicol 85:1491–1492

    CAS  Google Scholar 

  • Callan AC, Hinwood AL, Heffernan A, Eaglesham G, Mueller J, Odland JO (2013) Urinary bisphenol A concentrations in pregnant women. Int J Hyg Environ Health 216:641–644

    CAS  Google Scholar 

  • Cao LL, Wei F, Du Y, Song B, Wang D, Shen C, Lu X, Cao Z, Yang Q, Gao Y, Wang L, Zhao Y, Wang H, Yang Y, Zhu WG (2016) ATM-mediated KDM2A phosphorylation is required for the DNA damage repair. Oncogene 35:301–313

    CAS  Google Scholar 

  • Cao Y, Chen Z, Zhang M, Shi L, Qin S, Lv D, Li D, Ma L, Zhang Y (2022a) Maternal exposure to bisphenol A induces fetal growth restriction via upregulating the expression of estrogen receptors. Chemosphere 287:132244

    CAS  Google Scholar 

  • Cao Y, Sun Q, Chen Z, Lu J, Geng T, Ma L, Zhang Y (2022b) CDKN2AIP is critical for spermiogenesis and germ cell development. Cell Biosci 12:136

    CAS  Google Scholar 

  • Cho S, Vashisth M, Abbas A, Majkut S, Vogel K, Xia Y, Ivanovska IL, Irianto J, Tewari M, Zhu K, Tichy ED, Mourkioti F, Tang HY, Greenberg RA, Prosser BL, Discher DE (2019) Mechanosensing by the Lamina Protects against Nuclear Rupture, DNA Damage, and Cell-Cycle Arrest. Dev Cell 49:920-935 e5

    CAS  Google Scholar 

  • Cindrova-Davies T, Sferruzzi-Perri AN (2022) Human placental development and function. Semin Cell Dev Biol 131:66–77

  • Di Pietro P, D’Auria R, Viggiano A, Ciaglia E, Meccariello R, Russo RD, Puca AA, Vecchione C, Nori SL, Santoro A (2020) Bisphenol A induces DNA damage in cells exerting immune surveillance functions at peripheral and central level. Chemosphere 254:126819

    Google Scholar 

  • Falck J, Mailand N, Syljuasen RG, Bartek J, Lukas J (2001) The ATM-Chk2-Cdc25A checkpoint pathway guards against radioresistant DNA synthesis. Nature 410:842–847

    CAS  Google Scholar 

  • Gairabekova D, van Rosmalen J, Duvekot JJ (2021) Outcome of early-onset fetal growth restriction with or without abnormal umbilical artery Doppler flow. Acta Obstet Gynecol Scand 100:1430–1438

    Google Scholar 

  • Gavet O, Pines J (2010) Progressive activation of CyclinB1-Cdk1 coordinates entry to mitosis. Dev Cell 18:533–543

    CAS  Google Scholar 

  • Guo J, Fang M, Zhuang S, Qiao Y, Huang W, Gong Q, Xu D, Zhang Y, Wang H (2020) Prenatal dexamethasone exposure exerts sex-specific effect on placental oxygen and nutrient transport ascribed to the differential expression of IGF2. Ann Transl Med 8:233

    CAS  Google Scholar 

  • Hassepass I, Voit R, Hoffmann I (2003) Phosphorylation at serine 75 is required for UV-mediated degradation of human Cdc25A phosphatase at the S-phase checkpoint. J Biol Chem 278:29824–29829

    CAS  Google Scholar 

  • Hengstler JG, Foth H, Gebel T, Kramer PJ, Lilienblum W, Schweinfurth H, Volkel W, Wollin KM, Gundert-Remy U (2011) Critical evaluation of key evidence on the human health hazards of exposure to bisphenol A. Crit Rev Toxicol 41:263–291

    CAS  Google Scholar 

  • Hoekstra M, Ye D, Hildebrand RB, Zhao Y, Lammers B, Stitzinger M, Kuiper J, Van Berkel TJ, Van Eck M (2009) Scavenger receptor class B type I-mediated uptake of serum cholesterol is essential for optimal adrenal glucocorticoid production. J Lipid Res 50:1039–1046

