Skip to main content
Log in

Competitive and cooperative adsorption analysis for dye removal from multicomponent system using Prosopis juliflora activated carbon

  • Advanced Photocatalytic Nanomaterials for Environmental and Pollution Remediation Applications
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

In this study, performance evaluation of two adsorbents synthesized using invasive weed, i.e., Prosopis juliflora, was chemically activated using hydrochloric acid (HPJ) and sodium hydroxide (NPJ). The synthesized adsorbents HPJ and NPJ were subjected to SEM, EDX, XRD, FTIR, and porosimetry analysis for characterization and applied for adsorptive removal of rhodamine B (RB) and methyl orange (MO) dyes from monocomponent (MO/RB) and multicomponent (MO + RB) systems in batch mode. Meanwhile, the effect of operational parameters such as contact time, HPJ and NPJ dosage, MO/RB concentration, and \({\mathrm{pH}}_{solution}\) on sorption of MO/RB dyes was investigated. The adsorption data was modeled through various kinetic and equilibrium models. On the other hand, the multi-dye sorption system was modeled using Langmuir competitive isotherm. Furthermore, the effect of presence of one dye on sorption of other and vice versa, i.e., competitive (antagonistic) and cooperative (synergistic) nature of sorption process, was investigated. From the results, it was observed that pseudo-second-order kinetic and Langmuir isotherm models best fit the adsorption kinetic and equilibrium data for sorption of MO and RB dyes using both HPJ and NPJ as adsorbents. Langmuir’s maximum sorption ability (qm) of HPJ for sorption of MO and RB dyes was observed to be 12.77 mg/g and 9.95 mg/g, respectively, from the monocomponent system. On the other hand, qm of NPJ for sorption of MO and RB dyes was observed to be 10.51 mg/g and 8.69 mg/g, respectively. Langmuir’s sorption ability (qm) was slightly higher in the MO + RB mixture in contrast to MO/RB. As a result, the sorption of MO/RB dyes from the MO + RB system showed synergistic nature. In conclusion, the HPJ and NPJ could be effectively used as sorbents for sorption of dyes from effluents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

Download references

Acknowledgements

The authors would wish to thank the Material Analysis and Research Centre, Bangalore Institute of Technology, Bangalore, India, for their assistance with the characterization of the adsorbents. The authors would also like to extend their thanks to BMS College of Engineering, Bangalore, India, for their consistent support in providing necessary facilities.

Author information

Authors and Affiliations

Authors

Contributions

Manjunath S V: conceptualization, methodology, modeling, data curation, formal analysis, supervision, writing – review and editing. Pratheek C N: conceptualization, methodology, modeling, experimentation analysis, data curation, formal analysis, investigation, writing – original draft. Anil Kumar K M: writing – review and editing.

Corresponding author

Correspondence to Manjunath Singanodi Vallabha.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Tito Roberto Cadaval Jr.

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 114 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vallabha, M.S., Nagaraj, P.C. & Mallikarjunappa, A.K.K. Competitive and cooperative adsorption analysis for dye removal from multicomponent system using Prosopis juliflora activated carbon. Environ Sci Pollut Res 30, 90362–90382 (2023). https://doi.org/10.1007/s11356-022-24721-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-022-24721-y

Keywords

Navigation