Skip to main content
Log in

Environmental availability of trace metals in a fired brick elaborated from a marine dredged sediment

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Each year, hundreds of millions of tons of sediments are dredged around the world. Alternatively to sea or land disposal, the reuse of these sediments as raw material in various civil engineering applications is developing. In this context, the French SEDIBRIC project (valorisation de SEDIments en BRIQues et tuiles) aims to replace, in the preparation of clay-fired bricks, a part of natural clays by harbor dredged sediments. The present study focuses on the fate of some potentially toxic elements (Cd, Cr, Cu, Ni, Pb, and Zn) that are initially present in the sediments. A fired brick is elaborated exclusively from one dredged sediment, after a desalination step. The total content of each element of interest is evaluated by ICP-AES, after a microwave-assisted acid (aqua regia) digestion, in the raw sediment and in the brick. Then, single extractions (H2O, HCl, or EDTA as reactant) and one sequential extraction procedure (according to Leleyter and Probst, Int J Environ Anal Chem 73(2): 109-128 1999) are applied to the raw sediment and to the brick, in order to assess the environmental availability of the elements of interest. For Cu, Ni, Pb, and Zn, the results obtained with the various extractions procedures applied are consistent and confirm that the firing process induces their stabilization in the brick. The availability however increases for Cr and remains unchanged for Cd.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Amar M, Benzerzour M, Kleib J, Abriak NE (2021) From dredged sediment to supplementary cementitious material: characterization, treatment, and reuse. Int J Sedim Res 36:92–109

    Google Scholar 

  • Anwar TB, Behrose B, Ahmed S (2018) Utilization of textile sludge and public health risk assessment in Bangladesh. Sustain Environ Res 28:228–233

    CAS  Google Scholar 

  • Arroyo F, Luna-Galiano Y, Leiva C, Vilches LF, Fernández-Pereira C (2020) Environmental risks and mechanical evaluation of recycling red mud in bricks. Environ Res 186:109537

    CAS  Google Scholar 

  • Arsenovic M, Radojevic Z, Stankovic S (2012) Removal of toxic metals from industrial sludge by fixing in brick structure. Constr Build Mater 37:7–14

    Google Scholar 

  • Baraud F, Leleyter L, Lemoine M, Hamdoun H (2017) Cr in dredged marine sediments: anthropogenic enrichment, bioavailability and potential adverse effects. Mar Pollut Bull 120:303–308

    CAS  Google Scholar 

  • Beddaa H, Ouazi I, Ben Fraja A, Lavergne F, Torrenti JM (2020) Reuse potential of dredged river sediments in concrete: effect of sediment variability. J Clean Prod 265:121665

    CAS  Google Scholar 

  • Bisutti I, Hilke I, Schumacher J, Raessler M (2007) A novel single run dual temperature combustion method for the determination of organic, inorganic and total carbon in soil samples. Talanta 71:521–528

    CAS  Google Scholar 

  • Cappuyns V, Deweirt V, Rousseau S (2015) Dredged sediments as a resource for brick production: possibilities and barriers from a consumers’ perspective. Waste Manag 38:372–380

    Google Scholar 

  • Cecchi M, Dumat C, Alric A, Felix-Faure B, Pradere P, Guiresse M (2008) Multi-metal contamination of a calcic cambisol by fallout from a lead-recycling plant. Geoderma 144(1–2):287–298. https://doi.org/10.1016/j.geoderma.2007.11.023

    Article  CAS  Google Scholar 

  • Cerema (2020) Enquête dragage 2017 - Enquête nationale sur les dragages des ports maritimes. Cerema. Collection Données. https://www.cerema.fr/fr/centre-ressources/boutique/enquete-dragage-2017

  • Chaudhary S, Kumar Banerjee D, Kumar N, Yadav S (2016) Assessment of bioavailable metals in the sediments of Yamuna flood plain using two different single extraction procedures. Sustain Environ Res 26:28–32

    CAS  Google Scholar 

  • Chen SW, Cheng PC, Tu YT, Chen CC, Cheng SF (2019) Variance in heavy metal leachability of Pb-, Ni-, and Cr-contaminated soils through red brick sintering procedure. Environ Monit Assess 191:253. https://doi.org/10.1007/s10661-019-7372-9

    Article  CAS  Google Scholar 

  • Coronado M, Segadães AM, Andrés A (2015) Using mixture design of experiments to assess the environmental impact of clay-based structural ceramics containing foundry wastes. J Hazard Mater 299:529–539