    CAS  Google Scholar 

  • Hyun SA, Lee CY, Ko MY, Chon SH, Kim YJ, Seo JW, Kim KK, Ka M (2021) Cardiac toxicity from bisphenol A exposure in human-induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol 428:115696

    CAS  Google Scholar 

  • Jiang J, Huang Y, Wang W, Sun C, Liu Q, Chen Y, Hu T, Ma X, Peng C, Ma Y, Liu S, Rao C (2022) Activation of ATM/Chk2 by Zanthoxylum armatum DC extract induces DNA damage and G1/S phase arrest in BRL 3A cells. J Ethnopharmacol 284:114832

    CAS  Google Scholar 

  • Jin X, Ding D, Yan Y, Li H, Wang B, Ma L, Ye Z, Ma T, Wu Q, Rodrigues DN, Kohli M, Jimenez R, Wang L, Goodrich DW, de Bono J, Dong H, Wu H, Zhu R, Huang H (2019) Phosphorylated RB Promotes Cancer Immunity by Inhibiting NF-kappaB Activation and PD-L1 Expression. Mol Cell 73:22-35 e6

    CAS  Google Scholar 

  • Kallol S, Albrecht C (2020) Materno-fetal cholesterol transport during pregnancy. Biochem Soc Trans 48:775–786

    CAS  Google Scholar 

  • Komarowska MD, Grubczak K, Czerniecki J, Hermanowicz A, Hermanowicz JM, Debek W, Matuszczak E (2021) Identification of the Bisphenol A (BPA) and the Two Analogues BPS and BPF in Cryptorchidism. Front Endocrinol (lausanne) 12:694669

    Google Scholar 

  • Li YH, Fei DU, Fen YA, Zhou XY, Pan HJ, Yang L (2015) Adolescent exposure to bisphenol A affects the reproduction of male mice and sex ratio of offsprings. Reprod Contracept 35:141–142

    CAS  Google Scholar 

  • Li Z, Mao W, Yao L, Zhao N, Zhang Y, Zhao M, Jin H (2022) First report on occurrence of bisphenol A isomers in human serum and whole blood. J Hazard Mater 424:127549

    CAS  Google Scholar 

  • Liu J, Wang XF, Wang Y, Wang HW, Liu Y (2014) The incidence rate, high-risk factors, and short- and long-term adverse outcomes of fetal growth restriction: a report from Mainland China. Medicine (baltimore) 93:e210

    Google Scholar 

  • Liu HJ, Liu PC, Hua J, Zhao Y, Cao J (2021a) Placental weight and size in relation to fetal growth restriction: a case-control study. J Matern Fetal Neonatal Med 34:1356–1360

    Google Scholar 

  • Liu X, Wang Z, Liu F (2021b) Chronic exposure of BPA impairs male germ cell proliferation and induces lower sperm quality in male mice. Chemosphere 262:127880

    CAS  Google Scholar 

  • Luciani-Torres MG, Moore DH, Goodson WH 3rd, Dairkee SH (2015) Exposure to the polyester PET precursor–terephthalic acid induces and perpetuates DNA damage-harboring non-malignant human breast cells. Carcinogenesis 36:168–176

    CAS  Google Scholar 

  • Lv Y, Lv M, Ji X, Xue L, Rui C, Yin L, Ding H, Miao Z (2019) Down-regulated expressed protein HMGB3 inhibits proliferation and migration, promotes apoptosis in the placentas of fetal growth restriction. Int J Biochem Cell Biol 107:69–76

    CAS  Google Scholar 

  • Mendonca K, Hauser R, Calafat AM, Arbuckle TE, Duty SM (2014) Bisphenol A concentrations in maternal breast milk and infant urine. Int Arch Occup Environ Health 87:13–20

    CAS  Google Scholar 

  • Mistry HD, Kurlak LO, Mansour YT, Zurkinden L, Mohaupt MG, Escher G (2017) Increased maternal and fetal cholesterol efflux capacity and placental CYP27A1 expression in preeclampsia. J Lipid Res 58:1186–1195

