Skip to main content
Log in

Proteus mirabilis isolated from untreated hospital wastewater, Ibadan, Southwestern Nigeria showed low-level resistance to fluoroquinolone and carried qnrD3 on Col3M plasmids

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Untreated wastewater emanating from healthcare facilities are risk factors for the spread of antimicrobial resistance (AMR) at the human–environment interface. In this study, we investigated the determinants of resistance in three multidrug resistant strains of Proteus mirabilis isolated from untreated wastewater collected from three government owned hospitals in Ibadan, Nigeria. Despite showing low-level resistance to ciprofloxacin, whole genome sequencing revealed the transferable mechanism of quinolone resistance (TMQR) gene qnrD3 carried on Col3M plasmids in all the isolates. Core genome phylogenetic analysis showed the isolates are closely related differing from each other by ≤ 23 single nucleotide polymorphisms (SNP). Further, they shared the closest evolutionary relationship with isolates from China. Similarly, the Col3M plasmids is most closely related to p3M-2A found in P. vulgaris 3 M isolated from the intestine of shrimps in China. This to the best of our knowledge is the first report of Col3M plasmids carrying qnrD3 in environmental bacterial isolates. Our results indicate a possible silent spread of this important plasmid associated with the dissemination of qnrD3 in Nigeria, and further highlights the important role played by untreated wastewater from healthcare facilities in the spread of AMR in low- and middle-income countries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

All relevant data are available in this manuscript and accompanying supplementary materials.

References

  • AbuOun M, Jones H, Stubberfield E et al (2021) Genomic epidemiological study shows that prevalence of microbial resistance in Enterobacterales is associated with the livestock host, as well as antimicrobial usage. Microb Genomics 7:000630. https://doi.org/10.1099/mgen.0.000630

    Article  CAS  Google Scholar 

  • Adelowo OO, Caucci S, Banjo OA et al (2018) Extended spectrum beta-lactamase (ESBL)-producing bacteria isolated from hospital wastewater, rivers and aquaculture sources in Nigeria. Environ Sci Pollut Res 25(3):2744–2755

    Article  CAS  Google Scholar 

  • Adelowo OO, Vollmers J, Mäusezahl I, Kaster AK, Müller JA (2018) Detection of the carbapenemase gene blaVIM-5 in members of the Pseudomonas putida group isolated from polluted Nigerian wetlands. Sci Rep 8:15116. https://doi.org/10.1038/s41598-018-33535-3

    Article  CAS  Google Scholar 

  • Adelowo OO, Fagade OE, Oke AJ (2008) Prevalence of co-resistance to disinfectants and clinically relevant antibiotics in bacterial isolates from three hospital laboratory wastewaters in southwestern Nigeria. World J Microbiol Biotechnol 24(9):1993–1997

    Article  CAS  Google Scholar 

  • Adekanmbi OA, Akinlabi OC, Olaposi AV (2022) High carriage of plasmid mediated quinolone resistance (PMQR) gene by cefotaxime-resistant Escherichia coli recovered from surface-leaking sanitary sewers. Arch Microbiol 204:131. https://doi.org/10.1007/s00203-021-02627-6

    Article  CAS  Google Scholar 

  • Alcock BP, Raphenya AR, Lau TTY et al (2020) CARD 2020: antibiotic resistome surveillance with the Comprehensive Antibiotic Resistance Database. Nucleic Acids Res 48(D1):D517–D525. https://doi.org/10.1093/nar/gkz935

    Article  CAS  Google Scholar 

  • APHA (1998) Standard methods for the examination of water and wastewater. American Public Health Association, Washington DC

    Google Scholar 

  • Arkin AP, Cottingham RW, Henry CS et al (2018) Kbase: The United States Department of Energy Systems Biology Knowledgebase. Nat Biotechnol 38:566–569

    Article  Google Scholar 

  • Bankevich A, Nurk S, Antipov D et al (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19:455–477. https://doi.org/10.1089/cmb.2012.0021

    Article  CAS  Google Scholar 

  • Bartolaia V, Kaas RF, Ruppe E et al (2020) ResFinder 4.0 for predictions of phenotypes from genotypes. J Antimicrob Chemother 75(12):3491–3500

    Article  Google Scholar 

  • Bergey DH, Holt JG (2000) Bergey’s manual of determinative bacteriology, 9th edn. Lippincott, Williams and Wilkins, Philadelphia

