Skip to main content
Log in

Development of reusable chitosan-supported nickel sulfide microspheres for environmentally friendlier and efficient bio-sorptive decontamination of mercury toxicant

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract 

Mercury emissions from the industrial sector have become an undeniable concern for researchers due to their toxic health effects. Efforts have been made to develop green, efficient, and reliable methods for removal of mercury from wastewater. Sorption process promises fruitful results for the decontamination of cations from wastewater. Among the number of used sorbents, metal sulfides have been emerged as an appropriate material for removing toxic metals that possess good affinity due to sulfur-based active sites for Hg through “Lewis’s acid-based soft–soft interactions.” Herein, nickel-sulfide nanoparticles were synthesized, followed by their incorporation in chitosan microspheres. FTIR analysis confirmed the synthesis of nickel sulfide-chitosan microspheres (NiS-CMs) displaying sharp bands for multiple functional groups. XRD analysis showed that the NiS-CMs possessed a crystallite size of 42.1 nm. SEM analysis indicated the size of NiS-CMs to be 950.71 μm based on SEM micrographs. The sorption of mercury was performed using the NiS-CMs, and the results were satisfactory, with a sorption capacity of 61 mg/g at the optimized conditions of pH 5.0, 80 ppm concentration, in 60 min at 25 °C. Isothermal models and kinetics studies revealed that the process followed pseudo-second-order kinetics and the Langmuir isothermal model best fitted to experimental data. It was concluded that the NiS-CMs have emerged as the best choice for removing toxic mercury ions with a positive impact on the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Not applicable.

References

  • Ali N, Riead MMH, Bilal M, Yang Y, Khan A, Ali F, ..., Iqbal HM (2021) Adsorptive remediation of environmental pollutants using magnetic hybrid materials as platform adsorbents. Chemosphere284:131279

  • Allouche FN (2021) A user-friendly Ulva lactuca/chitosan composite bead for mercury removal. Inorg Chem Commun 130:108747

    Article  CAS  Google Scholar 

  • AlMalki MA, Khan ZA, El-Said WA (2021) Synthesis and characterization of Nickel sulfide and Nickel sulfide/Molybdenum disulfide nanocomposite modified ITO electrode as efficient anode for methanol electrooxidation. Applied Surface Science Advances 6:100187

    Article  Google Scholar 

  • Bachand SM, Kraus TE, Stern D, Liang YL, Horwath WR, Bachand PA (2019) Aluminum- and iron-based coagulation for in-situ removal of dissolved organic carbon, disinfection byproducts, mercury and other constituents from agricultural drain water. Ecol Eng 134:26–38

    Article  Google Scholar 

  • Butwong N, Kunthadong P, Soisungnoen P, Chotichayapong C, Srijaranai S, Luong JH (2018) Silver-doped CdS quantum dots incorporated into chitosan-coated cellulose as a colorimetric paper test stripe for mercury. Microchim Acta 185(2):1–9

    Article  CAS  Google Scholar 

  • Dai D, Yang J, Wang Y, Yang YW (2021) Recent progress in functional materials for selective detection and removal of mercury (II) ions. Adv Func Mater 31(1):2006168

    Article  CAS  Google Scholar 

  • Das SK, Das AR, Guha AK (2007) A study on the adsorption mechanism of mercury on Aspergillus versicolor biomass. Environ Sci Technol 41(24):8281–8287

    Article  CAS  Google Scholar 

  • Eltarahony M, Zaki S, Abd-El-Haleem D (2020) Aerobic and anaerobic removal of lead and mercury via calcium carbonate precipitation mediated by statistically optimized nitrate reductases. Sci Rep 10(1):1–20

    Article  Google Scholar 

  • Fang R, Lu C, Zhong Y, Xiao Z, Liang C, Huang H, ... , Zhang W (2020) Puffed rice carbon with coupled sulfur and metal iron for high-efficiency mercury removal in aqueous solution. Environ Sci Technol 54(4):2539-2547