    CAS  Google Scholar 

  • Morice L, Benaitreau D, Dieudonne MN, Morvan C, Serazin V, de Mazancourt P, Pecquery R, Dos Santos E (2011) Antiproliferative and proapoptotic effects of bisphenol A on human trophoblastic JEG-3 cells. Reprod Toxicol 32:69–76

    CAS  Google Scholar 

  • Muller JE, Meyer N, Santamaria CG, Schumacher A, Luque EH, Zenclussen ML, Rodriguez HA, Zenclussen AC (2018) Bisphenol A exposure during early pregnancy impairs uterine spiral artery remodeling and provokes intrauterine growth restriction in mice. Sci Rep 8:9196

    Google Scholar 

  • Mustieles V, Zhang Y, Yland J, Braun JM, Williams PL, Wylie BJ, Attaman JA, Ford JB, Azevedo A, Calafat AM, Hauser R, Messerlian C (2020) Maternal and paternal preconception exposure to phenols and preterm birth. Environ Int 137:105523

    CAS  Google Scholar 

  • Nishikawa M, Iwano H, Yanagisawa R, Koike N, Inoue H, Yokota H (2010) Placental transfer of conjugated bisphenol A and subsequent reactivation in the rat fetus. Environ Health Perspect 118:1196–1203

    CAS  Google Scholar 

  • Panchoo M, Lacko A (2018) Scavenger receptor class B type 1 regulates neuroblastoma cell proliferation, migration and invasion. Biochem Biophys Res Commun 495:614–620

    CAS  Google Scholar 

  • Ponniah M, Billett EE, De Girolamo LA (2015) Bisphenol A increases BeWo trophoblast survival in stress-induced paradigms through regulation of oxidative stress and apoptosis. Chem Res Toxicol 28:1693–1703

    CAS  Google Scholar 

  • Rahman N, Jeon M, Kim YS (2016) Methyl gallate, a potent antioxidant inhibits mouse and human adipocyte differentiation and oxidative stress in adipocytes through impairment of mitotic clonal expansion. BioFactors 42:716–726

    CAS  Google Scholar 

  • Randhawa R, Cohen P (2005) The role of the insulin-like growth factor system in prenatal growth. Mol Genet Metab 86:84–90

    CAS  Google Scholar 

  • Rodriguez-Carrillo A, Mustieles V, Perez-Lobato R, Molina-Molina JM, Reina-Perez I, Vela-Soria F, Rubio S, Olea N, Fernandez MF (2019) Bisphenol A and cognitive function in school-age boys: Is BPA predominantly related to behavior? Neurotoxicology 74:162–171

    CAS  Google Scholar 

  • Rolfo A, Nuzzo AM, De Amicis R, Moretti L, Bertoli S, Leone A (2020) Fetal-maternal exposure to endocrine disruptors: correlation with diet intake and pregnancy outcomes. Nutrients 12

  • Santander NG, Contreras-Duarte S, Awad MF, Lizama C, Passalacqua I, Rigotti A, Busso D (2013) Developmental abnormalities in mouse embryos lacking the HDL receptor SR-BI. Hum Mol Genet 22:1086–1096

    CAS  Google Scholar 

  • Schonfelder G, Wittfoht W, Hopp H, Talsness CE, Paul M, Chahoud I (2002) Parent bisphenol A accumulation in the human maternal-fetal-placental unit. Environ Health Perspect 110:A703–A707

    Google Scholar 

  • Shi XT, Zhu HL, Xu XF, Xiong YW, Dai LM, Zhou GX, Liu WB, Zhang YF, Xu DX, Wang H (2021) Gestational cadmium exposure impairs placental angiogenesis via activating GC/GR signaling. Ecotoxicol Environ Saf 224:112632

    CAS  Google Scholar 

  • Strommen K, Lyche JL, Moltu SJ, Muller MHB, Blakstad EW, Almaas AN, Sakhi AK, Thomsen C, Nakstad B, Ronnestad AE, Drevon CA, Iversen PO (2021) High urinary concentrations of parabens and bisphenol A in very low birth weight infants. Chemosphere 271:129570

