Skip to main content
Log in

Study on persulfate activated by Ce-modified tea waste biochar to degrade tetracycline

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

In this study, the Ce-modified tea residue biochar (Ce-TBC) was successfully generated and applied to the biochar/persulfate system (Ce-TBC/PDS), the mechanism of the removal of tetracycline (TC) using Ce-TBC/PDS was elaborated. Under the optimal experimental conditions (Ce-TBC = 0.8 g L−1, PDS = 4 mM, TC = 10 mg L−1), the removal efficiency of TC was 91.28%, and after 5 cycles, the elimination rate of Ce-TBC/PDS still reached up to 80%. The mechanism of TC removal by Ce-TBC/PDS was analyzed by scanning electron microscopy (SEM), X-ray diffractometer (XRD), Fourier infrared transform spectrometer (FT-IR), and X-ray photoelectron spectrometer (XPS) characterization, and influence factor experiments. The results showed that the introduction of CeOx increased the oxygen vacancies on the TBC surface and promoted the interconversion between Ce3+ and Ce4+ for better activation of PDS and generation of active species. Free radical quenching experiments and paramagnetic resonance spectrometry (EPR) analysis showed that the non-radical pathway 1O2 played a dominant role in the Ce-TBC/PDS system. The present work provided an efficient means of PDS activator and recycling of tea waste.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Not applicable.

References

  • Bechambi O, Touati A, Sayadi S, Najjar W (2015) Effect of cerium doping on the textural, structural and optical properties of zinc oxide: role of cerium and hydrogen peroxide to enhance the photocatalytic degradation of endocrine disrupting compounds. Mater Sci Semicond Process 39:807–816

    Article  CAS  Google Scholar 

  • Beniya A, Higashi S (2019) Towards dense single-atom catalysts for future automotive applications. Nat Catal 2

  • Buxton GV, Greenstock CL, Helman WP, Ross AB (1988) Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (OH/O) in aqueous solution. J Phys Chem Ref Data 17

  • Chen C, Liu L, Guo J, Zhou L, Lan Y (2019) Sulfur-doped copper-cobalt bimetallic oxides with abundant Cu(I): a novel peroxymonosulfate activator for chloramphenicol degradation. Chem Eng J 361:1304–1316

    Article  CAS  Google Scholar 

  • Chen C, Zhou L-L, Huang Y-N, Wang W-K, Xu J (2022) Boron regulates catalytic sites of biochar to enhance the formation of surface-confined complex for improved peroxydisulfate activation. Chemosphere 301:134690

    Article  CAS  Google Scholar 

  • Chen H-I, Chang H-Y (2004) Homogeneous precipitation of cerium dioxide nanoparticles in alcohol/water mixed solvents. Colloids Surf A Physicochem Eng Asp 242:61–69

    Article  CAS  Google Scholar 

  • Cheng M, Zeng G, Huang D, Lai C, Liu Y, Zhang C, Wang R, Qin L, Xue W, Song B, Ye S, Yi H (2018) High adsorption of methylene blue by salicylic acid–methanol modified steel converter slag and evaluation of its mechanism. J Colloid Interface Sci 515:232–239

    Article  CAS  Google Scholar 

  • Cheng X, Guo H, Zhang Y, Wu X, Liu Y (2017) Non-photochemical production of singlet oxygen via activation of persulfate by carbon nanotubes. Water Res 113:80–88

    Article  CAS  Google Scholar 

  • Dominguez CM, Rodriguez V, Montero E, Romero A, Santos A (2020) Abatement of dichloromethane using persulfate activated by alkali: a kinetic study. Sep Purif Technol 241:116679

    Article  CAS  Google Scholar 

  • Dong C-D, Chen C-W, Nguyen T-B, Huang CP, Hung C-M (2020) Degradation of phthalate esters in marine sediments by persulfate over Fe–Ce/biochar composites. Chem Eng J 384:123301

    Article  CAS  Google Scholar 

  • Dong Z, Zhang Q, Chen B-Y, Hong J (2019) Oxidation of bisphenol A by persulfate via Fe3O4-α-MnO2 nanoflower-like catalyst: mechanism and efficiency. Chem Eng J 357:337–347

  • Fang Z, Zhao S, Xue G, Wang X, Sun P, Yu Y, Zhou Z, Wang Q, Qian Y (2023) Enhanced removal of fluoroquinolone antibiotics by peroxydisulfate activated with N-doped sludge biochar: performance, mechanism and toxicity evaluation. Sep Purif Technol 305:122469

