Skip to main content

Advertisement

Log in

Protective effect of ginsenoside Rd on military aviation noise-induced cochlear hair cell damage in guinea pigs

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Noise pollution has become one of the important social hazards that endanger the auditory system of residents, causing noise-induced hearing loss (NIHL). Oxidative stress has a significant role in the pathogenesis of NIHL, in which the silent information regulator 1(SIRT1)/proliferator-activated receptor-gamma coactivator 1α (PGC-1α) signaling pathway is closely engaged. Ginsenoside Rd (GSRd), a main monomer extract from ginseng plants, has been confirmed to suppress oxidative stress. Therefore, the hypothesis that GSRd may attenuate noise-induced cochlear hair cell loss seemed promising. Forty-eight male guinea pigs were randomly divided into four groups: control, noise exposure, GSRd treatment (30 mg/kg Rd for 10d + noise), and experimental control (30 mg/kg glycerol + noise). The experimental groups received military helicopter noise exposure at 115 dB (A) for 4 h daily for five consecutive days. Hair cell damage was evaluated by using inner ear basilar membrane preparation and scanning electron microscopy. Terminal dUTP nick end labeling (TUNEL) and immunofluorescence staining were conducted. Changes in the SIRT1/PGC-1α signaling pathway and other apoptosis-related markers in the cochleae, as well as oxidative stress parameters, were used as readouts. Loss of outer hair cells, more disordered cilia, prominent apoptosis, and elevated free radical levels were observed in the experimental groups. GSRd treatment markedly mitigated hearing threshold shifts, ameliorated outer hair cell loss and lodging or loss of cilia, and improved apoptosis through decreasing Bcl-2 associated X protein (Bax) expression and increasing Bcl-2 expression. In addition, GSRd alleviated the noise-induced cochlear redox injury by upregulating superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) levels, decreasing malondialdehyde (MDA) levels, and enhancing the activity of SIRT1 and PGC-1α messenger ribonucleic acid (mRNA) and protein expression. In conclusion, GSRd can improve structural and oxidative damage to the cochleae caused by noise. The underlying mechanisms may be associated with the SIRT1/PGC-1α signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are available from the corresponding author on reasonable request. All materials are commercially available.

Abbreviations

3-NT :

3-Nitrotyrosine

4-HNE :

4-Hydroxy-4-hydroxynonenal

ABR :

Auditory brainstem response

AHL :

Age-related hearing loss

Bcl-2 :

B-cell lymphoma-2

Bax :

Bcl-2 associated X protein

DAPI :

4,6-Diamino-2-phenylindole

GO :

Gene ontology

GSH-Px :

Glutathione peroxidase

GSRd :

Ginsenoside Rd

IgG :

Immunoglobulin G

MDA :

Malondialdehyde

NIHL :

Noise-induced hearing loss

PBS :

Phosphate-buffered saline

PBST :

Phosphate-buffered saline-Tween

PGC-1α :

Proliferator-activated receptor-gamma coactivator 1α

RNA :

Ribonucleic acid

RNS :

Reactive nitrogen species

ROS :

Reactive oxygen species

SEM :

Scanning electron microscopy

SIRT1 :

Silent information regulator 1

SOD :

Superoxide dismutase

TUNEL :

Terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling assay

References

  • Andres AM, Stotland A, Queliconi BB, Gottlieb RA (2015) A time to reap, a time to sow: mitophagy and biogenesis in cardiac pathophysiology. J Mol Cell Cardiol 78:62–72

    Article  CAS  Google Scholar 

  • Basta D, Gröschel M, Ernst A (2018) Central and peripheral aspects of noise-induced hearing loss. HNO 66:342–349

    Article  CAS  Google Scholar 

  • Bielefeld EC (2015) Protection from noise-induced hearing loss with Src inhibitors. Drug Discov Today 20:760–765

    Article  CAS  Google Scholar 

  • Cai BX, Li XY, Chen JH, Tang YB, Wang GL, Zhou JG, Qui QY, Guan YY (2009) Ginsenoside-Rd, a new voltage-independent Ca2+ entry blocker, reverses basilar hypertrophic remodeling in stroke-prone renovascular hypertensive rats. Eur J Pharmacol 606:142–149