  • Fausey CL, Zucker I, Lee DE, Shaulsky E, Zimmerman JB, Elimelech M (2020) Tunable molybdenum disulfide-enabled fiber mats for high-efficiency removal of mercury from water. ACS Appl Mater Interfaces 12(16):18446–18456

    Article  CAS  Google Scholar 

  • Fazli Y, Pourmortazavi SM, Kohsari I, Karimi MS, Tajdari M (2016) Synthesis, characterization and photocatalytic property of nickel sulfide nanoparticles. J Mater Sci: Mater Electron 27(7):7192–7199

    CAS  Google Scholar 

  • Foroutan R, Mohammadi R, Farjadfard S, Esmaeili H, Ramavandi B, Sorial GA (2019) Eggshell nano-particle potential for methyl violet and mercury ion removal: surface study and field application. Adv Powder Technol 30(10):2188–2199

    Article  CAS  Google Scholar 

  • Foroutan R, Peighambardoust SJ, Ahmadi A, Akbari A, Farjadfard S, Ramavandi B (2021) Adsorption mercury, cobalt, and nickel with a reclaimable and magnetic composite of hydroxyapatite/Fe3O4/polydopamine. J Environ Chem Eng 9(4):105709

    Article  CAS  Google Scholar 

  • Fu W, Ji G, Chen H, Yang S, Guo B, Yang H, Huang Z (2020) Molybdenum sulphide modified chelating resin for toxic metal adsorption from acid mine wastewater. Sep Purif Technol 251:117407

    Article  CAS  Google Scholar 

  • Ghasemi SS, Hadavifar M, Maleki B, Mohammadnia E (2019) Adsorption of mercury ions from synthetic aqueous solution using polydopamine decorated SWCNTs. J Water Proc Eng 32:100965

    Article  Google Scholar 

  • Han Y, Tao J, Khan A, Ullah R, Ali N, Ali N, Malik S, Yu C, Yang Y Bilal M (2022) Design and fabrication of chitosan cross-linked bismuth sulfide nanoparticles for sequestration of mercury in river water samples. Environ Res 215:113978

  • Huang S, Ma C, Liao Y, Min C, Du P, Jiang Y (2016) Removal of mercury (II) from aqueous solutions by adsorption on poly (1-amino-5-chloroanthraquinone) nanofibrils: equilibrium, kinetics, and mechanism studies. J Nanomater 2016:724829

  • Hussain S, Gul S, Khan S, Rehman HU, Ishaq M, Khan A, ..., Din Z U (2015) Removal of Cr (VI) from aqueous solution using brick kiln chimney waste as adsorbent. Desalination Water Treat 53(2):373-381

  • Hussain S, Ullah Z, Gul S, Khattak R, Kazmi N, Rehman F, ..., Khan A (2016) Adsorption characteristics of magnesium-modified bentonite clay with respect to acid blue 129 in aqueous media. Pol J Environ Stud 25(5):1947-1953

  • Jeon C, Park KH (2005) Adsorption and desorption characteristics of mercury (II) ions using aminated chitosan bead. Water Res 39(16):3938–3944

    Article  CAS  Google Scholar 

  • Khan A, Wahid F, Ali N, Badshah S, Airoldi C (2015) Single-step modification of chitosan for toxic cations remediation from aqueous solution. Desalin Water Treat 56(4):1099–1109

    Article  CAS  Google Scholar 

  • Khan M, Khan A, Khan H, Ali N, Sartaj S, Malik S, ... , Bilal M (2021) Development and characterization of regenerable chitosan-coated nickel selenide nano-photocatalytic system for decontamination of toxic azo dyes. Int J Biol Macromol 182:866-878

  • Kim Y, Lin Z, Jeon I, Van Voorhis T, Swager TM (2018) Polyaniline nanofiber electrodes for reversible capture and release of mercury (II) from water. J Am Chem Soc 140(43):14413–14420

    Article  CAS  Google Scholar 

  • Kristl M, Dojer B, Gyergyek S, Kristl J (2017) Synthesis of nickel and cobalt sulfide nanoparticles using a low cost sonochemical method. Heliyon 3(3):e00273