    Article  CAS  Google Scholar 

  • Gogoi A, Navgire M, Sarma KC, Gogoi P (2017) Fe3O4-CeO2 metal oxide nanocomposite as a Fenton-like heterogeneous catalyst for degradation of catechol. Chem Eng J 311:153–162

  • Guan Y-H, Ma J, Ren Y-M, Liu Y-L, Xiao J-Y, Lin L-q, Zhang C (2013) Efficient degradation of atrazine by magnetic porous copper ferrite catalyzed peroxymonosulfate oxidation via the formation of hydroxyl and sulfate radicals. Water Res 47:5431–5438

    Article  CAS  Google Scholar 

  • Hou J, Chen Z, Gao J, Xie Y, Li L, Qin S, Wang Q, Mao D, Luo Y (2019) Simultaneous removal of antibiotics and antibiotic resistance genes from pharmaceutical wastewater using the combinations of up-flow anaerobic sludge bed, anoxic-oxic tank, and advanced oxidation technologies. Water Res 159:511–520

    Article  CAS  Google Scholar 

  • Iqbal J, Shah NS, Sayed M, Rauf S, Haq Khan ZU, Niazi NK, Polychronopoulou K, Howari F, Rehman F (2022) Efficient removal of norfloxacin using nano zerovalent cerium composite biochar-catalyzed peroxydisulfate. J Clean Prod 377:134405

    Article  CAS  Google Scholar 

  • Ji Y, Shi Y, Dong W, Wen X, Jiang M, Lu J (2016) Thermo-activated persulfate oxidation system for tetracycline antibiotics degradation in aqueous solution. Chem Eng J 298:225–233

    Article  CAS  Google Scholar 

  • Jiang Y, Liu Y, Zhang J (2021) Mechanisms for the stimulatory effects of a five-component mixture of antibiotics in Microcystis aeruginosa at transcriptomic and proteomic levels. J Hazard Mater 406:124722

    Article  CAS  Google Scholar 

  • Jiao G-J, Ma J, Zhang Y, Jin D, Li Y, Hu C, Guo Y, Wang Z, Zhou J, Sun R (2021) Nitrogen-doped lignin-derived biochar with enriched loading of CeO2 nanoparticles for highly efficient and rapid phosphate capture. Int J Biol Macromol 182:1484–1494

    Article  CAS  Google Scholar 

  • Keerthanan S, Bhatnagar A, Mahatantila K, Jayasinghe C, Ok YS, Vithanage M (2020) Engineered tea-waste biochar for the removal of caffeine, a model compound in pharmaceuticals and personal care products (PPCPs), from aqueous media. Enviro Technol Inno 19:100847

    Article  Google Scholar 

  • Kim C, Ahn JY, Kim TY, Hwang I Mechanisms of electro-assisted persulfate/nano-Fe0 oxidation process: roles of redox mediation by dissolved Fe - ScienceDirect. J Hazard  Mater 388

  • Li H, Tian J, Zhu Z, Cui F, Zhu Y-A, Duan X, Wang S (2018) Magnetic nitrogen-doped nanocarbons for enhanced metal-free catalytic oxidation: integrated experimental and theoretical investigations for mechanism and application. Chem Eng J 354:507–516

    Article  CAS  Google Scholar 

  • Li P, He C, Cheng J, Ma CY, Dou BJ, Hao ZP (2011) Catalytic oxidation of toluene over Pd/Co3AlO catalysts derived from hydrotalcite-like compounds: effects of preparation methods. Appl Catal B 101:570–579

    Article  CAS  Google Scholar 

  • Li W, Zhang Y, Liu Y, Cheng X, Tang W, Zhao C, Guo H (2019) Kinetic performance of peroxymonosulfate activated by Co/Bi25FeO40: radical and non-radical mechanism. J Taiwan Inst Chem Eng 100:56–64

    Article  CAS  Google Scholar 

  • Li W, Liu B, Wang Z, Wang K, Lan Y, Zhou L (2020) Efficient activation of peroxydisulfate (PDS) by rice straw biochar modified by copper oxide (RSBC-CuO) for the degradation of phenacetin (PNT). Chem Eng J 395:125094

    Article  CAS  Google Scholar 

  • Li X, Liu J, Rykov AI, Han H, Jin C, Liu X, Wang J (2015) Excellent photo-Fenton catalysts of Fe–Co Prussian blue analogues and their reaction mechanism study. Appl Catal B 179:196–205

