Skip to main content

Advertisement

Log in

A survey of multi-criteria decision-making techniques for green logistics and low-carbon transportation systems

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

With the increasing severity of environmental problems, low-carbon development has become an inevitable choice. Nowadays, low-carbon green sustainable development is influenced by a variety of factors such as social, environmental, technological, and economic development levels, making its development complex, which in turn imposes challenges on decision-makers. In this context, the application of multi-criteria decision-making (MCDM) in different areas of sustainable development engineering has become a hot topic. Although many reviews of MCDM techniques already exist, there is a lack of holistic review efforts on MCDM in the field of low-carbon transport and green logistics. Considering these shortcomings in the state of the art, this paper systematically reviews more than 190 papers from 2010 to 2022, constructs a general structure of MCDM techniques for this research topic, provides a comprehensive review and analysis of it, and clarifies the current practices. Furthermore, future directions for the development of MCDM techniques for green logistics and low-carbon transportation systems are presented as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Not applicable.

References

  • Agrawal V, Mohanty RP, Agarwal S, Dixit JK, Agrawal AM (2022) Analyzing critical success factors for sustainable green supply chain management. Environ Dev Sustain 1–26

  • Ahani P, Arantes A, Melo S (2016) A portfolio approach for optimal fleet replacement toward sustainable urban freight transportation[J]. Transp Res Part D-Transport and Environ 48:357–368

    Article  Google Scholar 

  • Ahmadi HB, Kusi-Sarpong S, Rezaei J (2017) Assessing the social sustainability of supply chains using Best Worst Method[J]. Resour Conserv Recycl 126:99–106

    Article  Google Scholar 

  • Ahmadi HB, Lo H-W, Gupta H et al (2020) An integrated model for selecting suppliers on the basis of sustainability innovation[J]. J Clean Prod 277:123261

    Article  Google Scholar 

  • Akman G (2015) Evaluating suppliers to include green supplier development programs via fuzzy c-means and VIKOR methods[J]. Comput Ind Eng 86:69–82

    Article  Google Scholar 

  • Aragones-Beltran P, Pascual Pastor-Ferrando J, Garcia-Garcia F et al (2010) An Analytic Network Process approach for siting a municipal solid waste plant in the Metropolitan Area of Valencia (Spain)[J]. J Environ Manag 91(5):1071–1086

    Article  Google Scholar 

  • Awasthi A, Chauhan SS (2011) Using AHP and Dempster-Shafer theory for evaluating sustainable transport solutions[J]. Environ Model Softw 26(6):787–796

    Article  Google Scholar 

  • Awasthi A, Kannan G (2016) Green supplier development program selection using NGT and VIKOR under fuzzy environment[J]. Comput Ind Eng 91:100–108

    Article  Google Scholar 

  • Awasthi A, Chauhan SS, Goyal SK (2011a) A multi-criteria decision making approach for location planning for urban distribution centers under uncertainty[J]. Math Comput Model 53(1–2):98–109

    Article  Google Scholar 

  • Awasthi A, Chauhan SS, Omrani H (2011b) Application of fuzzy TOPSIS in evaluating sustainable transportation systems[J]. Expert Syst Appl 38(10):12270–12280

    Article  Google Scholar 

  • Bai C, Sarkis J (2019) Integrating and extending data and decision tools for sustainable third-party reverse logistics provider selection[J]. Comput Oper Res 110:188–207

    Article  Google Scholar 

  • Bai Q, Yin X, Lim MK et al (2022) Low-carbon VRP for cold chain logistics considering real-time traffic conditions in the road network[J]. Ind Manag Data Syst 122(2):521–543

    Article  Google Scholar 

  • Bao X, Xing X (2019) Evaluation of green logistics system of solid waste at ports based on analytic hierarchy process[J]. Environ Eng Manag J 18(11):2491–2499

    Article  CAS  Google Scholar 

  • Bhattacharya A, Mohapatra P, Kumar V et al (2014) Green supply chain performance measurement using fuzzy ANP-based balanced scorecard: a collaborative decision-making approach[J]. Prod Plan Control 25(8):698–714

    Article  Google Scholar 

  • Bi K, Yang M, Zahid L et al (2020) A new solution for city distribution to achieve environmental benefits within the trend of green logistics: a case study in China[J]. Sustainability 12(20):8312

    Article  Google Scholar 

  • Bo D, Kangcheng D, Guang C, Huiyun C, Hongying Y (2017) Carbon emission management system of port logistics based on internet of things technology. Agro Food Ind Hi Tech 28(1):1094–1098

    Google Scholar 

  • Bo-Tang LI, Zhao G (2017) Model of low carbon remanufacturing logistics network based on robust optimization[J]. J Shandong Univ 52(1):43–55

  • Bouzon M, Govindan K, Taboada Rodriguez CM et al (2016) Identification and analysis of reverse logistics barriers using fuzzy Delphi method and AHP[J]. Resour Conserv Recycl 108:182–197

    Article  Google Scholar 

  • Bouzon M, Govindan K, Taboada Rodriguez CM (2020) Grey Dematel technique for evaluating product return drivers: a multiple stakeholders’ perspective[J]. Environ Eng Manag J 19(1):19–36

    Article  Google Scholar 

  • Buyukozkan G, Gocer F (2021) A novel approach integrating AHP and COPRAS under Pythagorean fuzzy sets for digital supply chain partner selection[J]. IEEE Trans Eng Manag 68(5):1486–1503

    Article  Google Scholar 

  • Celik E, Gumus AT, Erdogan M (2016) A new extension of the ELECTRE method based upon interval type-2 fuzzy sets for green logistic service providers evaluation[J]. J Test Eval 44(5):1813–1827

    Article  Google Scholar 

  • Chan CK, Zhou Y, Wong KH (2019) An equilibrium model of the supply chain network under multi-attribute behaviors analysis[J]. Eur J Oper Res 275(2):514–535

    Article  Google Scholar 

  • Chang L, Zhang H, Xie G et al (2021) Reverse logistics location based on energy consumption: modeling and multi-objective optimization method[J]. Appl Sci 11(14):6466