    CAS  Google Scholar 

  • Cusidó JA, Cremades LV (2012) Environmental effects of using clay bricks produced with sewage sludge: leachability and toxicity studies. Waste Manag 32:1202–1208

    Google Scholar 

  • Cuvier A, Leleyter L, Probst A, Probst JL, Prunier J, Pourcelot L, Le Roux G, Lemoine M, Reinert M, Baraud F (2021) Why comparison between different chemical extraction procedures is necessary to better assess the metals availability in sediments. J Geochem Explor 225:106762. https://doi.org/10.1016/j.gexplo.2021.106762

    Article  CAS  Google Scholar 

  • Da Silva IS, Abate G, Lichtig J, Masini JC (2002) Heavy metal distribution in recent sediments of the Tietê-Pinheiros river system in São Paulo State, Brazil. Appl Geochem 17(2):105–116. https://doi.org/10.1016/S0883-2927(01)00086-5

    Article  Google Scholar 

  • Dai Z, Zhou H, Zhang W, Hu L, Huang Q, Mao L (2019) The improvement in properties and environmental safety of fired clay bricks containing hazardous waste electroplating sludge: the role of Na2SiO3. J Clean Prod 228:1455–1463. https://doi.org/10.1016/j.jclepro.2019.04.274

    Article  CAS  Google Scholar 

  • Dermont G, Bergeron M, Mercier G, Richer-Laflèche M (2008) Soil washing for metal removal: a review of physical/chemical technologies and field applications. J Hazard Mater 152:1–31

    CAS  Google Scholar 

  • Dia M, Zentar R, Abriak NE, Nzihou A, Depelsenaire G, Germeau A (2019) Effect of phosphatation and calcination on the environmental behaviour of sediments. Int J Sedim Res 34:486–495

    Google Scholar 

  • Dubrulle (2007) Les sédiments fins dans un système macrotidal actuel (continuum Seine-Baie de Seine) : caractérisation géochimiques et minéralogiques, identification des sources. Dissertation, University of Rouen (France)

  • El Fgaier F, Lafhaj Z, Chapiseau C (2013) Use of clay bricks incorporating treated river sediments in a demonstrative building: case study. Constr Build Mater 48:160–165

    Google Scholar 

  • Eliche-Quesada D, Felipe-Sesé MA, López-Pérez JA, Infantes-Molina A (2017) Characterization and evaluation of rice husk ash and wood ash in sustainable clay matrix bricks. Ceram Int 43:463–475

    CAS  Google Scholar 

  • Fraissler G, Jöoler M, Brunner T, Obernberger I (2009) Influence of dry and humid gaseous atmosphere on the thermal decomposition of calcium chloride and its impact on the remove of heavy metals by chlorination. Chem Eng Process 48:380–388

    CAS  Google Scholar 

  • Garg M, Singh LP, Maiti S, Pundir A (2014) Characterization of automobile effluent treatment plant sludge: its utilization in construction materials. Constr Build Mater 73:603–609

    Google Scholar 

  • Gouali S (2013) Impact environnemental des anodes sacrificielles en aluminium. Dissertation, University of Caen Normandie (France)

  • Gupta N, Gedam VV, Moghe C, Labhasetwar P (2017) Investigation of characteristics and leaching behavior of coal fly ash, coal fly ash bricks and clay bricks. Environ Technol Innov 7:152–159

    Google Scholar 

  • Hamdoun H, Van-Veen E, Basset B, Lemoine M, Coggan J, Leleyter L, Baraud F (2015a) Characterization of harbor sediments from the English Channel: assessment of heavy metal enrichment, biological effect and mobility. Mar Pollut Bull 90:273–280

    CAS  Google Scholar 

  • Hamdoun H, Leleyter L, Van-Veen E, Basset B, Lemoine M, Baraud F (2015b) Comparison of three procedures (single, sequential and kinetic extraction) for mobility assessment of Cu, Pb and Zn from harbour sediments. C r Geosciences 347:94–102

    Google Scholar 

  • Hamdoun H (2013) Valorisation de sédiments de dragage en techniques routières et acceptabilité environnementale : caractérisation globale et études de mobilités d’éléments métalliques par extractions simples, séquentielles et cinétiques. Cas de sédiments de la Manche dans le cadre du projet SETARMS. Dissertation, University of Caen Normandie (France)

  • Hamer K, Karius V (2002) Brick production with dredged harbour sediments An Industrial-Scale Experiment. Waste Manag 22:521–530

    CAS  Google Scholar 

  • Hassan KM, Fukushi K, Turikuzzaman K, Moniruzzaman SM (2014) Effects of using arsenic–iron sludge wastes in brick making. Waste Manag 34:1072–1078