    Article  CAS  Google Scholar 

  • Liu F, Ding J, Zhao G, Zhao Q, Wang K, Wang G, Gao Q (2022) Catalytic pyrolysis of lotus leaves for producing nitrogen self-doping layered graphitic biochar: performance and mechanism for peroxydisulfate activation. Chemosphere 302:134868

    Article  CAS  Google Scholar 

  • Liu L, Li Y, Li W, Zhong R, Lan Y, Guo J (2020a) The efficient degradation of sulfisoxazole by singlet oxygen (1O2) derived from activated peroxymonosulfate (PMS) with Co3O4–SnO2/RSBC. Environ Res 187:109665

    Article  CAS  Google Scholar 

  • Liu Y, Zeng G, Zhong H, Wang Z, Liu Z, Cheng M, Liu G, Yang X, Liu S (2017) Effect of rhamnolipid solubilization on hexadecane bioavailability: enhancement or reduction? J Hazard Mater 322:394–401

    Article  CAS  Google Scholar 

  • Liu Y, Huang D, Cheng M, Liu Z, Lai C, Zhang C, Zhou C, Xiong W, Qin L, Shao B, Liang Q (2020b) Metal sulfide/MOF-based composites as visible-light-driven photocatalysts for enhanced hydrogen production from water splitting. Coord Chem Rev 409:213220

    Article  CAS  Google Scholar 

  • Lu X, Qiu W, Ma J, Xu H, Wang D, Cheng H, Zhang W, He X (2020) The overestimated role of singlet oxygen for pollutants degradation in some non-photochemical systems. Chem Eng J 401:126128

    Article  CAS  Google Scholar 

  • Lykoudi A, Frontistis Z, Vakros J, Manariotis ID, Mantzavinos D (2020) Degradation of sulfamethoxazole with persulfate using spent coffee grounds biochar as activator. J Environ Manage 271:111022

    Article  CAS  Google Scholar 

  • Mirzaee R, Darvishi Cheshmeh Soltani R, Khataee A, Boczkaj G (2019) Combination of air-dispersion cathode with sacrificial iron anode generating Fe2+Fe3+2O4 nanostructures to degrade paracetamol under ultrasonic irradiation. J Mol Liq 284:536–546

    Article  CAS  Google Scholar 

  • Neta P, Huie RE, Ross AB (1988) Rate constants for reactions of inorganic radicals in aqueous solution. J Ph Chem Ref Data 17:1027–1284

    Article  CAS  Google Scholar 

  • Orge CA, Órfão JJM, Pereira MFR, Duarte de Farias AM, Neto RCR, Fraga MA (2011) Ozonation of model organic compounds catalysed by nanostructured cerium oxides. Appl Catal B 103:190–199

    Article  CAS  Google Scholar 

  • Ouyang D, Chen Y, Yan J, Qian L, Han L, Chen M (2019) Activation mechanism of peroxymonosulfate by biochar for catalytic degradation of 1,4-dioxane: Important role of biochar defect structures. Chem Eng J 370:614–624

    Article  CAS  Google Scholar 

  • Pi L, Jiang R, Cai W, Wang L, Mao X (2020a) Bionic preparation of CeO2-encapsulated nitrogen self-doped biochars for highly efficient oxygen reduction. ACS Appl Mater Interfaces 12:3642–3653

    Article  CAS  Google Scholar 

  • Pi L, Jiang R, Cai W, Wang L, Wang Y, Cai J, Mao X (2020b) Bionic preparation of CeO2-encapsulated nitrogen self-doped biochars for highly efficient oxygen reduction. ACS Appl Mater Interfaces 12:3642–3653

    Article  CAS  Google Scholar 

  • Quan Y-h, Miao C, Li T, Wang N, Wu M-m, Zhang N, Zhao J-x, Ren J (2021) Effect of preparation methods on the structure and catalytic performance of CeO2 for toluene combustion. J Fuel Chem Technol 49:211–219

    Article  CAS  Google Scholar 

  • Rajapaksha AU, Vithanage M, Zhang M, Ahmad M, Mohan D, Chang SX, Ok YS (2014) Pyrolysis condition affected sulfamethazine sorption by tea waste biochars. Bioresour Technol 166:303–308

    Article  CAS  Google Scholar 

  • Rdcs A, Mm A, Mn A, Gb B, Sj C, Ms D (2019) Sonocatalytic degradation of tetracycline antibiotic using zinc oxide nanostructures loaded on nano-cellulose from waste straw as nanosonocatalyst - ScienceDirect. Ultrason Sonochem 55:117–124