    Article  CAS  Google Scholar 

  • Chen Y (2021) Location and path optimization of green cold chain logistics based on improved genetic algorithm from the perspective of low carbon and environmental protection[J]. Fresenius Environ Bull 30(6):5961–5973

    CAS  Google Scholar 

  • Chen N, Xu Z, Xia M (2015) The ELECTRE I multi-criteria decision-making method based on hesitant fuzzy sets[J]. Int J Inf Technol Decis Mak 14(3):621–657

    Article  Google Scholar 

  • Chen J, Gui P, Ding T et al (2019) Optimization of transportation routing problem for fresh food by improved ant colony algorithm based on Tabu search[J]. Sustainability 11(23):6584

  • Cheng D, Chen J, Zhu D et al (2014) Research on the evaluation model of regional low-carbon transportation [J]. Environ Pollut Control 36(12):91–95

  • Cheng Y, Peng J, Gu X, Zhang X, Liu W, Zhou Z, ... Huang Z (2020) An intelligent supplier evaluation model based on data-driven support vector regression in global supply chain. Comput Ind Eng 139:105834

  • Corrente S, Figueira JR, Greco S (2014) The SMAA-PROMETHEE method[J]. Eur J Oper Res 239(2):514–522

    Article  Google Scholar 

  • Das R, Shaw K (2017) Uncertain supply chain network design considering carbon footprint and social factors using two-stage approach[J]. Clean Technol Environ Policy 19(10):2491–2519

    Article  Google Scholar 

  • De Campos EAR, Tavana M, Ten Caten CS et al (2021) A grey-DEMATEL approach for analyzing factors critical to the implementation of reverse logistics in the pharmaceutical care process[J]. Environ Sci Pollut Res 28(11):14156–14176

    Article  Google Scholar 

  • Deng X, Jiang W (2019) Evaluating green supply chain management practices under fuzzy environment: a novel method based on D number theory. Int J Fuzzy Syst 21(5):1389–1402

    Article  Google Scholar 

  • Deveci M, Akyurt IZ, Yavuz S (2018) A GIS-based interval type-2 fuzzy set for public bread factory site selection[J]. J Enterp Inf Manag 31(6):820–847

    Article  Google Scholar 

  • Dutta P, Talaulikar S, Xavier V et al (2021) Fostering reverse logistics in India by prominent barrier identification and strategy implementation to promote circular economy[J]. J Clean Prod 294:126241

    Article  Google Scholar 

  • Dutta J, Barma PS, Mukherjee A, Kar S, De T(2022) A hybrid multi-objective evolutionary algorithm for open vehicle routing problem through cluster primary-route secondary approach. Int J Manag Sci Eng Manag 17(2):132–146

  • Elevli B (2014) Logistics freight center locations decision by using Fuzzy-PROMETHEE[J]. Transport 29(4):412–418

    Article  Google Scholar 

  • Entezaminia A, Heydari M, Rahmani D (2016) A multi-objective model for multi-product multi-site aggregate production planning in a green supply chain: Considering collection and recycling centers[J]. J Manuf Syst 40:63–75

    Article  Google Scholar 

  • Fahad S, Alnori F, Su F et al (2022) Adoption of green innovation practices in SMEs sector: evidence from an emerging economy[J]. Econ Res-Ekonomska Istrazivanja 35(1):5486–5501

    Article  Google Scholar 

  • Fang Y, Jiang Y, Sun L et al (2018) Design of green cold chain networks for imported fresh agri-products in belt and road development[J]. Sustainability 10(5):1572

    Article  Google Scholar 

  • Fathollahi-Fard AM, Hajiaghaei-Keshteli M, Mirjalili S (2018) Hybrid optimizers to solve a tri-level programming model for a tire closed-loop supply chain network design problem[J]. Appl Soft Comput 70:701–722

    Article  Google Scholar 

  • Feng Y, Zhou M, Tian G et al (2019) Target disassembly sequencing and scheme evaluation for CNC machine tools using improved multiobjective ant colony algorithm and fuzzy integral[J]. Ieee Trans Syst Man Cybern-Syst 49(12):2438–2451

    Article  Google Scholar 

  • Gadakh VS (2014) Application of complex proportional assessment method for vendor selection[J]. Inte J Logist-Res Appl 17(1):23–34

    Article  Google Scholar 

  • Gao T, Na S, Dang X et al (2018) Study of the competitiveness of Quanzhou Port on the belt and road in China based on a fuzzy-AHP and ELECTRE III model[J]. Sustainability 10(4):1253

    Article  Google Scholar 

  • Garza-Reyes JA, Villarreal B, Kumar V et al (2016) Lean and green in the transportation and logistics sector-a case study of simultaneous deployment[J]. Prod Plan Control 27(15):1221–1232

    Article  Google Scholar 

  • Ge X, Yang J, Wang H et al (2020) A fuzzy-TOPSIS approach to enhance emergency logistics supply chain resilience[J]. J Intel Fuzzy Syst 38(6):6991–6999

    Article  Google Scholar 

  • Ghadami N, Gheibi M, Kian Z et al (2021) Implementation of solar energy in smart cities using an integration of artificial neural network, photovoltaic system and classical Delphi methods[J]. Sustain Cities Soc 74:103149

    Article  Google Scholar 

  • Ghorabaee MK, Zavadskas EK, Amiri M, Turskis Z (2016) Extended EDAS method for fuzzy multi-criteria decision-making: an application to supplier selection. Int J Comput Commun Control 11(3):358–371

    Article  Google Scholar 

  • Ghoseiri K, Lessan J (2014) Waste disposal site selection using an analytic hierarchal pairwise comparison and ELECTRE approaches under fuzzy environment[J]. J Intell Fuzzy Syst 26(2):693–704

    Article  Google Scholar 

  • Giallanza A, Li Puma G (2020) Fuzzy green vehicle routing problem for designing a three echelons supply chain[J]. J Clean Prod 259:120774