    CAS  Google Scholar 

  • Jiang H, Wang J, Zhang W, Hu L, Mao L (2022) Oxidation and reduction reactions of (Al/FexCr1-x)2O3 caused by CaO during thermal treatment of solid waste containing Cr. Environ Res 204:112356. https://doi.org/10.1016/j.envres.2021.112356

    Article  CAS  Google Scholar 

  • Jung MY, Kang JH, Choi YS, Lee DY, Lee JY, Park JS (2019) Analytical features of microwave plasma-atomic emission spectrometry (MP-AES) for the quantitation of manganese (Mn) in wild grape (Vitis coignetiae) red wines: Comparison with inductively coupled plasma-optical emission spectrometry (ICP-OES). Food Chem 274:20–25. https://doi.org/10.1016/j.foodchem.2018.08.114

  • Khelifi F, Melki A, Hamed Y, Adamo P, Caporale AG (2020) Environmental and human health risk assessment of potentially toxic elements in soil, sediments, and ore processing wastes from a mining area of southwestern Tunisia. Environ Geochem Health 42:4125–4139

    CAS  Google Scholar 

  • Kornmann M (2009) Matériaux de terre cuite - Matières de base et fabrication. Techniques de l’ingénieur C905 V2. https://www.techniques-ingenieur.fr/base-documentaire/construction-et-travaux-publics-th3/les-materiaux-de-construction-42224210/materiaux-de-terre-cuite-c905/

  • Kosson DS, Garrabrants A, Thorneloe S, Fagnant D, Helms G, Connolly K, Rodger M (2017) Leaching Environmental Assessment Framework (LEAF) How-To Guide. EPA Report- SW-846 Update VI. https://www.epa.gov/sites/default/files/2017-11/documents/leaf_how_to_guide.pdf

  • Kmet P, Report of the US Department of Ecology (2003) An assessment of laboratory leaching tests for predicting the impacts of fill material on ground water and surface water quality a report to the legislature. Publication No. 03–09–107, 2003. https://apps.ecology.wa.gov/publications/SummaryPages/0309107.html

  • Kribi S, Ramaroson J, Nzihou A, Sharrock P, Depelsenaire G (2012) Laboratory scale study of an industrial phosphate and thermal treatment for polluted dredged sediments. Int J Sedim Res 27:538–546

    Google Scholar 

  • Leiva C, Rodriguez-Galána M, Arenas C, Alonso-Fariñas B, Peceño B (2018) A mechanical, leaching and radiological assessment of fired bricks with a high content of fly ash. Ceram Int 44:13313–13319

    CAS  Google Scholar 

  • Leleyter L, Baraud F (2006) Selectivity and efficiency of the acido-soluble extraction in sequential extraction procedure. Int J Soil Sci 1(2):168–170

    Google Scholar 

  • Leleyter L, Probst JL (1999) A new sequential extraction procedure for the speciation of particulate trace elements in river sediments. Int J Environ Anal Chem 73(2):109–128

    CAS  Google Scholar 

  • Leleyter L, Rousseau C, Gil O, Baraud F (2007) Influence of cathodic protection on heavy metals’partitioning speciation in marine sediments. CR Geosci 339(1):31–39

    CAS  Google Scholar 

  • Leleyter L, Rousseau C, Biree L, Baraud F (2012) Comparison of EDTA, HCl and sequential extraction procedures, for selected metals (Cu, Mn, Pb, Zn), in soils, riverine and marine sediments. J Geochem Explor 116–117:51–59. https://doi.org/10.1016/j.gexplo.2012.03.006

    Article  CAS  Google Scholar 

  • Li C, Wen Q, Hong M, Liang Z, Zhuang Z, Yu Y (2017a) Heavy metals leaching in bricks made from lead and zinc mine tailings with varied chemical components. Constr Build Mater 134:443–451

    CAS  Google Scholar 

  • Li M, Su P, Guo Y, Zhang W, Mao L (2017b) Effects of SiO2, Al2O3 and Fe2O3 on leachability of Zn, Cu and Cr in ceramics incorporated with electroplating sludge. J Environ Chem Eng 5:3143–3150. https://doi.org/10.1016/j.jece.2017.06.019

    Article  CAS  Google Scholar 

  • Liu X, Jiang H, Wang J, Zhang W, Hu L, Peng M, Mao L (2021) Oxidation reaction behavior of Cr-hosting spinels during heating of solid wastes containing Cr. Sci Total Environ 800:149634. https://doi.org/10.1016/j.scitotenv.2021.149634