    Article  CAS  Google Scholar 

  • Chen XM, Ji SF, Liu YH, Xue XM, Xu J, Gu ZH, Deng SL, Liu CD, Wang H, Chang YM, Wang XC (2020) Ginsenoside Rd ameliorates auditory cortex injury associated with military aviation noise-induced hearing loss by activating SIRT1/PGC-1α signaling pathway. Front Physiol 11:788

    Article  CAS  Google Scholar 

  • Chen XM, Xue XM, XU J, Deng SL, Chang YM, Wang XC, (2019) Effects of a military helicopter noise exposure on auditory function of guinea pigs. Space Medicine & Medical Engineering 32:406–411

    Google Scholar 

  • Chen XM, Xue XM, Yu N, Guo WW, Yuan SL, Jiang QQ, Yang SM (2022) The role of genetic variants in the susceptibility of noise-induced hearing loss. Front Cell Neurosci 16:946206

    Article  CAS  Google Scholar 

  • Choi CH, Chen K, Du X, Floyd RA, Kopke RD (2011) Effects of delayed and extended antioxidant treatment on acute acoustic trauma. Free Radic Res 45:1162–1172

    Article  CAS  Google Scholar 

  • Ding DL (2010) Science of the inner ear. China science & technology press, Beijing

    Google Scholar 

  • Ding T, Yan A, Liu K (2019) What is noise-induced hearing loss? Br J Hosp Med (lond) 80:525–529

    Article  Google Scholar 

  • Droge W (2002) Free radicals in the physiological control of cell function. Physiol Rev 82:47–95

    Article  CAS  Google Scholar 

  • Esterberg R, Hailey DW, Rubel EW, Raible DW (2014) ER-mitochondrial calcium flow underlies vulnerability of mechanosensory hair cells to damage. J Neurosci 34:9703–9719

    Article  Google Scholar 

  • Fredianelli L, Carpita S, Bernardini M, Del Pizzo LG, Brocchi F, Bianco F, Licitra G (2022) Traffic flow detection using camera images and machine learning methods in ITS for noise map and action plan optimization. Sensors (Basel) 22:1929

  • Fridberger A, Flock A, Ulfendahl M, Flock B (1998) Acoustic overstimulation increases outer hair cell Ca2+ concentrations and causes dynamic contractions of the hearing organ. Proc Natl Acad Sci U S A 95:7127–7132

    Article  CAS  Google Scholar 

  • Hahad O, Prochaska JH, Daiber A, Muenzel T (2019) Environmental noise-induced effects on stress hormones, oxidative stress, and vascular dysfunction: key factors in the relationship between cerebrocardiovascular and psychological disorders. Oxid Med Cell Longev 2019:4623109

    Article  Google Scholar 

  • Halonen JI, Hansell AL, Gulliver J, Morley D, Blangiardo M, Fecht D, Toledano MB, Beevers SD, Anderson HR, Kelly FJ, Tonne C (2015) Road traffic noise is associated with increased cardiovascular morbidity and mortality and all-cause mortality in London. Eur Heart J 36:2653–2661

    Article  Google Scholar 

  • Han WJ, Shi XR, Nuttall A (2018) Distribution and change of peroxynitrite in the guinea pig cochlea following noise exposure. Biomed Rep 9:135–141

    CAS  Google Scholar 

  • Henderson D, Bielefeld EC, Harris KC, Hu BH (2006) The role of oxidative stress in noise-induced hearing loss. Ear Hear 27:1–19

    Article  Google Scholar 

  • Honkura Y, Matsuo H, Murakami S, Sakiyama M, Mizutari K, Shiotani A, Yamamoto M, Morita I, Shinomiya N, Kawase T, Katori Y, Motohashi H (2016) NRF2 is a key target for prevention of noise-induced hearing loss by reducing oxidative damage of cochlea. Sci Rep 6:19329

    Article  CAS  Google Scholar 

  • Hori YS, Kuno A, Hosoda R, Tanno M, Miura T, Shimamoto K, Horio Y (2011) Resveratrol ameliorates muscular pathology in the dystrophic mdx mouse, a model for Duchenne muscular dystrophy. J Pharmacol Exp Ther 338:784–794

    Article  CAS  Google Scholar 

  • Imam L, Hannan SA (2017) Noise-induced hearing loss: a modern epidemic? Br J Hosp Med (lond) 78:286–290