    Google Scholar 

  • Bitar I, Marchetti VM, Mercato A et al (2020) Complete genome and plasmids sequences of a clinical Proteus mirabilis isolate producing plasmid mediated NDM-1 from Italy. Microorganisms 8:339. https://doi.org/10.3390/microorganisms8030339

    Article  CAS  Google Scholar 

  • Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120. https://doi.org/10.1093/bioinformatics/btu170

    Article  CAS  Google Scholar 

  • Carattoli A, Zankari E, Garcia-Fernandez A et al (2014) PlasmidFinder and pMLST: in silico detection and typing of plasmids. Antimicrob Agents Chemother 58(7):3895–3903

    Article  Google Scholar 

  • Camacho C, Coulouris G, Avagyan V et al (2009) BLAST+: architecture and applications. BMC Bioinformatics 10(1):421

    Article  Google Scholar 

  • Cavaco LM, Hasman H, Xia S, Aarestrup FM (2009) qnrD, a novel gene conferring transferable quinolone resistance in Salmonella enterica serovar Kentucky and Bovismorbificans strains of human origin. Antimicrob Agents Chemother 53:603–608. https://doi.org/10.1128/AAC.00997-08

    Article  CAS  Google Scholar 

  • Chattaway MA, Aboderin AO, Fashae K, Okoro CK, Opintan JA, Okeke IN (2016) Fluoroquinolone-resistant enteric bacteria in Sub-Saharan Africa: Clones, implications and research needs. Front Microbiol 7:558. https://doi.org/10.3389/fmicb.2016.00558

    Article  Google Scholar 

  • Chen L, Zhang Y, Du J, Zhang X, Li M, Chen H, Yu H, Sun Y, Zhou T (2018) Description and plasmid characterization of the qnrD determinant in Proteeae in Wenzhou, Southern China. J Microbiol Immunol Infect 51:115–122. https://doi.org/10.1016/j.jmii.2016.02.001

    Article  CAS  Google Scholar 

  • Clinical and Laboratory Standards Institute (CLSI) (2018) Performance standards for antimicrobial susceptibility testing. CLSI Supplement M100. 27th Edition. Wayne, USA

  • Cullimore RD (2019) Practical atlas for bacterial identification, 2nd edn. CRC Press, Florida

    Google Scholar 

  • Elnekave E, Hong SL, Lim S, Hayer SS, Boxrud D, Taylor AJ, Lappi V, Noyes N, Johnson TJ, Rovira A, Davies P, Perez A, Alvarez J (2019) Circulation of plasmids harboring resistance genes to quinolones and/or extended spectrum cephalosporins in multiple Salmonella enterica serotypes from swine in the United States. Antimicrob Agents Chemother 63:e02602-e2618. https://doi.org/10.1128/AAC.02602-18

    Article  CAS  Google Scholar 

  • Girlich D, Bonnin RA, Dortet L, Naas T (2020) Genetics of acquired antibiotic resistance genes in Proteus spp. Front Microbiol 11:256. https://doi.org/10.3389/fmicb.2020.00256

    Article  Google Scholar 

  • Guillard T, Grillon A, de Champs C et al (2014) Mobile insertion cassette elements found in small non-transmissible plasmids in Proteeae may explain qnrD mobilization. PLoS One 9:e87801. https://doi.org/10.1371/journal.pone.0087801

    Article  CAS  Google Scholar 

  • Guillard T, Cambau E, Neuwirth C, Nenninger T, Mbadi A, Brasme L, Vernet-Garnier V, Bajolet O, de Champs C (2012) Description of a 2,683-base-pair plasmid containing qnrD in two Providencia rettgeri isolates. Antimicrob Agents Chemother 56:565–568. https://doi.org/10.1128/AAC.00081-11

    Article  CAS  Google Scholar 

  • Gurevich A, Saveliev V, Vyahhi N, Tesler G (2013) QUAST: quality assessment tool for genome assemblies. Bioinformatics 29(8):1072–1075

    Article  CAS  Google Scholar 

  • Ikhimiukor OO, Odih EE, Donado-Godoy P, Okeke IN (2022) A bottom-up view of antimicrobial resistance transmission in developing countries. Nat Microbiol 7:757–765. https://doi.org/10.1038/s41564-022-01124-w

    Article  CAS  Google Scholar 

  • Johansson MHK, Bortolaia V, Tansirichaiya S, Aarestrup FM, Roberts AP, Petersen TN (2021) Detection of mobile genetic elements associated with antibiotic resistance in Salmonella enterica using a newly developed web tool: MobileElementFinder. J Antimicrob Chemother 76:101–109. https://doi.org/10.1093/jac/dkaa390