    Article  CAS  Google Scholar 

  • McCready S, Birch GF, Taylor SE (2003) Extraction of heavy metals in Sydney Harbour sediments using 1M HCl and 0.05M EDTA and implications for sediment-quality guidelines. Aust J Earth Sci 50(2):249–55. https://doi.org/10.1046/j.1440-0952.2003.00994.x

    Article  CAS  Google Scholar 

  • Mezencevova A, Yeboah NN, Burns SE, Kahn LF, Kurtis KE (2012) Utilization of Savannah Harbor river sediment as the primary raw material in production of fired brick. J Environ Manag 113:128–136

    Google Scholar 

  • Monteiro SN, Vieira CMF (2014) On the production of fired clay bricks from waste materials: A critical Update. Constr Build Mater 68:599–610

  • Muñoz Velasco P, Morales Ortíz MP, Mendívil Giró MA, Muñoz Velasco L (2014) Fired clay bricks manufactured by adding wastes as sustainable construction material – a review. Constr Build Mater 63:97–107

    Google Scholar 

  • Naz A, Chowdhury A, Chandra R, Mishra BK (2020) Potential human health hazard due to bioavailable heavy metal exposure via consumption of plants with ethnobotanical usage at the largest chromite mine of India. Environ Geochem Health 42:4213–4231

    CAS  Google Scholar 

  • Nowak B, Frías Rocha S, Aschenbrenner P, Rechberger H, Winter F (2012) Heavy metal removal from MSW fly ash by means of chlorination and thermal treatment: influence of the chloride type. Chem Eng J 179:178–185

    CAS  Google Scholar 

  • Padox JM, Hennebert P, Benard A, Mancioppi L (2010) Qualité chimique des sédiments marins en France : synthèse des bases de données disponibles. INERIS

  • Pérez-Villarejo L, Martínez-Martínez S, Carrasco-Hurtado B, Eliche-Quesada D, Ureña-Nieto C, Sánchez-Soto PJ (2015) Valorization and inertization of galvanic sludge waste in clay bricks. Appl Clay 105–106:89–99

    Google Scholar 

  • Quijorna N, Coz A, Andresa A, Cris Cheeseman C (2012) Recycling of Waelz slag and waste foundry sand in red clay bricks. Resour Conserv Recycl 65:1–10

    Google Scholar 

  • Ramaroson J, Dirion JL, Nzihou A, Sharrock P, Depelsenaire G (2008) Calcination of dredged sediments: investigation of the behaviour of heavy metals and the organic compounds. High Temperature Materials and Processes 27(5). https://doi-org.ezproxy.normandie-univ.fr/10.1515/HTMP.2008.27.5.327

  • Ramaroson J (2008) Calcination des Sédiments de Dragage Contaminés - Etudes des Propriétés Physico-chimiques. Dissertation, Institut National des Sciences Appliquées de Lyon

  • Rauret G, López-Sánchez JF, Sahuquillo A, Rubio R, Davidson C, Ure A, Quevauviller Ph (1999) Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials. J Environ Monit 1:57–61. https://doi.org/10.1039/A807854H

    Article  CAS  Google Scholar 

  • Rodríguez-Solana R, Carlier JD, Costa MC, Romano A (2018) Multi-element characterisation of carob, fig and almond liqueurs by MP-AES. J Inst Brew 124:300–309. https://doi.org/10.1002/jib.495

  • Roussiez V, Probst A, Probst JL (2013) Significance of floods in metal dynamics and export in a small agricultural catchment. J Hydrol 499:71–81. https://doi.org/10.1016/j.jhydrol.2013.06.013

    Article  CAS  Google Scholar 

  • Saussaye L, Hamdoun H, Leleyter L, van Veen E, Coggan J, Rollinson G, Maherzi W, Boutouil M, Baraud F (2016) Trace element mobility in a polluted marine sediment after stabilisation with hydraulic binders. Mar Pollut Bull 110:401–408

    CAS  Google Scholar 

  • Sédibric (2021) Projet SEDIBRIC Valorisation de sédiments issus de dragages en briques et tuiles. Rapport Final. https://agora2.havre-port.net/share/page/site/sedibric/

  • Shahbazi K, Behesthi M (2019) Comparison of three methods for measuring heavy metals in calcareous soils of Iran. SN Appl Sci 1:1541. https://doi.org/10.1007/s42452-019-1578-x

    Article  CAS  Google Scholar 

  • Slimanou H, Eliche-Quesada D, Kherbache S, Bouzidi N, Tahakourt AK (2020) Harbor dredged sediment as raw material in fired clay brick production: characterization and properties. J Build Eng 28:101085