    Article  Google Scholar 

  • Ren X, Wang J, Yu J, Song B, Feng H, Shen M, Zhang H, Zou J, Zeng G, Tang L, Wang J (2021) Waste valorization: transforming the fishbone biowaste into biochar as an efficient persulfate catalyst for degradation of organic pollutant. J Clean Prod 291:125225

    Article  CAS  Google Scholar 

  • Salehi E, Askari M, Velashjerdi M, Arab B (2020) Phosphoric acid-treated spent tea residue biochar for wastewater decoloring: batch adsorption study and process intensification using multivariate data-based optimization. Chem Eng Process 158:108170

    Article  CAS  Google Scholar 

  • Skorodumova NV, Simak SI, Lundqvist BI, Abrikosov IA, Johansson B (2002) Quantum origin of the oxygen storage capability of ceria. Phys Rev Lett 89:166601

    Article  CAS  Google Scholar 

  • Su Y, Wang X, Dong S, Fu S, Zhou D, Rittmann BE (2020) Towards a simultaneous combination of ozonation and biodegradation for enhancing tetracycline decomposition and toxicity elimination. Bioresour Technol 304:123009

    Article  CAS  Google Scholar 

  • Sujana MG, Chattopadyay KK, Anand S (2008) Characterization and optical properties of nano-ceria synthesized by surfactant-mediated precipitation technique in mixed solvent system. Appl Surf Sci 254:7405–7409

    Article  CAS  Google Scholar 

  • Tan H, Wang J, Yu S, Zhou K (2015) Support morphology-dependent catalytic activity of Pd/CeO2 for formaldehyde oxidation. Environ Sci Technol 49:8675–8682

    Article  CAS  Google Scholar 

  • Tompkins FC (1960) Superficial chemistry and solid imperfections. Nature 186:3–6

    Article  Google Scholar 

  • Wang J, Wang S (2019) Preparation, modification and environmental application of biochar: a review. J Clean Prod 227:1002–1022

    Article  CAS  Google Scholar 

  • Wang T, Mei Q, Tao Z, Wu H, Zhao M, Wang S, Liu Y (2020a) A smartphone-integrated ratiometric fluorescence sensing platform for visual and quantitative point-of-care testing of tetracycline. Biosens Bioelectron 148:111791

    Article  CAS  Google Scholar 

  • Wang X, Yang Y, Diao L, Tang Y, He F, Liu E, He C, Shi C, Li J, Sha J, Ji S, Zhang P, Ma L, Zhao N (2018a) CeOx-decorated NiFe-layered double hydroxide for efficient alkaline hydrogen evolution by oxygen vacancy engineering. ACS Appl Mater Interfaces 10:35145–35153

    Article  CAS  Google Scholar 

  • Wang Y, Liu M, Zhao X, Cao D, Guo T, Yang B (2018b) Insights into heterogeneous catalysis of peroxymonosulfate activation by boron-doped ordered mesoporous carbon. Carbon 135:238–247

    Article  CAS  Google Scholar 

  • Wang Y, Xie X, Chen X, Huang C, Yang S (2020b) Biochar-loaded Ce3+-enriched ultra-fine ceria nanoparticles for phosphate adsorption. J Hazard Mater 396:122626

    Article  CAS  Google Scholar 

  • Wang Y, Chen X, Yan J, Wang T, Xie X, Yang S (2021) Efficient removal arsenate from water by biochar-loaded Ce3+-enriched ultra-fine ceria nanoparticles through adsorption-precipitation. Sci Total Environ 794:148691

    Article  CAS  Google Scholar 

  • Xiao C, Li H, Zhao Y, Zhang X, Wang X (2020) Green synthesis of iron nanoparticle by tea extract (polyphenols) and its selective removal of cationic dyes. J Environ Manage 275:111262

    Article  CAS  Google Scholar 

  • Xiao K, Liang F, Liang J, Xu W, Liu Z, Chen B, Jiang X, Wu X, Xu J, Beiyuan J, Wang H (2022) Magnetic bimetallic Fe, Ce-embedded N-enriched porous biochar for peroxymonosulfate activation in metronidazole degradation: applications, mechanism insight and toxicity evaluation. Chem Eng J 433:134387

    Article  CAS  Google Scholar 

  • Xu J, Lu G, Guo Y, Guo Y, Gong X-Q (2017) A highly effective catalyst of Co-CeO2 for the oxidation of diesel soot: the excellent NO oxidation activity and NOx storage capacity. Appl Catal A-Gen 535:1–8