    Article  Google Scholar 

  • Golpîra H (2018) A novel multiple attribute decision making approach based on interval data using U2P-Miner algorithm. Data Knowl Eng 115:116–128

    Article  Google Scholar 

  • Golpîra H (2020) Optimal integration of the facility location problem into the multi-project multi-supplier multi-resource Construction Supply Chain network design under the vendor managed inventory strategy. Expert Syst Appl 139:112841

    Article  Google Scholar 

  • Golpîra H (2022) Closing the loop of a global supply chain through a robust optimal decentralized decision support system. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-022-23176-5

  • Golpîra H, Bahramara S (2020) Internet-of-things-based optimal smart city energy management considering shiftable loads and energy storage. J Clean Prod 264:121620

    Article  Google Scholar 

  • Golpîra H, Javanmardan A (2021) Decentralized decision system for closed-loop supply chain: A bi-level multi-objective risk-based robust optimization approach. Comput Chem Eng 154:107472

    Article  Google Scholar 

  • Golpîra H, Tirkolaee EB (2021) Optimization for construction supply chain management. In: Golpîra H (eds) Application of Mathematics and Optimization in Construction Project Management. Springer, Cham. https://doi.org/10.1007/978-3-030-81123-5_7

  • Golpîra H, Zandieh M, Najafi E, Sadi-Nezhad S (2017a) A multi-objective multi-echelon green supply chain network design problem with risk-averse retailers in an uncertain environment. Scientia Iranica 24(1):413–423

    Article  Google Scholar 

  • Golpîra H, Najafi E, Zandieh M, Sadi-Nezhad S (2017b) Robust bi-level optimization for green opportunistic supply chain network design problem against uncertainty and environmental risk. Comput Ind Eng 107:301–312

    Article  Google Scholar 

  • Golpîra H, Khan SAR, Safaeipour S (2021) A review of logistics internet-of-things: current trends and scope for future research. J Ind Inf Integr 22:100194

    Google Scholar 

  • Govindan K, Kadzinski M, Sivakumar R (2017) Application of a novel PROMETHEE-based method for construction of a group compromise ranking to prioritization of green suppliers in food supply chain[J]. Omega-Int J Manag Sci 71:129–145

    Article  Google Scholar 

  • Govindan K, Kadzinski M, Ehling R et al (2019) Selection of a sustainable third-party reverse logistics provider based on the robustness analysis of an outranking graph kernel conducted with ELECTRE I and SMAA[J]. Omega-Int J Manag Sci 85:1–15

    Article  Google Scholar 

  • Govindanan K, Jha PC, Agarwal V et al (2019) Environmental management partner selection for reverse supply chain collaboration: a sustainable approach[J]. J Environ Manag 236:784–797

    Article  Google Scholar 

  • Guarnieri P, Trojan F (2019) Decision making on supplier selection based on social, ethical, and environmental criteria: a study in the textile industry[J]. Resour Conserv Recycl 141:347–361

    Article  Google Scholar 

  • Guleria A, Bajaj RK (2020) A robust decision making approach for hydrogen power plant site selection utilizing (R, S)-Norm Pythagorean Fuzzy information measures based on VIKOR and TOPSIS method[J]. Int J Hydrogen Energy 45(38):18802–18816

    Article  CAS  Google Scholar 

  • Gunduz MA, Demir S, Paksoy T (2021) Matching functions of supply chain management with smart and sustainable Tools: a novel hybrid BWM-QFD based method[J]. Comput Ind Eng 162:107676

    Article  Google Scholar 

  • Guo Q (2019) Logistics supply chain management based on business ecology theory[J]. Cluster Computing-the J Netw Softw Tools Appl 22:13827–13833

    Google Scholar 

  • Guo F, Liu Q, Liu D et al (2017) On production and green transportation coordination in a sustainable global supply Chain[J]. Sustainability 9(11):2071

    Article  Google Scholar 

  • Guo J, Xiao X, Ye Y et al (2021) An urban metro network-based method to evaluate carbon emission and distribution cost of express delivery[J]. J Intell Fuzzy Syst 41(4):5021–5034

    Article  Google Scholar 

  • Han H, Trimi S (2018) A fuzzy TOPSIS method for performance evaluation of reverse logistics in social commerce platforms[J]. Expert Syst Appl 103:133–145

    Article  Google Scholar 

  • Hernandez CT, Marins FAS, Duran JAR (2016) Selection of reverse logistics activities using an ANP-BOCR model[J]. Ieee Latin Am Trans 14(8):3886–3891

    Article  Google Scholar 

  • Hsu CW, Kuo RJ, Chiou CY (2014) A multi-criteria decision-making approach for evaluating carbon performance of suppliers in the electronics industry[J]. Int J Environ Sci Technol 11(3):775–784

    Article  Google Scholar 

  • Hsueh J-T, Lin C-Y (2017) Integrating the AHP and TOPSIS decision processes for evaluating the optimal collection strategy in reverse logistic for the TPI[J]. Int J Green Energy 14(14):1209–1220

    Article  Google Scholar 

  • Islam MA, Gajpal Y, Elmekkawy TY (2021) Mixed fleet based green clustered logistics problem under carbon emission cap[J]. Sustain Cities Soc 72:103074

    Article  Google Scholar 

  • Jauhar SK, Amin SH, Zolfagharinia H (2021) A proposed method for third-party reverse logistics partner selection and order allocation in the cellphone industry[J]. Comput Ind Eng 162:107719

    Article  Google Scholar 

  • Jeevan J, Mohd Salleh NH, Abdul Karim NH, Cullinane K (2022) An environmental management system in seaports: evidence from Malaysia. Marit Policy Manag 1–18

  • Jeon CM, Amekudzi A, Guensler RL (2007) Evaluating transportation system sustainability: Atlanta Metropolitan Region. In: Proceedings of the 2007 Transportation Research Board Annual Conference, CD-ROM, Washington DC

  • Jeon CM, Amekudzi AA, Guensler RL (2010) Evaluating plan alternatives for transportation system sustainability: Atlanta metropolitan region[J]. Int J Sustain Transp 4(4):227–247

    Article  Google Scholar 

  • Jones S, Tefe M, Appiah-Opoku S (2013) Proposed framework for sustainability screening of urban transport projects in developing countries: a case study of Accra, Ghana[J]. Transp Res Part a-Policy Pract 49:21–34

    Article  Google Scholar 

  • Li J, Fu PH (2013) Heterogeneous fixed fleet low-carbon routing problem and algorithm. Comput Integr Manuf Syst 19(6):1351–1362.