    Google Scholar 

  • Snape I, Scouller RC, Stark SC, Stark J, Riddle MJ, Gore DB (2004) Characterisation of the dilute HCl extraction method for the identification of metal contamination in Antarctic marine sediments. Chemosphere 57(6):491–504. https://doi.org/10.1016/j.chemosphere.2004.05.042

    Article  CAS  Google Scholar 

  • Sutherland RA (2002) Comparison between non-residual Al Co, Cu, Fe, Mn, Ni, Pb and Zn released by a three-step sequential extraction procedure and a dilute hydrochloric acid leach for soil and road deposited sediment. Appl Geochem 17(4):353–365

    CAS  Google Scholar 

  • Taha Y, Benzaazoua M, Hakkou R, Mansori M (2016) Natural clay substitution by calamine processing wastes to manufacture fired bricks. J Clean Prod 135:847–858

    CAS  Google Scholar 

  • Taha Y, Benzaazoua M, Hakkou R, Mansori M (2017) Coal mine wastes recycling for coal recovery and eco-friendly bricks production. Miner Eng 107:123–138

    Google Scholar 

  • Taha Y, Benzaazoua M, Edahbi M, Mansori M, Hakkou R (2018) Leaching and geochemical behavior of fired bricks containing coal wastes. J Environ Manag 209:227e235

    Google Scholar 

  • Tessier A, Campbell PGC, Bisson M (1979) Sequential extraction procedure for the speciation of particulate trace metals. Anal Chem 51(7):844–851

    CAS  Google Scholar 

  • Tribout C (2010) Valorisation de sédiments traités en techniques routières : contribution à la mise en place d’un protocole d’acceptabilité. Dissertation, University Toulouse III-Paul Sabatier (france)

  • Ure AM, Davidson CM, Thomas RP (1995) Single and sequential extraction schemes for trace metal speciation in soil and sediment. Techniques and instrumentation in analytical chemistry 17:505–523. https://doi.org/10.1016/S0167-9244(06)80021-1

  • Wu S, Xu Y, Sun J, Cao Z, Zhou J, Pan Y, Qian G (2015) Inhibiting evaporation of heavy metal by controlling its chemical speciation in MSWI fly ash. Fuel 158:764–769

    CAS  Google Scholar 

  • Xu Y, Yann C, Xu B, Ruan X, Wei Z (2014) The use of urban river sediments as a primary raw material in the production of highly insulating brick. Ceram Int 40:8833–8840

    CAS  Google Scholar 

  • Yoo JC, Lee CD, Yang JS, Bae K (2013) Extraction characteristics of heavy metals from marine sediments. Chem Eng J 228:688–699

    CAS  Google Scholar 

  • Zentar R, Abriak NE, Dubois V, Miraoui M (2009) Beneficial use of dredged sediments in public works. Environ Technol 30(8):841–847

    CAS  Google Scholar 

  • Zhang L (2013) Production of bricks from waste materials – a review. Constr Build Mater 47:643–655

    Google Scholar 

  • Zhang YM, Jia LT, Mei H, Cui Q, Zhang PG, Sun ZM (2016) Fabrication, microstructure and properties of bricks fired from lake sediment, cinder and sewage sludge. Constr Build Mater 121:154–160

    CAS  Google Scholar 

  • Zhang M, Chen C, Mao L, Wu Q (2018) Use of electroplating sludge in production of fired clay bricks: characterization and environmental risk evaluation. Constr Build Mater 159:27–36

    CAS  Google Scholar 

  • Zhang J, Liu B, Zhang S (2021) A review of glass ceramic foams prepared from solid wastes: processing, heavy-metal solidification and volatilization, applications. Sci Total Environ 781:146727. https://doi.org/10.1016/j.scitotenv.2021.146727

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Région Normandie and ADEME for funding as well as all the partners of the SEDIBRIC project: HAROPA—Port du Havre, Circoé, Université Le Havre Normandie, Armines-MINES ParisTech, CTMNC.

Funding

The project was funded by Région Normandie and ADEME.

Author information

Authors and Affiliations

Authors

Contributions

FB and LR were the major contributors in writing the manuscript. SP and TL participate to the chemical analysis. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Fabienne Baraud.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Philippe Garrigues

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baraud, F., Leleyter, L., Poree, S. et al. Environmental availability of trace metals in a fired brick elaborated from a marine dredged sediment. Environ Sci Pollut Res 30, 54914–54926 (2023). https://doi.org/10.1007/s11356-023-26163-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-023-26163-6

Keywords

Navigation