    Article  Google Scholar 

  • Li N, Bai R, Liu C (2005) Enhanced and selective adsorption of mercury ions on chitosan beads grafted with polyacrylamide via surface-initiated atom transfer radical polymerization. Langmuir 21(25):11780–11787

    Article  CAS  Google Scholar 

  • Liu D, Du H, Zhang J, Que G (2015) Reverse microemulsion synthesis and characterization of nano nickel sulfide catalyst for residue slurry-phase hydrocracking. Energy Fuels 29(5):3353–3358

    Article  CAS  Google Scholar 

  • Liu D, Li B, Wu J, Liu Y (2021) Elemental mercury capture from industrial gas emissions using sulfides and selenides: a review. Environ Chem Lett 19(2):1395–1411

    Article  CAS  Google Scholar 

  • Liu Z, Sun Y, Xu X, Meng X, Qu J, Wang Z, ... , Qu B (2020) Preparation, characterization and application of activated carbon from corn cob by KOH activation for removal of Hg (II) from aqueous solution. BioresourTechnol 306:123154

  • Malik S, Khan A, Rahman G, Ali N, Khan H, Khan S, Sotomayor MD (2022) Core-shell magnetic molecularly imprinted polymer for selective recognition and detection of sunset yellow in aqueous environment and real samples. Environ Res 212:113209

    Article  CAS  Google Scholar 

  • Monyake KC, Alagha L (2022) Enhanced separation of base metal sulfides in flotation systems using Chitosan-grafted-Polyacrylamides. Sep Purif Technol 281:119818

    Article  CAS  Google Scholar 

  • Ochedi FO, Liu Y, Hussain A (2020) A review on coal fly ash-based adsorbents for mercury and arsenic removal. J Clean Prod 267:122143

    Article  CAS  Google Scholar 

  • Pohl A (2020) Removal of heavy metal ions from water and wastewaters by sulfur-containing precipitation agents. Water Air Soil Pollut 231(10):1–17

    Article  Google Scholar 

  • Prasetya A, Prihutami P, Warisaura AD, Fahrurrozi M, Petrus HTBM (2020) Characteristic of Hg removal using zeolite adsorption and Echinodorus palaefolius phytoremediation in subsurface flow constructed wetland (SSF-CW) model. J Environ Chem Eng 8(3):103781

    Article  CAS  Google Scholar 

  • Qiao Q, Singh S, Lo SL, Srivastava VC, Jin J, Yu Y, Wang L (2021) Sorption/desorption of aqueous mercury ions [Hg2+] onto/from sulfur-impregnated attapulgite: process optimization, co-existing anions and regeneration studies. J Taiwan Inst Chem Eng 119:204–212

    Article  CAS  Google Scholar 

  • Rabie AM, Abd El-Salam HM, Betiha MA, El-Maghrabi HH, Aman D (2019) Mercury removal from aqueous solution via functionalized mesoporous silica nanoparticles with the amine compound. Egyptian Journal of Petroleum 28(3):289–296

    Article  Google Scholar 

  • Salavati-Niasari M, Banaiean-Monfared G, Emadi H, Enhessari M (2013) Synthesis and characterization of nickel sulfide nanoparticles via cyclic microwave radiation. C R Chim 16(10):929–936

    Article  CAS  Google Scholar 

  • Samani MR, Toghraie D (2020) Using of polyaniline–polyvinyl acetate composite to remove mercury from aqueous media. International Journal of Environmental Research 14(3):303–310

    Article  CAS  Google Scholar 

  • Shellaiah M, Sun KW (2021) Progress in metal-organic frameworks facilitated mercury detection and removal. Chemosensors 9(5):101

    Article  CAS  Google Scholar 

  • Sun Y, Lv D, Zhou J, Zhou X, Lou Z, Baig SA, Xu X (2017) Adsorption of mercury (II) from aqueous solutions using FeS and pyrite: a comparative study. Chemosphere 185:452–461

    Article  CAS  Google Scholar 

  • Tang J, Ptacek CJ, Blowes DW, Liu Y, Feng Y, Finfrock YZ, Liu P (2022) Mercury adsorption kinetics on sulfurized biochar and solid-phase digestion using aqua regia: a synchrotron-based study. Chem Eng J 428:131362