    Google Scholar 

  • Kaviani MA, Tavana M, Kumar A et al (2020) An integrated framework for evaluating the barriers to successful implementation of reverse logistics in the automotive industry[J]. J Clean Prod 272:122714

    Article  Google Scholar 

  • Kaya SK, Aycin E (2021) An integrated interval type 2 fuzzy AHP and COPRAS-G methodologies for supplier selection in the era of Industry 4.0[J]. Neural Comput Appl 33(16):10515–10535

    Article  Google Scholar 

  • Kaya AO, Kaya T, Kahraman C (2013) A fuzzy approach to urban ecotourism site selection based on an integrated Promethee III methodology[J]. J Mult-Valued Log Soft Comput 21(1–2):89–111

    Google Scholar 

  • Kengpol A, Tuammee S (2016) The development of a decision support framework for a quantitative risk assessment in multimodal green logistics: an empirical study[J]. Int J Prod Res 54(4):1020–1038

    Article  Google Scholar 

  • Keshavarz Ghorabaee M, Amiri M, Sadaghiani JS et al (2014) Multiple criteria group decision-making for supplier selection based on COPRAS method with interval type-2 fuzzy sets[J]. Int J Adv Manuf Technol 75(5–8):1115–1130

    Article  Google Scholar 

  • Kisielinska J, Roman M, Pietrzak P et al (2021) Utilization of renewable energy sources in road transport in EU countries-TOPSIS results[J]. Energies 14(22):7457

    Article  CAS  Google Scholar 

  • Krstić M, Tadić S, Kovač M, Roso V, Zečević S (2021) A novel hybrid MCDM model for the evaluation of sustainable last mile solutions. Math Probl Eng 2021:1–17

  • Kumar A (2021) Transition management theory-based policy framework for analyzing environmentally responsible freight transport practices[J]. J Clean Prod 294:126209

    Article  Google Scholar 

  • Kumar A, Anbanandam R (2020a) Analyzing interrelationships and prioritising the factors influencing sustainable intermodal freight transport system: A grey-DANP approach[J]. J Clean Prod 252:119769

    Article  Google Scholar 

  • Kumar A, Anbanandam R (2020b) Environmentally responsible freight transport service providers’ assessment under data-driven information uncertainty. J Enterp Inform Manag 34(1):506–542

  • Kumar P, Singh RK, Vaish A (2017) Suppliers’ green performance evaluation using fuzzy extended ELECTRE approach[J]. Clean Technol Environ Policy 19(3):809–821

    Article  Google Scholar 

  • Kumar P, Singh RK, Kumar V (2021) Managing supply chains for sustainable operations in the era of industry 4.0 and circular economy: analysis of barriers[J]. Resour Conserv Recycl 164:105215

    Article  Google Scholar 

  • Lam JSL (2015) Designing a sustainable maritime supply chain: a hybrid QFD-ANP approach[J]. Transp Res E-Log 78:70–81

    Article  Google Scholar 

  • Lee SK, Mogi G, Hui KS (2013) A fuzzy analytic hierarchy process (AHP)/data envelopment analysis (DEA) hybrid model for efficiently allocating energy R&D resources: In the case of energy technologies against high oil prices[J]. Renew Sustain Energy Rev 21:347–355

    Article  Google Scholar 

  • Li SY, Dan B, Ge XL (2019) Optimization model and algorithm of low carbon vehicle routing problem under multi-graph time-varying network [J]. Comput Integr Manuf Syst 25(11):2973–2982

    Google Scholar 

  • Liao H, Wu D, Huang Y et al (2018) Green logistic provider selection with a hesitant fuzzy linguistic thermodynamic method integrating cumulative prospect theory and PROMETHEE[J]. Sustainability 10(4):1291

    Article  Google Scholar 

  • Lin S, Wang J (2021) Carbon emission reduction effect of transportation structure adjustment in China: an approach on multi-objective optimization model. Environ Sci Pollut Res 1–18

  • Lin C, Choy KL, Ho GTS et al (2014) A Genetic Algorithm-based optimization model for supporting green transportation operations[J]. Expert Syst Appl 41(7):3284–3296

    Article  Google Scholar 

  • Lin D, Zhang Z, Wang J et al (2019) Optimizing urban distribution routes for perishable foods considering carbon emission reduction[J]. Sustainability 11(16):4387

    Article  Google Scholar 

  • Liou JJH, Tamosaitiene J, Zavadskas EK et al (2016) New hybrid COPRAS-G MADM Model for improving and selecting suppliers in green supply chain management[J]. Int J Prod Res 54(1):114–134

    Article  Google Scholar 

  • Liou JJ, Chuang YC, Zavadskas EK, Tzeng GH (2019) Data-driven hybrid multiple attribute decision-making model for green supplier evaluation and performance improvement. J Clean Prod 241:118321

    Article  Google Scholar 

  • Liu P, Li Y (2020) Multiattribute decision method for comprehensive logistics distribution center location selection based on 2-dimensional linguistic information[J]. Inf Sci 538:209–244

    Article  Google Scholar 

  • Liu P, Li Y (2021) An improved failure mode and effect analysis method for multi-criteria group decision-making in green logistics risk assessment[J]. Reliab Eng Syst Saf 215:107826

    Article  Google Scholar 

  • Liu P, Zhang X (2011) Research on the supplier selection of a supply chain based on entropy weight and improved ELECTRE-III method[J]. Int J Prod Res 49(3):637–646

    Article  Google Scholar 

  • Liu H-C, You J-X, Fan X-J et al (2014) Site selection in waste management by the VIKOR method using linguistic assessment[J]. Appl Soft Comput 21:453–461