    Article  Google Scholar 

  • Jia H, Yu Z, Ge X, Chen Z, Huang X, Wei Y (2020) Glucocorticoid-induced leucine zipper protects noise-induced apoptosis in cochlear cells by inhibiting endoplasmic reticulum stress in rats. Med Mol Morphol 53:73–81

    Article  CAS  Google Scholar 

  • Jung E, Pyo MK, Kim J (2021) Pectin-lyase-modified ginseng extract and ginsenoside Rd inhibits high glucose-induced ROS production in mesangial cells and prevents renal dysfunction in db/db mice. Molecules 26:367

  • Karikura M, Tanizawa H, Hirata T, Miyase T, Takino Y (1992) Studies on absorption, distribution, excretion and metabolism of ginseng saponins. VIII. Isotope labeling of ginsenoside Rb2. Chem Pharm Bull (tokyo) 40:2458–2460

    Article  CAS  Google Scholar 

  • Kim H, Kim JH, Lee PY, Bae KH, Cho S, Park BC, Shin H, Park SG (2013) Ginsenoside Rb1 is transformed into Rd and Rh2 by Microbacterium trichothecenolyticum. J Microbiol Biotechnol 23:1802–1805

    Article  CAS  Google Scholar 

  • Kim MS, Yu JM, Kim HJ, Kim HB, Kim ST, Jang SK, Choi YW, Lee DI, Joo SS (2014) Ginsenoside Re and Rd enhance the expression of cholinergic markers and neuronal differentiation in Neuro-2a cells. Biol Pharm Bull 37:826–833

    Article  CAS  Google Scholar 

  • Kowalski TJ, Pawelczyk M, Rajkowska E, Dudarewicz A, Sliwinska-Kowalska M (2014) Genetic variants of CDH23 associated with noise-induced hearing loss. Otol Neurotol 35:358–365

    Article  Google Scholar 

  • Ku S, You HJ, Park MS, Ji GE (2016) Whole-cell biocatalysis for producing ginsenoside Rd from Rb1 using Lactobacillus rhamnosus GG. J Microbiol Biotechnol 26:1206–1215

    Article  CAS  Google Scholar 

  • Kudryavtseva AV, Krasnov GS, Dmitriev AA, Alekseev BY, Kardymon OL, Sadritdinova AF, Fedorova MS, Pokrovsky AV, Melnikova NV, Kaprin AD, Moskalev AA, Snezhkina AV (2016) Mitochondrial dysfunction and oxidative stress in aging and cancer. Oncotarget 7:44879–44905

    Article  Google Scholar 

  • Le TN, Straatman LV, Lea J, Westerberg B (2017) Current insights in noise-induced hearing loss: a literature review of the underlying mechanism, pathophysiology, asymmetry, and management options. J Otolaryngol Head Neck Surg 46:41

    Article  Google Scholar 

  • Li X, Cao J, Wang J, Song H, Ji G, Dong Q, Wei C, Cao Y, Wang B, Zhu B, Xiao H (2016) PON2 and ATP2B2 gene polymorphisms with noise-induced hearing loss. J Thorac Dis 8:430–438

    Article  Google Scholar 

  • Liu HJ, Jiang XX, Guo YZ, Sun FH, Kou XH, Bao Y, Zhang ZQ, Lin ZH, Ding TB, Jiang L, Lei XS, Yang YH (2017) The flavonoid TL-2-8 induces cell death and immature mitophagy in breast cancer cells via abrogating the function of the AHA1/Hsp90 complex. Acta Pharmacol Sin 38:1381–1393

    Article  CAS  Google Scholar 

  • Liu ZQ, Luo XY, Liu GZ, Chen YP, Wang ZC, Sun YX (2003) In vitro study of the relationship between the structure of ginsenoside and its antioxidative or prooxidative activity in free radical induced hemolysis of human erythrocytes. J Agric Food Chem 51:2555–2558

    Article  CAS  Google Scholar 

  • Maillet A, Pervaiz S (2012) Redox regulation of p53, redox effectors regulated by p53: a subtle balance. Antioxid Redox Signal 16:1285–1294

    Article  CAS  Google Scholar 

  • Mercken EM et al (2014) SRT2104 extends survival of male mice on a standard diet and preserves bone and muscle mass. Aging Cell 13:787–796

