Skip to main content

Advertisement

Log in

The role of polybrominated diphenyl ethers in the induction of cancer: a systematic review of insight into their mechanisms

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Environmental pollution caused by persistent organic pollutants (POPs) has increased the challenge for the scientific communities. Polybrominated diphenyl ethers (PBDEs), classified as POPs, are widely applied in various materials as brominated flame retardants (BFRs). Because of the nature of these chemical compounds including toxicity, stability, and capability to bioaccumulate and biomagnify, PBDEs have posed a great challenge and risk to human health and wildlife. Therefore, the side effects of exposure to PBDEs as ubiquitous pollutants in the environment on cancer progression were investigated using a systematic review (SR) survey. To achieve this goal, forty studies were considered after defining the search terms and inclusion criteria, and/or exclusion criteria; the eligible records were collected from the international bibliographic databases. Based on the findings of the reviewed records, environmental exposure to the BFRs including PBDEs has a positive association with different mechanisms that induce cancer progression. However, the findings of the reviewed studies were not totally consistent with the mode of action and side effects are yet to be fully elucidated. Several articles have reported that BFRs can be carcinogenic and induce epithelial to mesenchymal transition via different mechanisms. The main mode of action involved in the environmental exposure to BFRs and the risk of cancer progression is endoplasmic reticulum and oxidative stress (OS). Generally, the imbalance of antioxidant mechanisms, reactive nitrogen species (RNSs) and reactive oxygen species (ROSs), during damage in cells, and stress caused OS, which increases tumorigenesis via multiple mechanisms, such as DNA damage, inflammation, and angiogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Agrell C, ter Schure AFH, Sveder J, Bokenstrand A, Larsson P, Zegers BN (2004) Polybrominated diphenyl ethers (PBDES) at a solid waste incineration plant I: Atmospheric concentrations. Atmos Environ 38(30):5139–5148

    Article  CAS  Google Scholar 

  • Alaee M, Arias P, Sjödin A, Bergman Å (2003) An overview of commercially used brominated flame retardants, their applications, their use patterns in different countries/regions and possible modes of release. Environ Int 29(6):683–689

    Article  CAS  Google Scholar 

  • Anand P, Kunnumakara AB, Sundaram C, Harikumar KB, Tharakan ST, Lai OS, Sung B, Aggarwal BB (2008) Cancer is a preventable disease that requires major lifestyle changes. Pharm Res 25(9):2097–2116

    Article  CAS  Google Scholar 

  • Arfin S, Jha NK, Jha SK, Kesari KK, Ruokolainen J, Roychoudhury S, Rathi B, Kumar D (2021) Oxidative stress in cancer cell metabolism. Antioxidants (basel, Switzerland) 10(5):642

    CAS  Google Scholar 

  • Aschebrook-Kilfoy B, DellaValle CT, Purdue M, Kim C, Zhang Y, Sjodin A, Ward MH (2015) Polybrominated diphenyl ethers and thyroid cancer risk in the Prostate, Colorectal, Lung, and Ovarian Cancer Screening Trial cohort. Am J Epidemiol 181(11):883–888

    Article  Google Scholar 

  • Cao L-Y, Zheng Z, Ren X-M, Andersson PL, Guo L-H (2018) Structure-dependent activity of polybrominated diphenyl ethers and their hydroxylated metabolites on estrogen related receptor γ: in vitro and in silico study. Environ Sci Technol 52(15):8894–8902

    Article  CAS  Google Scholar 

  • Cao SS, Kaufman RJ (2014) Endoplasmic reticulum stress and oxidative stress in cell fate decision and human disease. Antioxid Redox Signal 21(3):396–413

    Article  CAS  Google Scholar 

  • Chen Z-J, Liu H-Y, Cheng Z, Man Y-B, Zhang K-S, Wei W, Du J, Wong M-H, Wang H-S (2014) Polybrominated diphenyl ethers (PBDEs) in human samples of mother–newborn pairs in South China and their placental transfer characteristics. Environ Int 73:77–84