    Article  Google Scholar 

  • Liu J, Peng Q, Yin Y (2018) Multimodal transportation route planning under low carbon emissions background [J]. J Transp Syst Eng Inf Technol 18(6):243–249

    Google Scholar 

  • Liu HC, Quan MY, Li Z, Wang ZL (2019) A new integrated MCDM model for sustainable supplier selection under interval-valued intuitionistic uncertain linguistic environment. Inf Sci 486:254–270

    Article  Google Scholar 

  • Liu Z, Wu Y, Liu T et al (2021) Double path optimization of transport of industrial hazardous waste based on green supply chain management[J]. Sustainability 13(9):5215

    Article  Google Scholar 

  • Liu Z, Wang W, Wang D et al (2022) A modified ELECTRE II method with double attitude parameters based on linguistic Z-number and its application for third-party reverse logistics provider selection[J]. Appl Intell 52(13):14964–14987

    Article  Google Scholar 

  • Lopez C, Ruiz-Benitez R, Vargas-Machuca C (2019) On the environmental and social sustainability of technological innovations in urban bus transport: the EU case[J]. Sustainability 11(5):1413

    Article  Google Scholar 

  • Lu L, Wang C, Deng W et al (2015) An optimal allocation model of public transit mode proportion for the low-carbon transportation[J]. Math Probl Eng 2015. https://doi.org/10.1155/2015/390606

  • Lu H, Jiang S, Song W et al (2018) A rough multi-criteria decision-making approach for sustainable supplier selection under vague environment[J]. Sustainability 10(8):2622

    Article  Google Scholar 

  • Lu J, Zhang S, Wu J et al (2021) COPRAS method for multiple attribute group decision making under picture fuzzy environment and their application to green supplier selection[J]. Technol Econ Dev Econ 27(2):369–385

    Article  Google Scholar 

  • Luo Z, Li Z (2019) A MAGDM method based on possibility distribution hesitant fuzzy linguistic term set and its application[J]. Mathematics 7(11):1063

    Article  Google Scholar 

  • Ma Y, Wang S, Huang L,  Cheng C (2021) Algorithms for low-carbon pickup and delivery vehicle routing problem with fuzzy demand. J Comput Appl 41(3):851

    Google Scholar 

  • Malviya RK, Kant R, Gupta AD (2018) Evaluation and selection of sustainable strategy for green supply chain management implementation[J]. Bus Strateg Environ 27(4):475–502

    Article  Google Scholar 

  • Mangla SK, Kumar P, Barua MK (2015) Risk analysis in green supply chain using fuzzy AHP approach: a case study[J]. Resour Conserv Recycl 104:375–390

    Article  Google Scholar 

  • Mangla SK, Govindan K, Luthra S (2016) Critical success factors for reverse logistics in Indian industries: a structural model[J]. J Clean Prod 129:608–621

    Article  Google Scholar 

  • Mayer MJ, Szilágyi A, Gróf G (2020) Environmental and economic multi-objective optimization of a household level hybrid renewable energy system by genetic algorithm. Appl Energy 269:115058

    Article  Google Scholar 

  • Meng M, Shao C, Zhang X (2012) Research of traffic network equilibrium model with low carbon emissions constraints[J]. Disaster Adv 5(4):1022–1025

    Google Scholar 

  • Minatour Y, Khazaie J, Ataei M et al (2015) An integrated decision support system for dam site selection[J]. Scientia Iranica 22(2):319–330

    Google Scholar 

  • Mitropoulos LK, Prevedouros PD (2016) Incorporating sustainability assessment in transportation planning: an urban transportation vehicle-based approach[J]. Transp Plan Technol 39(5):439–463

    Article  Google Scholar 

  • Moktadir MA, Ali SM, Jabbour CJC et al (2019) Key factors for energy-efficient supply chains: implications for energy policy in emerging economies[J]. Energy 189:116129

  • Moslem S, Ghorbanzadeh O, Blaschke T et al (2019) Analysing stakeholder consensus for a sustainable transport development decision by the fuzzy AHP and interval AHP[J]. Sustainability 11(12):3271

    Article  Google Scholar 

  • Muerza V, Guerlain C (2021) Sustainable construction logistics in urban areas: a framework for assessing the suitability of the implementation of construction consolidation centres[J]. Sustainability 13(13):7349

    Article  Google Scholar 

  • Naseem MH, Yang J, Xiang Z (2021) Prioritizing the solutions to reverse logistics barriers for the E-commerce industry in Pakistan based on a fuzzy AHP-TOPSIS approach[J]. Sustainability 13(22):12743

    Article  Google Scholar 

  • Nowakowski P, Krol A (2021) The influence of preliminary processing of end-of-life tires on transportation cost and vehicle exhausts emissions[J]. Environ Sci Pollut Res 28(19):24256–24269

    Article  Google Scholar 

  • Oenuet S, Soner S (2008) Transshipment site selection using the AHP and TOPSIS approaches under fuzzy environment[J]. Waste Manag 28(9):1552–1559

    Article  CAS  Google Scholar 

  • Opricovic S, Tzeng GH (2004) Compromise solution by MCDM methods: a comparative analysis of VIKOR and TOPSIS[J]. Eur J Oper Res 156(2):445–455

    Article  Google Scholar 

  • Osintsev N, Rakhmangulov A, Baginova V (2021) Evaluation of logistic flows in green supply chains based on the combined DEMATEL-ANP method[J]. Facta Universitatis-Series Mech Eng 19(3):473–498

    Article  Google Scholar 

  • Özceylan E, Kalayci CB, Güngör A, Gupta SM (2019) Disassembly line balancing problem: a review of the state of the art and future directions. Int J Prod Res 57(15-16):4805–4827

  • Pamucar D, Deveci M, Canitez F et al (2021) A novel methodology for prioritizing zero-carbon measures for sustainable transport[J]. Sustain Prod Consum 27:1093–1112