    Article  CAS  Google Scholar 

  • Jones-Dias D, Clemente L, Moura IB, Sampaio DA, Albuquerque T, Vieira L, Manageiro V, Caniça M (2016) Draft genomic analysis of an avian multidrug resistant Morganella morganii isolate carrying qnrD1. Front Microbiol 7:1660. https://doi.org/10.3389/fmicb.2016.01660

    Article  Google Scholar 

  • Kraychete GB, Campana EH, Picão RC, Bonelli RR (2019) qnrD-harboring plasmids in Providencia spp. recovered from food and environmental Brazilian sources. Sci Total Environ 646:1290–1292. https://doi.org/10.1016/j.scitotenv.2018.07.378

    Article  CAS  Google Scholar 

  • Lamikanra A, Crowe JL, Lijek RS et al (2011) Rapid evolution of fluoroquinolone-resistant Escherichia coli in Nigeria is temporally associated with fluoroquinolone use. BMC Infect Dis 11:312. https://doi.org/10.1186/1471-2334-11-312

    Article  CAS  Google Scholar 

  • Letunic I, Bork P (2019) Interactive Tree of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res 47(W1):W256–W259. https://doi.org/10.1093/NAR/GKZ239

    Article  CAS  Google Scholar 

  • Madeira F, Pearce M, Tivey ARN, Basutkar P, Edbali O, Madhusoodanan N, Kolesnikov A, Lopez R (2022) Search and sequence analysis tools services from EMBL-EBI in 2022. Nucleic Acids Res 50(W1):W276–W279. https://doi.org/10.1093/nar/gkac240

  • Nsofor CM, Tattfeng MY, Nsofor CA (2021) High prevalence of qnrA and qnrB genes among fluoroquinolone-resistant Escherichia coli isolates from a tertiary hospital in southern Nigeria. Bullet National Res Centre 45:26. https://doi.org/10.1186/s42269-020-00475-w

    Article  Google Scholar 

  • Ogbolu DO, Daini OA, Ogunledun A, Alli AO, Webber MA (2011) High levels of multidrug resistance in clinical isolates of Gram negative pathogens from Nigeria. Int J Antimicrob Agents 37:62e6

    Article  Google Scholar 

  • Ogbolu DO, Alli AO, Anorue MC, Daini OA, Oluwadun A (2016) Distribution of plasmid-mediated quinolone resistance in Gram-negative bacteria from a tertiary hospital in Nigeria. Indian J Pathol Microbiol 59:322–326

    Article  Google Scholar 

  • Orogade AA, Akuse RM (2004) Changing patterns in sensitivity of causative organisms of septicaemia in children: the need for quinolones. Afr J Med Sci 33:69–72

    CAS  Google Scholar 

  • Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S, Holden MTG, Fookes M, Falush D, Keane JA, Parkhill J (2015) Roary: rapid large-scale prokaryote pangenome analysis. Bioinformatics 31(22):3691–3693

    Article  CAS  Google Scholar 

  • Page AJ, Taylor B, Delaney AJ, Soares J, Seemann T, Keane JA, Harris SR (2016) SNP-sites: rapid efficient extraction of SNPs from multi-FASTA alignments. Microb Genomics 2(4):e000056. https://doi.org/10.1099/MGEN.0.000056

    Article  Google Scholar 

  • Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW (2015) CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 25:1043–1055

    Article  CAS  Google Scholar 

  • Rahman A, Bhuiyan OF, Sadique A et al (2020) Whole genome sequencing provides genomic insights into three Morganella morganii strains isolated from bovine rectal swabs in Dhaka, Bangladesh. FEMS Microbiol Lett 367:fnaa043. https://doi.org/10.1093/femsle/fnaa043

    Article  CAS  Google Scholar 

  • Ruiz J (2019) Transferable mechanisms of quinolone resistance from 1998 onward. Clin Microbiol Rev 32:e00007-19. https://doi.org/10.1128/CMR.00007-19

    Article  CAS  Google Scholar 

  • Seemann T (2014) Prokka: rapid prokaryotic genome annotation. Bioinformatics 30(14):2068–2069. https://doi.org/10.1093/BIOINFORMATICS/BTU153