    Article  CAS  Google Scholar 

  • Chhabra R, Bucher J, Haseman J, Elwell M, Kurtz P, Carlton B (1993) Comparative carcinogenicity of polybrominated biphenyls with or without perinatal exposure in rats and mice. Fundam Appl Toxicol 21(4):451–460

    Article  CAS  Google Scholar 

  • Convention S (2009) http://chm.pops.int/TheConvention/ThePOPs/AllPOPs/tabid/2509/Default.aspx. Accessed June 2022

  • Convention S (2017) http://chm.pops.int/TheConvention/ThePOPs/AllPOPs/tabid/2509/Default.aspx. Accessed June 2022

  • Costa LG, Giordano G (2014) Polybrominated diphenyl ethers. Encyclopedia of Toxicology (Third Edition). P. Wexler.Academic Press, Oxford. 1032–1034

  • Darnerud PO, Eriksen GS, Jóhannesson T, Larsen PB, Viluksela M (2001) Polybrominated diphenyl ethers: occurrence, dietary exposure, and toxicology. Environ Health Perspect 109(suppl 1):49–68

    Article  CAS  Google Scholar 

  • Deng W, Zheng J, Bi X, Fu J, Wong MH (2007) Distribution of PBDEs in air particles from an electronic waste recycling site compared with Guangzhou and Hong Kong, South China. Environ Int 33(8):1063–1069

    Article  CAS  Google Scholar 

  • Gupta B, McConnell E, Moore J, Haseman J (1983) Effects of a polybrominated biphenyl mixture in the rat and mouse: II. Lifetime study. Toxicol Appl Pharmacol 68(1):19–35

    Article  CAS  Google Scholar 

  • Han X, Tang R, Chen X, Xu B, Qin Y, Wu W, Hu Y, Xu B, Song L, Xia Y (2012) 2, 2′, 4, 4′-Tetrabromodiphenyl ether (BDE-47) decreases progesterone synthesis through cAMP-PKA pathway and P450scc downregulation in mouse Leydig tumor cells. Toxicology 302(1):44–50

    Article  CAS  Google Scholar 

  • Han X, Wang Y, Chen T, Wilson MJ, Pan F, Wu X, Rui C, Chen D, Tang Q, Wu W (2019) Inhibition of progesterone biosynthesis induced by deca-brominated diphenyl ether (BDE-209) in mouse Leydig tumor cell (MLTC-1). Toxicol in Vitro 60:383–388

    Article  CAS  Google Scholar 

  • Harvey JB, Osborne TS, Hong H-HL, Bhusari S, Ton T-V, Pandiri AR, Masinde T, Dunnick J, Peddada S, Elmore S (2015) Uterine carcinomas in tetrabromobisphenol A–exposed Wistar Han rats harbor increased Tp53 mutations and mimic high-grade type I endometrial carcinomas in women. Toxicol Pathol 43(8):1103–1113

    Article  CAS  Google Scholar 

  • Hayes JD, Dinkova-Kostova AT, Tew KD (2020) Oxidative stress in cancer. Cancer Cell 38(2):167–197

    Article  CAS  Google Scholar 

  • He W, He P, Wang A, Xia T, Xu B, Chen X (2008) Effects of PBDE-47 on cytotoxicity and genotoxicity in human neuroblastoma cells in vitro. Mutat Res Genet Toxicol Environ Mutagen 649(1–2):62–70

    Article  CAS  Google Scholar 

  • He W, Wang A, Xia T, Gao P, Xu B, Xu Z, He P, Chen X (2010) Cytogenotoxicity induced by PBDE-47 combined with PCB153 treatment in SH-SY5Y cells. Environ Toxicol 25(6):564–572