    Article  Google Scholar 

  • Pan Y (2021) Optimization model of cold chain logistics common distribution path for fresh agricultural products under the perspective of low carbon[J]. Fresenius Environ Bull 30(4):3445–3455

    CAS  Google Scholar 

  • Prakash C, Barua MK (2016) A combined MCDM approach for evaluation and selection of third-party reverse logistics partner for Indian electronics industry[J]. Sustain Prod Consum 7:66–78

    Article  Google Scholar 

  • Puška A, Božanić D, Nedeljković M, Janošević M (2022) Green supplier selection in an uncertain environment in agriculture using a hybrid MCDM model: Z-Numbers–Fuzzy LMAW–Fuzzy CRADIS model. Axioms 11(9):427

    Article  Google Scholar 

  • Qu G, Zhang Z, Qu W et al (2020) Green supplier selection based on green practices evaluated using fuzzy approaches of TOPSIS and ELECTRE with a case study in a Chinese Internet company[J]. Int J Environ Res Public Health 17(9):3268

    Article  Google Scholar 

  • Quan MY, Wang ZL, Liu HC, Shi H (2018) A hybrid MCDM approach for large group green supplier selection with uncertain linguistic information. IEEE Access 6:50372–50383

    Article  Google Scholar 

  • Rabbani M, Sadati SA, Farrokhi-Asl H (2020) Incorporating location routing model and decision making techniques in industrial waste management: application in the automotive industry[J]. Comput Ind Eng 148:106692

    Article  Google Scholar 

  • Rahman T, Ali SM, Moktadir MA et al (2019) Evaluating barriers to implementing green supply chain management: an example from an emerging economy[J]. Prod Plan Control 31(8):673–698

  • Rajesh R (2020) Sustainable supply chains in the Indian context: an integrative decision-making model[J]. Technol Soc 61:101230

    Article  Google Scholar 

  • Rani P, Mishra AR, Krishankumar R et al (2020) Hesitant fuzzy SWARA-complex proportional assessment approach for sustainable supplier selection (HF-SWARA-COPRAS)[J]. Symmetry-Basel 12(7):1152

    Article  Google Scholar 

  • Rao S-H (2021) Transportation synthetic sustainability indices: a case of Taiwan intercity railway transport[J]. Ecol Ind 127:107753

    Article  Google Scholar 

  • Rao C, Goh M, Zhao Y et al (2015) Location selection of city logistics centers under sustainability[J]. Transp Res Part D-Transp Environ 36:29–44

    Article  Google Scholar 

  • Rau H, Budiman SD, Widyadana GA (2018) Optimization of the multi-objective green cyclical inventory routing problem using discrete multi-swarm PSO method[J]. Transp Res E-Log 120:51–75

    Article  Google Scholar 

  • Ren R, Hu W, Dong J et al (2020) A systematic literature review of green and sustainable logistics: bibliometric analysis, research trend and knowledge taxonomy[J]. Int J Environ Res Public Health 17(1):261

  • Ren J, Liang H (2017) Measuring the sustainability of marine fuels: a fuzzy group multi-criteria decision making approach[J]. Transp Res Part D-Transp Environ 54:12–29

    Article  Google Scholar 

  • Rezaeiniya N, Hashemkhani Zolfani S, Zavadskas EK (2012) Greenhouse locating based on ANP-COPRAS-G methods - an empirical study based on Iran[J]. Int J Strateg Prop Manag 16(2):188–200

    Article  Google Scholar 

  • Rivero Gutiérrez L, De Vicente OMA, Romero-Ania A (2021) Managing sustainable urban public transportation systems: an AHP multicriteria decision model[J]. Sustainability 13(9):4614

    Article  Google Scholar 

  • Rossi T, Pozzi R, Pirovano G et al (2021) A new logistics model for increasing economic sustainability of perishable food supply chains through intermodal transportation[J]. Int J Logist-Res Appl 24(4):346–363

    Article  Google Scholar 

  • Rostamzadeh R, Govindan K, Esmaeili A et al (2015) Application of fuzzy VIKOR for evaluation of green supply chain management practices[J]. Ecol Ind 49:188–203

    Article  Google Scholar 

  • Sennaroglu B, Celebi GV (2018) A military airport location selection by AHP integrated PROMETHEE and VIKOR methods[J]. Transp Res Part D-Transp Environ 59:160–173

    Article  Google Scholar 

  • Sha DY, Che ZH (2006) Supply chain network design: partner selection and production/distribution planning using a systematic model[J]. J Oper Res Soc 57(1):52–62

    Article  Google Scholar 

  • Shaik MN, Abdul-Kader W (2014) Comprehensive performance measurement and causal-effect decision making model for reverse logistics enterprise[J]. Comput Ind Eng 68:87–103

    Article  Google Scholar 

  • Shakirov A, Pankratiev PS (2017) Methods of multicriterial two-level analysis of the placement of power plants [J]. Art Intell Decision-Making (1):69–83

  • Sherif SU, Asokan P, Sasikumar P et al (2022) An integrated decision making approach for the selection of battery recycling plant location under sustainable environment[J]. J Clean Prod 330:129784

    Article  Google Scholar 

  • Shiping Z, Yumei W (2017) Construction of reverse logistics management information system based on internet of things. Agro Food Ind Hi Tech 28(3):738–742

    Google Scholar 

  • Singh P, Elmi Z, Meriga VK, Pasha J, Dulebenets MA (2022) Internet of Things for sustainable railway transportation: past, present, and future[J]. Clean Logist Supply Chain 4:100065

    Article  Google Scholar 

  • Sirisawat P, Kiatcharoenpol T (2018) Fuzzy AHP-TOPSIS approaches to prioritizing solutions for reverse logistics barriers[J]. Comput Ind Eng 117:303–318

    Article  Google Scholar 

  • Sotiropoulou KF, Vavatsikos AP (2021) Onshore wind farms GIS-assisted suitability analysis using PROMETHEE II[J]. Energy Policy 158:112531

    Article  Google Scholar 

  • Staš D, Lenort R, Wicher P et al (2015) Green transportation balanced scorecard model with analytic network process support[J]. Sustainability 7(11):15243–15261