    Article  CAS  Google Scholar 

  • Trikkaliotis DG, Christoforidis AK, Mitropoulos AC, Kyzas GZ (2020) Adsorption of copper ions onto chitosan/poly (vinyl alcohol) beads functionalized with poly (ethylene glycol). Carbohyd Polym 234:115890

    Article  CAS  Google Scholar 

  • Tuzen M, Sarı A, Turkekul I (2020) Influential bio-removal of mercury using Lactarius acerrimus macrofungus as novel low-cost biosorbent from aqueous solution: isotherm modeling, kinetic and thermodynamic investigations. Mater Chem Phys 249:123168

    Article  Google Scholar 

  • Wang L, Hou D, Cao Y, Ok YS, Tack FM, Rinklebe J, O’Connor D (2020) Remediation of mercury contaminated soil, water, and air: a review of emerging materials and innovative technologies. Environ Int 134:105281

    Article  CAS  Google Scholar 

  • Wu S, Yan P, Yu W, Cheng K, Wang H, Yang W, ... , Che L (2019) Efficient removal of mercury from flue gases by regenerable cerium-doped functional activated carbon derived from resin made by in situ ion exchange method. Fuel Proc Technol 196:106167

  • Xiang Y, Zhu A, Guo Y, Liu G, Chen B, He B, ... , Jiang G (2022) Decreased bioavailability of both inorganic mercury and methylmercury in anaerobic sediments by sorption on iron sulfide nanoparticles. J Hazard Mater 424:127399

  • Xie X, Zhang Z, Chen Z, Wu J, Li Z, Zhong S, ... , Zhilou L (2022) In-situ preparation of zinc sulfide adsorbent using local materials for elemental mercury immobilization and recovery from zinc smelting flue gas. Chem Eng J 429:132115

  • Yang W, Adewuyi YG, Hussain A, Liu Y (2019) Recent developments on gas–solid heterogeneous oxidation removal of elemental mercury from flue gas. Environ Chem Lett 17(1):19–47

    Article  CAS  Google Scholar 

  • Yang R, Li R, Zhang L, Xu Z, Kang Y, Xue P (2020) Facile synthesis of hollow mesoporous nickel sulfide nanoparticles for highly efficient combinatorial photothermal–chemotherapy of cancer. J Mater Chem B 8(34):7766–7776

    Article  CAS  Google Scholar 

  • Ye D, Wang X, Wang R, Wang S, Liu H, Wang H (2021) Recent advances in MnO2-based adsorbents for mercury removal from coal-fired flue gas. J Environ Chem Eng 9(5):105993

    Article  CAS  Google Scholar 

  • Zhang S, Malik S, Ali N, Khan A, Bilal M, Rasool K (2022) Covalent and non-covalent functionalized nanomaterials for environmental restoration. Top Curr Chem 380(5):1–113

    Google Scholar 

Download references

Funding

The research leading to these results has received funding from the Norwegian Financial Mechanism 2014–2021 under the Project number 2020/37/K/ST8/03805.

Author information

Authors and Affiliations

Authors

Contributions

YH, JT, AK: conceptualization, data analysis and curation, project administration, supervision, validation, writing—original draft, review and editing. AK, SM: investigation, methodology, data analysis and curation. NA: co-supervision, conceptualization. AK: validation, writing—review and editing. CY, YY: data analysis, writing—review and editing. TJ: formal analysis, writing—review and editing. MB: data analysis, software, visualization, validation, writing—review and editing, supervision.

Corresponding author

Correspondence to Yonghong Han.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent of publication

Not applicable.

Competing interests

Not applicable.

Additional information

Responsible Editor: George Z. Kyzas

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, Y., Tao, J., Khan, A. et al. Development of reusable chitosan-supported nickel sulfide microspheres for environmentally friendlier and efficient bio-sorptive decontamination of mercury toxicant. Environ Sci Pollut Res 30, 47077–47089 (2023). https://doi.org/10.1007/s11356-022-24563-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-022-24563-8

Keywords

Navigation