    Article  CAS  Google Scholar 

  • Xu Q, Hu K, Wang X, Wang D, Knudsen MT (2019) Carbon footprint and primary energy demand of organic tea in China using a life cycle assessment approach. J Clean Prod 233:782–792

    Article  Google Scholar 

  • Yang S, Zhang S, Xu Q, Liu J, Zhong C, Xie Z, Zhao Y (2022) Efficient activation of persulfate by Nickel-supported cherry core biochar composite for removal of bisphenol A. J Environ Manage 324:116305

    Article  CAS  Google Scholar 

  • Yu X, Lin X, Feng W, Li W (2019) Enhanced catalytic performance of a bio-templated TiO2 UV-Fenton system on the degradation of tetracycline. Appl Surf Sci 465:223–231

    Article  CAS  Google Scholar 

  • Yuan R, Jiang M, Gao S, Wang Z, Wang H, Boczkaj G, Liu Z, Ma J, Li Z (2020) 3D mesoporous α-Co(OH)2 nanosheets electrodeposited on nickel foam: a new generation of macroscopic cobalt-based hybrid for peroxymonosulfate activation. Chem Eng J 380:122447

    Article  CAS  Google Scholar 

  • Zhang P, Li Y, Cao Y, Han L (2019) Characteristics of tetracycline adsorption by cow manure biochar prepared at different pyrolysis temperatures. Bioresour Technol 285:121348

    Article  CAS  Google Scholar 

  • Zhao Y, Dai H, Ji J, Yuan X, Li X, Jiang L, Wang H (2022) Resource utilization of luffa sponge to produce biochar for effective degradation of organic contaminants through persulfate activation. Sep Purif Technol 288:120650

    Article  CAS  Google Scholar 

  • Zhong Q, Lin Q, Huang R, Fu H, Zhang X, Luo H, Xiao R (2020) Oxidative degradation of tetracycline using persulfate activated by N and Cu codoped biochar. Chem Eng J 380:122608

    Article  CAS  Google Scholar 

  • Zhou C-s, Wu J-w, Dong L-l, Liu B-f, Xing D-f, Yang S-s, Wu X-k, Wang Q, Fan J-n, Feng L-p, Cao G-l (2020) Removal of antibiotic resistant bacteria and antibiotic resistance genes in wastewater effluent by UV-activated persulfate. J Hazard Mater 388:122070

    Article  CAS  Google Scholar 

  • Zhou K, Wang X, Sun X, Peng Q, Li Y (2005) Enhanced catalytic activity of ceria nanorods from well-defined reactive crystal planes. J Catal 229:206–212

    Article  CAS  Google Scholar 

  • Zhu J, Song Y, Wang L, Zhang Z, Gao J, Tsang DCW, Ok YS, Hou D (2022) Green remediation of benzene contaminated groundwater using persulfate activated by biochar composite loaded with iron sulfide minerals. Chem Eng J 429:132292

    Article  CAS  Google Scholar 

  • Zhu K, Bin Q, Shen Y, Huang J, He D, Chen W (2020) In-situ formed N-doped bamboo-like carbon nanotubes encapsulated with Fe nanoparticles supported by biochar as highly efficient catalyst for activation of persulfate (PS) toward degradation of organic pollutants. Chem Eng J 402:126090

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the analysis and testing center of Changzhou University for the FT-IR and XRD tests. The authors would like to thank Liping Wang for valuable advices during the planning and realization of this study.

Funding

This work was supported by the National Major Project of Science & Technology Ministry of China [No. 2008ZX07421-002], the International Scientific and Technological Cooperation in Changzhou [No. CZ20140017], and the Scientific Research Foundation of Jiangsu Provincial Education Department, China [No. 47221KJB610007].

Author information

Authors and Affiliations

Authors

Contributions

Jiabao Song: conceptualization, data curation, writing—original draft. Qiuya Zhang: conceptualization, funding acquisition, writing—review and editing. Liping Wang: conceptualization, funding acquisition, writing—review and editing. Yanan Zhang: data curation, investigation. Hongli Guo: data curation, investigation.

Corresponding author

Correspondence to Liping Wang.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Ricardo A. Torres-Palma

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 438 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, J., Zhang, Q., Zhang, Y. et al. Study on persulfate activated by Ce-modified tea waste biochar to degrade tetracycline. Environ Sci Pollut Res 30, 49632–49643 (2023). https://doi.org/10.1007/s11356-023-25760-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-023-25760-9

Keywords

Navigation