    Article  Google Scholar 

  • Strantzali E, Aravossis K, Livanos GA et al (2019) A decision support approach for evaluating liquefied natural gas supply options: implementation on Greek case study. J Clean Prod 222:414–423

    Article  Google Scholar 

  • Su C-M, Horng D-J, Tseng M-L et al (2016) Improving sustainable supply chain management using a novel hierarchical grey-DEMATEL approach[J]. J Clean Prod 134:469–481

    Article  Google Scholar 

  • Sun X, Lu H-P, Chu W-J (2013) A low-carbon-based bilevel optimization model for public transit network[J]. Math Probl Eng. https://doi.org/10.1155/2013/374826

  • Tang HL, Tang HS, Zhu XL (2019) Research on low-carbon vehicle routing problem based on modified ant colony algorithm [J]. Chin J Manag Sci 29(7):118–127

  • Tavana M, Shaabani A, Santos-Arteaga FJ et al (2021) An integrated fuzzy sustainable supplier evaluation and selection framework for green supply chains in reverse logistics[J]. Environ Sci Pollut Res 28(38):53953–53982

    Article  Google Scholar 

  • Thürer M, Pan YH, Qu T, Luo H, Li CD, Huang GQ (2019) Internet of Things (IoT) driven kanban system for reverse logistics: solid waste collection. J Intell Manuf 30(7):2621–2630

    Article  Google Scholar 

  • Tian G, Zhang H, Feng Y et al (2018) Green decoration materials selection under interior environment characteristics: a grey-correlation based hybrid MCDM method[J]. Renew Sustain Energy Rev 81:682–692

    Article  Google Scholar 

  • Tian G, Liu X, Zhang M et al (2019) Selection of take-back pattern of vehicle reverse logistics in China via Grey-DEMATEL and Fuzzy-VIKOR combined method[J]. J Clean Prod 220:1088–1100

    Article  Google Scholar 

  • Tian G, Hao N, Zhou M et al (2021) Fuzzy grey Choquet integral for evaluation of multicriteria decision making problems with interactive and qualitative indices[J]. Ieee Trans Syst Man Cybern-Syst 51(3):1855–1868

    Google Scholar 

  • Tian G, Zhang C, Fathollahi-Fard AM, Li Z, Zhang C, Jiang Z (2022) An enhanced social engineering optimizer for solving an energy-efficient disassembly line balancing problem based on bucket brigades and cloud theory. IEEE Trans Ind Inform 1–11. https://doi.org/10.1109/TII.2022.3193866

  • Tirkolaee EB, Hadian S, Weber G-W et al (2020) A robust green traffic-based routing problem for perishable products distribution[J]. Comput Intell 36(1):80–101

    Article  Google Scholar 

  • Tong L, Pu Z, Chen K et al (2020) Sustainable maintenance supplier performance evaluation based on an extend fuzzy PROMETHEE II approach in petrochemical industry[J]. J Clean Prod 273:122771

  • Topgul MH, Kilic HS, Tuzkaya G (2021) Greenness assessment of supply chains via intuitionistic fuzzy based approaches[J]. Adv Eng Inform 50:101377

    Article  Google Scholar 

  • Tosarkani BM, Amin SH (2018) A multi-objective model to configure an electronic reverse logistics network and third party selection[J]. J Clean Prod 198:662–682

    Article  Google Scholar 

  • Uddin S, Ali SM, Kabir G et al (2019) An AHP-ELECTRE framework to evaluate barriers to green supply chain management in the leather industry[J]. Int J Sust Dev World 26(8):732–751

    Article  Google Scholar 

  • Ul Amin F, Dong Q-L, Grzybowska K et al (2022) A novel fuzzy-based VIKOR-CRITIC soft computing method for evaluation of sustainable supply chain risk management[J]. Sustainability 14(5):2827

    Article  Google Scholar 

  • Uygun O, Dede A (2016) Performance evaluation of green supply chain management using integrated fuzzy multi-criteria decision making techniques[J]. Comput Ind Eng 102:502–511

    Article  Google Scholar 

  • Vahabzadeh AH, Asiaei A, Zailani S (2015) Green decision-making model in reverse logistics using FUZZY-VIKOR method[J]. Resour Conserv Recycl 103:125–138

    Article  Google Scholar 

  • Wang S, Tao F, Shi Y et al (2017a) Optimization of vehicle routing problem with time windows for cold chain logistics based on carbon tax[J]. Sustainability 9(5):694

    Article  Google Scholar 

  • Wang KQ, Liu HC, Liu L, Huang J (2017b) Green supplier evaluation and selection using cloud model theory and the QUALIFLEX method. Sustainability 9(5):688

    Article  Google Scholar 

  • Wang Y, Shi Q, Hu Q et al (2020) An efficiency sorting multi-objective optimization framework for sustainable supply network optimization and decision making[J]. J Clean Prod 272:122842

    Article  Google Scholar 

  • Wheeler J, Paez MA, Guillen-Gosalbez G et al (2018) Combining multi-attribute decision-making methods with multi-objective optimization in the design of biomass supply chains[J]. Comput Chem Eng 113:11–31

    Article  CAS  Google Scholar 

  • Wu Y, Yang M, Zhang H et al (2016) Optimal site selection of electric vehicle charging stations based on a cloud model and the PROMETHEE method[J]. Energies 9(3):157

    Article  Google Scholar 

  • Wu Y, Wang J, Hu Y et al (2018) An extended TODIM-PROMETHEE method for waste-to-energy plant site selection based on sustainability perspective[J]. Energy 156:1–16

    Article  Google Scholar 

  • Wu Q, Zhou L, Chen Y et al (2019) An integrated approach to green supplier selection based on the interval type-2 fuzzy best-worst and extended VIKOR methods[J]. Inf Sci 502:394–417

    Article  Google Scholar 

  • Wu X, Zhang C, Jiang L et al (2020) An integrated method with PROMETHEE and conflict analysis for qualitative and quantitative decision-making: case study of site selection for wind power plants[J]. Cogn Comput 12(1):100–114