    Article  CAS  Google Scholar 

  • Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30(9):1312–1313

    Article  CAS  Google Scholar 

  • Sumrall ET, Gallo EB, Aboderin AO, Lamikanra A, Okeke IN (2014) Dissemination of the transmissible quinolone-resistance gene qnrS1 by IncX Plasmids in Nigeria. PLoS One 9(10):e110279. https://doi.org/10.1371/journal.pone.0110279

    Article  CAS  Google Scholar 

  • Tchuinte PLS, Rabenandrasana MAN, Ramparany L, Ratsima E, Enouf V, Randrianirina F, Collard J-M (2020) Genome-based insight into the resistomes and mobilomes of two Providencia rettgeri strains isolated from wound infections in Madagascar. J Global Antimicrob Resist 20:178–182. https://doi.org/10.1016/j.jgar.2019.07.013

    Article  Google Scholar 

  • UNEP (2017) Frontiers 2017: emerging issues of environmental concern. United Nations Environment Programme, Nairobi

  • Zankari E, Allesøe R, Joensen KG, Cavaco LM, Lund O, Aarestrup FM (2020) PointFinder: a novel web tool for WGS-based detection of antimicrobial resistance associated with chromosomal point mutations in bacterial pathogens. J Antimicrob Chemother 72(10):2764–2768

    Article  Google Scholar 

  • Zhang S, Sun J, Liao X-P et al (2013) Prevalence and plasmid characterization of the qnrD determinant in Enterobacteriaceae isolated from animals, retail meat products, and humans. Microb Drug Resist 19:331–335. https://doi.org/10.1089/mdr.2012.0146

    Article  CAS  Google Scholar 

  • Zhang H, Chang M, Zhang X, Cai P, Dai Y, Song T, Wu Z, Xu H, Qiao M (2020) Functional identification and evolutionary analysis of two novel plasmids mediating quinolone resistance in Proteus vulgaris. Microorgnisms 8:1074. https://doi.org/10.3390/microorganisms8071074

    Article  CAS  Google Scholar 

  • Zheng L, Chen P, Guo JX, Zhu LW, Guan YJ, Wang Y, Jing J, Liang B, Ji X (2020) Virulence gene, antimicrobial resistance and phylogenetic characterization of Vibrio parahaemolyticus in migratory birds, Guangdong. PREPRINT (Version 1) available at Research Square. https://doi.org/10.21203/rs.3.rs-23919/v1. Accessed 25 July 2022

  • Zhou Z, Alikhan NF, Sergeant MJ et al (2018) GrapeTree: visualization of core genomic relationships among 100,000 bacterial pathogens. Genome Res 28(9):1395–404. https://genome.cshlp.org/content/28/9/1395.full

Download references

Funding

This study was supported by an Alexander von Humboldt (AvH) Foundation Renewed Research Stay Fellowship to OOA at the Institute of Biological Interfaces (IBG-5), Karlsruhe Institute of Technology, Germany, for the sequencing of the bacteria isolates.

Author information

Authors and Affiliations

Authors

Contributions

Adenike Omolola Ajayi-Odoko (AOA), Ayantade Dayo Victor Ayansina (ADVA), and Olawale Olufemi Adelowo (OOA) conceived and designed the study; AOA, OOA, Jochen A. Müller (JAM), and Odion O. Ikhimiukor performed experiment, collected, and analyzed data. OOA and JAM acquired funding. The first draft of the manuscript was written by OOA, all authors read and approved the final manuscript.

Corresponding author

Correspondence to Olawale Olufemi Adelowo.

Ethics declarations

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent to publish

This publication has been approved by all co-authors and the responsible authorities at the institutes where the work was carried out.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Diane Purchase

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

11356_2023_25618_MOESM1_ESM.csv

Supplementary file1 Genome assembly characteristics of the thirty-seven isolates included in the FastANI plot (CSV 4.13 KB)

Supplementary file2 Data of isolates included in the Core genome pairwise SNP distance calculations (CSV 13.8 KB)

Supplementary file3 qnrD-bearing Col3M plasmids included in the phylogenetic analysis (XLSX 12.6 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ajayi-Odoko, A.O., Ayansina, A.D.V., Ikhimiukor, O.O. et al. Proteus mirabilis isolated from untreated hospital wastewater, Ibadan, Southwestern Nigeria showed low-level resistance to fluoroquinolone and carried qnrD3 on Col3M plasmids. Environ Sci Pollut Res 30, 47158–47167 (2023). https://doi.org/10.1007/s11356-023-25618-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-023-25618-0

Keywords

Navigation