    Article  CAS  Google Scholar 

  • Mitchell SJ, Martin-Montalvo A, Mercken EM, Palacios HH, Ward TM, Abulwerdi G, Minor RK, Vlasuk GP, Ellis JL, Sinclair DA, Dawson J, Allison DB, Zhang Y, Becker KG, Bernier M, de Cabo R (2014) The SIRT1 activator SRT1720 extends lifespan and improves health of mice fed a standard diet. Cell Rep 6:836–843

    Article  CAS  Google Scholar 

  • Moore BCJ (2020) Diagnosis and quantification of military noise-induced hearing loss. J Acoust Soc Am 148:884

    Article  Google Scholar 

  • Mungan Durankaya S, Olgun Y, Aktas S, Eskicioglu HE, Gurkan S, Altun Z, Mutlu B, Kolatan E, Dogan E, Yilmaz O, Kirkim G (2021) Effect of Korean red ginseng on noise-induced hearing loss. Turk Arch Otorhinolaryngol 59:111–117

    Article  Google Scholar 

  • Munzel T, Kroller-Schon S, Oelze M, Gori T, Schmidt FP, Steven S, Hahad O, Roosli M, Wunderli JM, Daiber A, Sorensen M (2020) Adverse cardiovascular effects of traffic noise with a focus on nighttime noise and the new WHO noise guidelines. Annu Rev Public Health 41:309–328

    Article  Google Scholar 

  • Murphy E, King EA (2014) An assessment of residential exposure to environmental noise at a shipping port. Environ Int 63:207–215

    Article  Google Scholar 

  • Nemoto S, Fergusson MM, Finkel T (2005) SIRT1 functionally interacts with the metabolic regulator and transcriptional coactivator PGC-1{alpha}. J Biol Chem 280:16456–16460

    Article  CAS  Google Scholar 

  • Oberdoerffer P, Michan S, McVay M, Mostoslavsky R, Vann J, Park SK, Hartlerode A, Stegmuller J, Hafner A, Loerch P, Wright SM, Mills KD, Bonni A, Yankner BA, Scully R, Prolla TA, Alt FW, Sinclair DA (2008) SIRT1 redistribution on chromatin promotes genomic stability but alters gene expression during aging. Cell 135:907–918

    Article  CAS  Google Scholar 

  • Pawelczyk M, Van Laer L, Fransen E, Rajkowska E, Konings A, Carlsson PI, Borg E, Van Camp G, Sliwinska-Kowalska M (2009) Analysis of gene polymorphisms associated with K ion circulation in the inner ear of patients susceptible and resistant to noise-induced hearing loss. Ann Hum Genet 73:411–421

    Article  CAS  Google Scholar 

  • Petri D, Licitra G, Vigotti MA, Fredianelli L (2021) Effects of exposure to road, railway, airport and recreational noise on blood pressure and hypertension. Int J Environ Res Public Health 18:9145

  • Phi LTH, Sari IN, Wijaya YT, Kim KS, Park K, Cho AE, Kwon HY (2019) Ginsenoside Rd inhibits the metastasis of colorectal cancer via epidermal growth factor receptor signaling axis. IUBMB Life 71:601–610

    Article  CAS  Google Scholar 

  • Qi M, Qiu Y, Zhou X, Tian K, Zhou K, Sun F, Yue B, Chen F, Zha D, Qiu J (2018) Regional up-regulation of NOX2 contributes to the differential vulnerability of outer hair cells to neomycin. Biochem Biophys Res Commun 500:110–116

    Article  CAS  Google Scholar 

  • Rabiei H, Ramezanifar S, Hassanipour S, Gharari N (2021) Investigating the effects of occupational and environmental noise on cardiovascular diseases: a systematic review and meta-analysis. Environ Sci Pollut Res Int 28:62012–62029

    Article  Google Scholar 

  • Ren K, Li S, Ding J, Zhao S, Liang S, Cao X, Su C, Guo J (2021) Ginsenoside Rd attenuates mouse experimental autoimmune neuritis by modulating monocyte subsets conversion. Biomed Pharmacother 138:111489

    Article  CAS  Google Scholar 

  • Ren T (2002) Longitudinal pattern of basilar membrane vibration in the sensitive cochlea. Proc Natl Acad Sci U S A 99:17101–17106

    Article  CAS  Google Scholar 

  • Santi PA, Aldaya R, Brown A, Johnson S, Stromback T, Cureoglu S, Rask-Andersen H (2016) Scanning electron microscopic examination of the extracellular matrix in the decellularized mouse and human cochlea. J Assoc Res Otolaryngol 17:159–171