    Article  CAS  Google Scholar 

  • He Y, Peng L, Zhang W, Liu C, Yang Q, Zheng S, Bao M, Huang Y, Wu K (2018) Adipose tissue levels of polybrominated diphenyl ethers and breast cancer risk in Chinese women: a case–control study. Environ Res 167:160–168

    Article  CAS  Google Scholar 

  • Hoffman K, Lorenzo A, Butt CM, Hammel SC, Henderson BB, Roman SA, Scheri RP, Stapleton HM, Sosa JA (2017) Exposure to flame retardant chemicals and occurrence and severity of papillary thyroid cancer: a case-control study. Environ Int 107:235–242

    Article  CAS  Google Scholar 

  • Hu X-Z, Xu Y, Hu D-C, Hui Y, Yang F-X (2007) Apoptosis induction on human hepatoma cells Hep G2 of decabrominated diphenyl ether (PBDE-209). Toxicol Lett 171(1–2):19–28

    Article  CAS  Google Scholar 

  • Huang H, Sjodin A, Chen Y, Ni X, Ma S, Yu H, Ward MH, Udelsman R, Rusiecki J, Zhang Y (2020) Polybrominated diphenyl ethers, polybrominated biphenyls, and risk of papillary thyroid cancer: a nested case-control study. Am J Epidemiol 189(2):120–132

    Article  Google Scholar 

  • Hurley S, Goldberg D, Park J-S, Petreas M, Bernstein L, Anton-Culver H, Neuhausen SL, Nelson DO, Reynolds P (2019) A breast cancer case-control study of polybrominated diphenyl ether (PBDE) serum levels among California women. Environ Int 127:412–419

    Article  CAS  Google Scholar 

  • Jaafarzadeh N, Baboli Z, Noorimotlagh Z, Martínez SS, Ahmadi M, Alavi S, Mirzaee S (2019) Efficient adsorption of bisphenol A from aqueous solutions using low-cost activated carbons produced from natural and synthetic carbonaceous materials. Desalin Water Treat 154:177–187

    Article  CAS  Google Scholar 

  • Jensen R, Sleight S, Aust S, Goodman J, Trosko J (1983) Hepatic tumor-promoting ability of 3, 3′, 4, 4′, 5, 5′-hexabromobiphenyl: the interrelationship between toxicity, induction of hepatic microsomal drug metabolizing enzymes, and tumor-promoting ability. Toxicol Appl Pharmacol 71(2):163–176

    Article  CAS  Google Scholar 

  • Jensen RK, Sleight SD, Aust SD (1984) Effect of varying the length of exposure to polybrominated biphenyls on the development of gamma-glutamyl transpeptidase enzymealtered foci. Carcinogenesis 5(1):63–66

    Article  CAS  Google Scholar 

  • Jensen RK, Sleight SD, Goodman JI, Aust SD, Trosko JE (1982) Polybrominated biphenyls as promoters in experimental hepatocarcinogenesis in rats. Carcinogenesis 3(10):1183–1186

    Article  CAS  Google Scholar 

  • Kanaya N, Bernal L, Chang G, Yamamoto T, Nguyen D, Wang Y-Z, Park J-S, Warden C, Wang J, Wu X (2019) Molecular mechanisms of polybrominated diphenyl ethers (BDE-47, BDE-100, and BDE-153) in human breast cancer cells and patient-derived xenografts. Toxicol Sci 169(2):380–398

    Article  CAS  Google Scholar 

  • Kavanagh T, Rubinstein C, Liu P, Chang C-C, Trosko J, Sleight S (1985) Failure to induce mutations in Chinese hamster V79 cells and WB rat liver cells by the polybrominated biphenyls, firemaster BP-6, 2, 2′, 4, 4′, 5, 5′-hexabromobiphenyl, 3, 3′, 4, 4′, 5, 5′-hexabromobiphenyl, and 3, 3′, 4, 4′, 5, 5′-tetrabromobiphenyl. Toxicol Appl Pharmacol 79(1):91–98