    Google Scholar 

  • Strzalka W, Ziemienowicz A (2011) Proliferating cell nuclear antigen (PCNA): a key factor in DNA replication and cell cycle regulation. Ann Bot 107:1127–1140

    CAS  Google Scholar 

  • Subramaniam D, Angulo P, Ponnurangam S, Dandawate P, Ramamoorthy P, Srinivasan P, Iwakuma T, Weir SJ, Chastain K, Anant S (2020) Suppressing STAT5 signaling affects osteosarcoma growth and stemness. Cell Death Dis 11:149

    CAS  Google Scholar 

  • Tang P, Liang J, Liao Q, Huang H, Guo X, Lin M, Liu B, Wei B, Zeng X, Liu S, Huang D, Qiu X (2021) Associations of bisphenol exposure with the risk of gestational diabetes mellitus: a nested case-control study in Guangxi, China. Environ Sci Pollut Res Int

  • Thornburg KL, Louey S (2013) Uteroplacental circulation and fetal vascular function and development. Curr Vasc Pharmacol 11:748–757

    CAS  Google Scholar 

  • Wang P, Luo C, Li Q, Chen S, Hu Y (2014) Mitochondrion-mediated apoptosis is involved in reproductive damage caused by BPA in male rats. Environ Toxicol Pharmacol 38:1025–1033

    CAS  Google Scholar 

  • Wei Y, Han C, Geng Y, Cui Y, Bao Y, Shi W, Zhong X (2019) Maternal exposure to bisphenol A during pregnancy interferes testis development of F1 male mice. Environ Sci Pollut Res Int 26:23491–23504

    CAS  Google Scholar 

  • Workalemahu T, Grantz KL, Grewal J, Zhang C, Louis GMB, Tekola-Ayele F (2018) Genetic and Environmental Influences on Fetal Growth Vary during Sensitive Periods in Pregnancy. Sci Rep 8:7274

    Google Scholar 

  • Wu G, Wang Q, Xu Y, Li J, Zhang H, Qi G, Xia Q (2019) Targeting the transcription factor receptor LXR to treat clear cell renal cell carcinoma: agonist or inverse agonist? Cell Death Dis 10:416

    Google Scholar 

  • Xie B, Wang S, Jiang N, Li JJ (2019) Cyclin B1/CDK1-regulated mitochondrial bioenergetics in cell cycle progression and tumor resistance. Cancer Lett 443:56–66

    CAS  Google Scholar 

  • Ye Y, Tang Y, Xiong Y, Feng L, Li X (2019) Bisphenol A exposure alters placentation and causes preeclampsia-like features in pregnant mice involved in reprogramming of DNA methylation of WNT2. FASEB J 33:2732–2742

    CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by research grant (No.81771543) from the National Natural Science Foundation of China.

Funding

This work is supported by the China National Natural Science Foundation grant (No.81771543).

Author information

Authors and Affiliations

Authors

Contributions

Most of the experiments and data analysis as well as manuscript preparation were conducted by Yuming Cao. Danyang Li made the patients informed consent and asked them to sign the informed consent form. Jing Lu, Ming Zhang and Lei Shi collects clinical samples and patient information. Immunoprecipitation was conducted by Juling Qin and Jing Lv. The Bioinformatics analysis was performed by Ling Ma. Study design and the final revision of the manuscript was accomplished by Yuanzhen Zhang.

Corresponding author

Correspondence to Yuanzhen Zhang.

Ethics declarations

Ethics approval and consent to participate

The study was approved by the Ethics Committee of Zhongnan Hospital of Wuhan University (No. 2018047).

Consent for publication

Not applicable.

Competing interests

The authors report no financial relationships or conflicts of interest.

Additional information

Responsible Editor: Ludek Blaha

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, Y., Chen, S., Lu, J. et al. BPA induces placental trophoblast proliferation inhibition and fetal growth restriction by inhibiting the expression of SRB1. Environ Sci Pollut Res 30, 60805–60819 (2023). https://doi.org/10.1007/s11356-023-26850-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-023-26850-4

Keywords

Navigation