    Article  Google Scholar 

  • Wu X, Liao H, Lev B, Zavadskas EK (2021) A multiple criteria decision-making method with heterogeneous linguistic expressions. IEEE Trans Eng Manag 70(5):1857–1870. https://doi.org/10.1109/TEM.2021.3072590

  • Xiao H, Ren Y, Hang B et al (2019) Traffic pollution in low carbon environment[J]. Desalin Water Treat 168:136–142

    Article  CAS  Google Scholar 

  • Xing-qun C, Chun J (2019) Route selection problem in multimodal transportation with traffic congestion considered under low-carbon policies. Oper Res Manag Sci 28(4):67

    Google Scholar 

  • Yadav G, Luthra S, Jakhar SK, Mangla SK, Rai DP (2020) A framework to overcome sustainable supply chain challenges through solution measures of industry 4.0 and circular economy: an automotive case. J Clean Prod 254:120112

  • Yang S, Ji Y, Zhang D et al (2019) Equilibrium between road traffic congestion and low-carbon economy: a case study from Beijing, China[J]. Sustainability 11(1):219

  • Yildizbasi A, Arioz Y (2022) Green supplier selection in new era for sustainability: a novel method for integrating big data analytics and a hybrid fuzzy multi-criteria decision making[J]. Soft Comput 26(1):253–270

    Article  Google Scholar 

  • Yu OY, Guikema SD, Briaud JL et al (2011) Quantitative decision tools for system selection in environmentally friendly drilling[J]. Civ Eng Environ Syst 28(3):185–208

    Article  Google Scholar 

  • Yucenur GN, Caylak S, Gonul G et al (2020) An integrated solution with SWARA&COPRAS methods in renewable energy production: city selection for biogas facility[J]. Renew Energy 145:2587–2597

    Article  Google Scholar 

  • Zandi F, Tavana M, Martin D (2011) A fuzzy group Electre method for electronic supply chain management framework selection[J]. Int J Logist-Res Appl 14(1):35–60

    Article  Google Scholar 

  • Zarbakhshnia N, Soleimani H, Ghaderi H (2018) Sustainable third-party reverse logistics provider evaluation and selection using fuzzy SWARA and developed fuzzy COPRAS in the presence of risk criteria[J]. Appl Soft Comput 65:307–319

    Article  Google Scholar 

  • Zarbakhshnia N, Wu Y, Govindan K et al (2020) A novel hybrid multiple attribute decision-making approach for outsourcing sustainable reverse logistics[J]. J Clean Prod 242:118461

    Article  Google Scholar 

  • Zhang L-Y, Tseng M-L, Wang C-H et al (2019) Low-carbon cold chain logistics using ribonucleic acid-ant colony optimization algorithm[J]. J Clean Prod 233:169–180

    Article  CAS  Google Scholar 

  • Zhang X, Sun B, Chen X et al (2020) An approach to evaluating sustainable supply chain risk management based on BWM and linguistic value soft set theory[J]. J Intell Fuzzy Syst 39(3):4369–4382

    Article  Google Scholar 

  • Zhang D, Runzhong HE, Zhu W et al (2018) The optimization of the multi-modal express logistics service network under low-carbon economy [J]. J Railway Sci Eng 15(6):1601–1608

  • Zhang X, Jin F-Y, Yuan X-M et al (2021) Low-carbon multimodal transportation path optimization under dual uncertainty of demand and time[J]. Sustainability 13(15):8180

  • Zhang ZY (2015) Vehicle transportation route choice low carbon optimization modeling and simulation[J]. Comput Simulation 32(7):160–163

  • Zhao D, Bao T, Cullinane K et al (2021) Green port performance evaluation under uncertainty: a multiple attribute group decision analysis[J]. Int J Shipp Transp Logist 13(1–2):130–155

    Article  Google Scholar 

  • Zhou T, Chen Z, Ming X (2022) A novel hesitant fuzzy linguistic hybrid cloud model and extended best-worst method for multicriteria decision making. Int J Intell Syst 37(1):596–624

    Article  Google Scholar 

  • Ziaei Z, Jabbarzadeh A (2021) A multi-objective robust optimization approach for green location-routing planning of multi-modal transportation systems under uncertainty[J]. J Clean Prod 291:125293

    Article  CAS  Google Scholar 

  • Ziemba P, Watrobski J, Ziolo M et al (2017) Using the PROSA method in offshore wind farm location problems[J]. Energies 10(11):1755

    Article  Google Scholar 

  • Zolfani SH, Chen IS, Rezaeiniya N, Tamošaitienė J (2012) A hybrid MCDM model encompassing AHP and COPRAS-G methods for selecting company supplier in Iran[J]. Technol Econ Dev Econ 18(3):529–543

    Article  Google Scholar 

  • Zuo W, Zhang X, Ge Y (2021) The economic globalization for sustainable management of overseas trade enterprise logistics[J]. Expert Syst e12887

Download references

Funding

This research was funded by the National Natural Science Foundation of China under Grant No. 52075303 and Foundation of BUCEA under Grant No. GDRC20220803.

Author information

Authors and Affiliations

Authors

Contributions

Guangdong Tian: conceptualization, methodology, funding acquisition, resources, supervision, validation, writing—original draft and editing. Weidong Lu and Xuesong Zhang: conceptualization, methodology, formal analysis, writing—original draft. Meng Zhan: methodology, formal analysis. Maxim A. Dulebenets: conceptualization, supervision. Anatoly Aleksandrov and Mikhail Ivanov: conceptualization, supervision, methodology, validation. Amir M. Fathollahi-Fard: supervision.

Corresponding author

Correspondence to Meng Zhan.

Ethics declarations

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Philippe Garrigues

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, G., Lu, W., Zhang, X. et al. A survey of multi-criteria decision-making techniques for green logistics and low-carbon transportation systems. Environ Sci Pollut Res 30, 57279–57301 (2023). https://doi.org/10.1007/s11356-023-26577-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-023-26577-2

Keywords

Navigation