    Article  CAS  Google Scholar 

  • Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG (2010) Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. J Pharmacol Pharmacother 1(2):94–99

    Article  Google Scholar 

  • Kim B-H, Ikonomou MG, Lee S-J, Kim H-S, Chang Y-S (2005) Concentrations of polybrominated diphenyl ethers, polychlorinated dibenzo-p-dioxins and dibenzofurans, and polychlorinated biphenyls in human blood samples from Korea. Sci Total Environ 336(1):45–56

    Article  CAS  Google Scholar 

  • Kwiecińska P, Wróbel A, Gregoraszczuk EŁ (2011) Combinatory effects of PBDEs and 17β-estradiol on MCF-7 cell proliferation and apoptosis. Pharmacol Rep 63(1):189–194

    Article  Google Scholar 

  • Legler J, Brouwer A (2003) Are brominated flame retardants endocrine disruptors? Environ Int 29(6):879–885

    Article  CAS  Google Scholar 

  • Leonetti CP, Butt CM, Stapleton HM (2018) Disruption of thyroid hormone sulfotransferase activity by brominated flame retardant chemicals in the human choriocarcinoma placenta cell line, BeWo. Chemosphere 197:81–88

    Article  CAS  Google Scholar 

  • Li AJ, Feldman SM, McNally RK, Kannan K (2019) Distribution of organohalogen and synthetic musk compounds in breast adipose tissue of breast cancer patients in Ulster County, New York, USA. Arch Environ Contam Toxicol 77(1):68–78

    Article  CAS  Google Scholar 

  • Li Z-H, Liu X-Y, Wang N, Chen J-S, Chen Y-H, Huang J-T, Su C-H, Xie F, Yu B, Chen D-J (2012) Effects of decabrominated diphenyl ether (PBDE-209) in regulation of growth and apoptosis of breast, ovarian, and cervical cancer cells. Environ Health Perspect 120(4):541–546

    Article  CAS  Google Scholar 

  • Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JP, Clarke M, Devereaux PJ, Kleijnen J, Moher D (2009) The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. J Clin Epidemiol 62(10):e1–e34

    Article  Google Scholar 

  • Lin Y, Jiang M, Chen W, Zhao T, Wei Y (2019) Cancer and ER stress: mutual crosstalk between autophagy, oxidative stress and inflammatory response. Biomed Pharmacother 118:109249

    Article  CAS  Google Scholar 

  • Liu S, Zhao G, Li J, Zhao H, Wang Y, Chen J, Zhao H (2017) Association of polybrominated diphenylethers (PBDEs) and hydroxylated metabolites (OH-PBDEs) serum levels with thyroid function in thyroid cancer patients. Environ Res 159:1–8

    Article  CAS  Google Scholar 

  • Madia F, Giordano G, Fattori V, Vitalone A, Branchi I, Capone F, Costa LG (2004) Differential in vitro neurotoxicity of the flame retardant PBDE-99 and of the PCB Aroclor 1254 in human astrocytoma cells. Toxicol Lett 154(1–2):11–21

    Article  CAS  Google Scholar 

  • Man YB, Lopez BN, Wang HS, Leung AOW, Chow KL, Wong MH (2011) Cancer risk assessment of polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) in former agricultural soils of Hong Kong. J Hazard Mater 195:92–99

    Article  CAS  Google Scholar 

  • Meerts I, Letcher RJ, Hoving S, Marsh G, Bergman A, Lemmen JG, van der Burg B, Brouwer A (2001) In vitro estrogenicity of polybrominated diphenyl ethers, hydroxylated PDBEs, and polybrominated bisphenol A compounds. Environ Health Perspect 109(4):399–407