    Article  Google Scholar 

  • Seidman M, Babu S, Tang W, Naem E, Quirk WS (2003) Effects of resveratrol on acoustic trauma. Otolaryngol Head Neck Surg 129:463–470

    Article  Google Scholar 

  • Singh CK, Chhabra G, Ndiaye MA, Garcia-Peterson LM, Mack NJ, Ahmad N (2018) The role of sirtuins in antioxidant and redox signaling. Antioxid Redox Signal 28:643–661

    Article  CAS  Google Scholar 

  • Smith MG, Croy I, Ogren M, Hammar O, Lindberg E, Persson Waye K (2017) Physiological effects of railway vibration and noise on sleep. J Acoust Soc Am 141:3262

    Article  Google Scholar 

  • Song X, Wang L, Fan D (2022) Insights into recent studies on biotransformation and pharmacological activities of ginsenoside Rd. Biomolecules 12(4):512

  • Stansfeld S (2013) Airport noise and cardiovascular disease. BMJ 347:f5752

    Article  Google Scholar 

  • Su YT, Guo YB, Cheng YP, Zhang X, Xie XP, Chang YM, Bao JX (2019) Hyperbaric oxygen treatment ameliorates hearing loss and auditory cortex injury in noise exposed mice by repressing local ceramide accumulation. Int J Mol Sci 20:4675

    Article  CAS  Google Scholar 

  • Sung CM, Kim HC, Cho YB, Shin SY, Jang CH (2018) Evaluating the ototoxicity of an anti-MRSA peptide KR-12-a2. Braz J Otorhinolaryngol 84:441–447

    Article  Google Scholar 

  • Szklarczyk D, Santos A, von Mering C, Jensen LJ, Bork P, Kuhn M (2016) STITCH 5: augmenting protein-chemical interaction networks with tissue and affinity data. Nucleic Acids Res 44:D380–D384

    Article  CAS  Google Scholar 

  • Takumida M, Takumida H, Katagiri Y, Anniko M (2016) Localization of sirtuins (SIRT1-7) in the aged mouse inner ear. Acta Otolaryngol 136:120–131

    Article  Google Scholar 

  • Tennen RI, Michishita-Kioi E, Chua KF (2012) Finding a target for resveratrol. Cell 148:387–389

    Article  CAS  Google Scholar 

  • Tian K, Song Y, Zhou K, Yue B, Qiu Y, Sun F, Wang R, Zha D, Qiu J (2018) Upregulation of HSP60 expression in the postnatal rat cochlea and rats with drug-induced hearing loss. Cell Stress Chaperones 23:1311–1317

    Article  CAS  Google Scholar 

  • Tuerdi A, Kinoshita M, Kamogashira T, Fujimoto C, Iwasaki S, Shimizu T, Yamasoba T (2017) Manganese superoxide dismutase influences the extent of noise-induced hearing loss in mice. Neurosci Lett 642:123–128

    Article  CAS  Google Scholar 

  • Xiong H, Dai M, Ou Y, Pang J, Yang H, Huang Q, Chen S, Zhang Z, Xu Y, Cai Y, Liang M, Zhang X, Lai L, Zheng Y (2014) SIRT1 expression in the cochlea and auditory cortex of a mouse model of age-related hearing loss. Exp Gerontol 51:8–14

    Article  CAS  Google Scholar 

  • Xiong H, Pang J, Yang H, Dai M, Liu Y, Ou Y, Huang Q, Chen S, Zhang Z, Xu Y, Lai L, Zheng Y (2015) Activation of miR-34a/SIRT1/p53 signaling contributes to cochlear hair cell apoptosis: implications for age-related hearing loss. Neurobiol Aging 36:1692–1701

    Article  CAS  Google Scholar 

  • Xiong H, Ou Y, Xu Y, Huang Q, Pang J, Lai L, Zheng Y (2017) Resveratrol promotes recovery of hearing following intense noise exposure by enhancing cochlear SIRT1 activity. Audiol Neurootol 22:303–310

    Article  CAS  Google Scholar 

  • Xu HY, Zhang YQ, Liu ZM, Chen T, Lv CY, Tang SH, Zhang XB, Zhang W, Li ZY, Zhou RR, Yang HJ, Wang XJ, Huang LQ (2019) ETCM: an encyclopaedia of traditional Chinese medicine. Nucleic Acids Res 47:D976–D982