    Article  CAS  Google Scholar 

  • Mirzaee SA, Bayati B, Valizadeh MR, Gomes HT, Noorimotlagh Z (2021a) Adsorption of diclofenac on mesoporous activated carbons: physical and chemical activation, modeling with genetic programming and molecular dynamic simulation. Chem Eng Res Des 167:116–128

    Article  CAS  Google Scholar 

  • Mirzaee SA, Noorimotlagh Z, Ahmadi M, Rahim F, Martinez SS, Nourmohammadi A, Jaafarzadeh N (2021b) The possible oxidative stress and DNA damage induced in Diclofenac-exposed Non-target organisms in the aquatic environment: A systematic review. Ecol Ind 131:108172

    Article  CAS  Google Scholar 

  • Moher D, Schulz KF, Altman DG, Group C (2001) The CONSORT statement: revised recommendations for improving the quality of reports of parallel-group randomized trials. Ann Intern Med 134(8):657–662

  • Moher D, Shamseer L, Clarke M, Ghersi D, Liberati A, Petticrew M, Shekelle P, Stewart LA (2015) Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst Rev 4(1):1–9

    Article  Google Scholar 

  • Montalbano AM, Albano GD, Anzalone G, Moscato M, Gagliardo R, Di Sano C, Bonanno A, Ruggieri S, Cibella F, Profita M (2020) Cytotoxic and genotoxic effects of the flame retardants (PBDE-47, PBDE-99 and PBDE-209) in human bronchial epithelial cells. Chemosphere 245:125600

    Article  CAS  Google Scholar 

  • Ni K, Lu Y, Wang T, Shi Y, Kannan K, Xu L, Li Q, Liu S (2013) Polybrominated diphenyl ethers (PBDEs) in China: policies and recommendations for sound management of plastics from electronic wastes. J Environ Manage 115:114–123

    Article  CAS  Google Scholar 

  • Noorimotlagh Z, Azizi M, Pan H-F, Mami S, Mirzaee SA (2021) Association between air pollution and Multiple Sclerosis: a systematic review. Environ Res 196:110386

    Article  CAS  Google Scholar 

  • Park EY, Park E, Kim J, Oh J-K, Kim B, Hong Y-C, Lim MK (2020) Impact of environmental exposure to persistent organic pollutants on lung cancer risk. Environ Int 143:105925

    Article  CAS  Google Scholar 

  • Pellacani C, Buschini A, Galati S, Mussi F, Franzoni S, Costa LG (2012) Evaluation of DNA damage induced by 2 polybrominated diphenyl ether flame retardants (BDE-47 and BDE-209) in SK-N-MC cells. Int J Toxicol 31(4):372–379

    Article  CAS  Google Scholar 

  • Qu B-L, Yu W, Huang Y-R, Cai B-N, Du L-H, Liu F (2015) 6-OH-BDE-47 promotes human lung cancer cells epithelial mesenchymal transition via the AKT/Snail signal pathway. Environ Toxicol Pharmacol 39(1):271–279

    Article  CAS  Google Scholar 

  • Rangga-Tabbu C, Sleight S (1992) Development of preneoplastic lesions in the liver and nasal epithelium of rats initiated with N-nitrosodimethylamine or N-nitrosopyrrolidine and promoted with polybrominated biphenyls. Food Chem Toxicol 30(11):921–926

    Article  CAS  Google Scholar 

  • Rezabek M, Sleight S, Jensen R, Aust S (1989) Effects of dietary retinyl acetate on the promotion of hepatic enzyme-altered foci by polybrominated biphenyls in initiated rats. Food Chem Toxicol 27(8):539–544

    Article  CAS  Google Scholar 

  • Sakamoto Y, Inoue K, Takahashi M, Taketa Y, Kodama Y, Nemoto K, Degawa M, Gamou T, Ozawa S, Nishikawa A (2013) Different pathways of constitutive androstane receptor–mediated liver hypertrophy and hepatocarcinogenesis in mice treated with piperonyl butoxide or decabromodiphenyl ether. Toxicol Pathol 41(8):1078–1092

    Article  CAS  Google Scholar 

  • Siddiqi MA, Laessig RH, Reed KD (2003) Polybrominated diphenyl ethers (PBDEs): new pollutants–old diseases. Clin Med Res 1(4):281–290

    Article  CAS  Google Scholar 

  • Smith AG, Francis JE, Carthew P (1990) Iron as a synergist for hepatocellular carcinoma induced by polychlorinated biphenyls in Ah-responsive C57BL/10ScSn mice. Carcinogenesis 11(3):437–444

    Article  CAS  Google Scholar 

  • Song R, Duarte TL, Almeida GM, Farmer PB, Cooke MS, Zhang W, Sheng G, Fu J, Jones GD (2009) Cytotoxicity and gene expression profiling of two hydroxylated polybrominated diphenyl ethers in human H295R adrenocortical carcinoma cells. Toxicol Lett 185(1):23–31

    Article  CAS  Google Scholar 

  • Tagliaferri S, Caglieri A, Goldoni M, Pinelli S, Alinovi R, Poli D, Pellacani C, Giordano G, Mutti A, Costa LG (2010) Low concentrations of the brominated flame retardants BDE-47 and BDE-99 induce synergistic oxidative stress-mediated neurotoxicity in human neuroblastoma cells. Toxicol in Vitro 24(1):116–122

    Article  CAS  Google Scholar 

  • Tang Z, Li Y, Jiang Y, Cheng J, Xu S, Zhang J (2019) Cellular metabolomics reveals glutamate and pyrimidine metabolism pathway alterations induced by BDE-47 in human neuroblastoma SK-N-SH cells. Ecotoxicol Environ Saf 182:109427

    Article  CAS  Google Scholar 

  • Terrell ML, Rosenblatt KA, Wirth J, Cameron LL, Marcus M (2016) Breast cancer among women in Michigan following exposure to brominated flame retardants. Occup Environ Med 73(8):564–567

    Article  Google Scholar 

  • Tian P, Wang H, Chen G, Luo Q, Chen Z, Wang Y, Liu Y (2016) 2, 2′, 4, 4′-Tetrabromodiphenyl ether promotes human neuroblastoma SH-SY5Y cells migration via the GPER/PI3K/Akt signal pathway. Hum Exp Toxicol 35(2):124–134

    Article  CAS  Google Scholar 

  • van der Veen I, de Boer J (2012) Phosphorus flame retardants: properties, production, environmental occurrence, toxicity and analysis. Chemosphere 88(10):1119–1153

    Article  Google Scholar 

  • Victor P, Sarada D, Ramkumar KM (2021) Crosstalk between endoplasmic reticulum stress and oxidative stress: Focus on protein disulfide isomerase and endoplasmic reticulum oxidase 1. Eur J Pharmacol 892:173749

    Article  CAS  Google Scholar 

  • Wang F, Ruan X-J, Zhang H-Y (2015) BDE-99 (2, 2′, 4, 4′, 5-pentabromodiphenyl ether) triggers epithelial-mesenchymal transition in colorectal cancer cells via PI3K/Akt/Snail signaling pathway. Tumori J 101(2):238–245

    Article  CAS  Google Scholar 

  • Wang M-S, Chen S-J, Lai Y-C, Huang K-L, Chang-Chien G-P (2010) Characterization of persistent organic pollutants in ash collected from different facilities of a municipal solid waste incinerator. Aerosol Air Qual Res 10(4):391–402

    Article  Google Scholar 

  • Wei J, Xiang L, Yuan Z, Li S, Yang C, Liu H, Jiang Y, Cai Z (2018) Metabolic profiling on the effect of 2, 2′, 4, 4′-tetrabromodiphenyl ether (BDE-47) in MCF-7 cells. Chemosphere 192:297–304

    Article  CAS  Google Scholar 

  • Williams G, Tong C, Telang S (1984) Polybrominated biphenyls are nongenotoxic and produce an epigenetic membrane effect in cultured liver cells. Environ Res 34(2):310–320

    Article  CAS  Google Scholar 

  • Wu Z, He C, Han W, Song J, Li H, Zhang Y, Jing X, Wu W (2020) Exposure pathways, levels and toxicity of polybrominated diphenyl ethers in humans: a review. Environ Res 187:109531

    Article  CAS  Google Scholar 

  • Wu Z, Liu Y, Lyu H, Chen Y, Han T, Zhang Y, Xu P, Song J, Wu W (2021) Polybrominated diphenyl ethers in indoor dusts from university dormitories and printing shops in Xinxiang, China. Build Environ 187:107416

    Article  Google Scholar 

  • Yang Y, Xie Q, Liu X, Wang J (2015) Occurrence, distribution and risk assessment of polychlorinated biphenyls and polybrominated diphenyl ethers in nine water sources. Ecotoxicol Environ Saf 115:55–61

    Article  CAS  Google Scholar 

  • Zhang C, Li P, Zhang S, Lei R, Li B, Wu X, Jiang C, Zhang X, Ma R, Yang L (2017) Oxidative stress-elicited autophagosome accumulation contributes to human neuroblastoma SH-SY5Y cell death induced by PBDE-47. Environ Toxicol Pharmacol 56:322–328

    Article  CAS  Google Scholar 

  • Zhang F, Peng L, Huang Y, Lin X, Zhou L, Chen J (2019) Chronic BDE-47 exposure aggravates malignant phenotypes and chemoresistance by activating ERK through ERα and GPR30 in endometrial carcinoma. Front Oncol 1079

  • Zhang S, Kuang G, Zhao G, Wu X, Zhang C, Lei R, Xia T, Chen J, Wang Z, Ma R (2013) Involvement of the mitochondrial p53 pathway in PBDE-47-induced SH-SY5Y cells apoptosis and its underlying activation mechanism. Food Chem Toxicol 62:699–706

    Article  CAS  Google Scholar 

  • Zhao G, Wang Z, Zhou H, Zhao Q (2009) Burdens of PBBs, PBDEs, and PCBs in tissues of the cancer patients in the e-waste disassembly sites in Zhejiang, China. The Science of the Total Environment 407(17):4831–4837

    Article  CAS  Google Scholar 

  • Zhao T, Tang X, Li D, Zhao J, Zhou R, Shu F, Jia W, Fu W, Xia H, Liu G (2022) Prenatal exposure to environmentally relevant levels of PBDE-99 leads to testicular dysgenesis with steroidogenesis disorders. J Hazard Mater 424:127547

    Article  CAS  Google Scholar 

Download references

Funding

The authors would like to thank the Health and Environment Research Center, Ilam University of Medical Sciences, Ilam, Iran for its support (Grant No:401H003/22).

Author information

Authors and Affiliations

Authors

Contributions

MA, SM, and NB: methodology, validation, writing—review and editing. SSM: conceptualization, validation, writing—review and editing. ZN: conceptualization, methodology, validation, formal analysis, investigation, supervision. SAM: conceptualization, methodology, validation, resources, writing—original draft, writing—review and editing, project administration.

Corresponding author

Correspondence to Seyyed Abbas Mirzaee.

Ethics declarations

Ethical approval

The authors would like to thank the Health and Environment Research Center, Ilam University of Medical Sciences, Ilam.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Ludek Blaha

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 64 KB)

Supplementary file2 (DOCX 50 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azizi, M., Mami, S., Noorimotlagh, Z. et al. The role of polybrominated diphenyl ethers in the induction of cancer: a systematic review of insight into their mechanisms. Environ Sci Pollut Res 30, 9271–9289 (2023). https://doi.org/10.1007/s11356-022-24538-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-022-24538-9

Keywords

Navigation