    Article  CAS  Google Scholar 

  • Xue T, Wei L, Zha DJ, Qiu JH, Chen FQ, Qiao L, Qiu Y (2016) miR-29b overexpression induces cochlear hair cell apoptosis through the regulation of SIRT1/PGC-1alpha signaling: implications for age-related hearing loss. Int J Mol Med 38:1387–1394

    Article  CAS  Google Scholar 

  • Yamashita D, Jiang HY, Schacht J, Miller JM (2004) Delayed production of free radicals following noise exposure. Brain Res 1019:201–209

    Article  CAS  Google Scholar 

  • Yan X, Hu G, Yan W, Chen T, Yang F, Zhang X, Zhao G, Liu J (2017) Ginsenoside Rd promotes non-amyloidogenic pathway of amyloid precursor protein processing by regulating phosphorylation of estrogen receptor alpha. Life Sci 168:16–23

    Article  CAS  Google Scholar 

  • Yang H, Chen J, Chen Y, Jiang Y, Ge B, Hong L (2021) Sirt1 activation negatively regulates overt apoptosis in Mtb-infected macrophage through Bax. Int Immunopharmacol 91:107283

    Article  CAS  Google Scholar 

  • Yang J, Zhang J, Wang X, Wang C, Chen J, Qian Y, Duan Z (2015) Identification of functional tag single nucleotide polmorphisms within the entire CAT gene and their clinical relevance in patients with noise-induced hearing loss. Int J Clin Exp Pathol 8:2852–2863

    Google Scholar 

  • Yang L, Deng Y, Xu S, Zeng X (2007) In vivo pharmacokinetic and metabolism studies of ginsenoside Rd. J Chromatogr B Analyt Technol Biomed Life Sci 854:77–84

    Article  CAS  Google Scholar 

  • Yang ZG, Sun HX, Ye YP (2006) Ginsenoside Rd from Panax notoginseng is cytotoxic towards HeLa cancer cells and induces apoptosis. Chem Biodivers 3:187–197

    Article  CAS  Google Scholar 

  • Ye R, Han J, Kong X, Zhao L, Cao R, Rao Z, Zhao G (2008) Protective effects of ginsenoside Rd on PC12 cells against hydrogen peroxide. Biol Pharm Bull 31:1923–1927

    Article  CAS  Google Scholar 

  • Ye R, Li N, Han J, Kong X, Cao R, Rao Z, Zhao G (2009) Neuroprotective effects of ginsenoside Rd against oxygen-glucose deprivation in cultured hippocampal neurons. Neurosci Res 64:306–310

    Article  CAS  Google Scholar 

  • Ye R, Zhao G, Liu X (2013) Ginsenoside Rd for acute ischemic stroke: translating from bench to bedside. Expert Rev Neurother 13:603–613

    Article  CAS  Google Scholar 

  • Yoon JH, Choi YJ, Cha SW, Lee SG (2012) Anti-metastatic effects of ginsenoside Rd via inactivation of MAPK signaling and induction of focal adhesion formation. Phytomedicine 19:284–292

    Article  CAS  Google Scholar 

  • Yu P, Jiao J, Chen G, Zhou W, Zhang H, Wu H, Li Y, Gu G, Zheng Y, Yu Y, Yu S (2018) Effect of GRM7 polymorphisms on the development of noise-induced hearing loss in Chinese Han workers: a nested case-control study. BMC Med Genet 19:4

    Article  Google Scholar 

  • Yu SE, Mwesige B, Yi YS, Yoo BC (2019) Ginsenosides: the need to move forward from bench to clinical trials. J Ginseng Res 43:361–367

    Article  Google Scholar 

  • Yuan H, Wang X, Hill K, Chen J, Lemasters J, Yang SM, Sha SH (2015) Autophagy attenuates noise-induced hearing loss by reducing oxidative stress. Antioxid Redox Signal 22:1308–1324

    Article  CAS  Google Scholar 

  • Zeng X, Deng Y, Feng Y, Liu Y, Yang L, Huang Y, Sun J, Liang W, Guan Y (2010) Pharmacokinetics and safety of ginsenoside Rd following a single or multiple intravenous dose in healthy Chinese volunteers. J Clin Pharmacol 50:285–292

    Article  CAS  Google Scholar 

  • Zhang N, An X, Lang P, Wang F, Xie Y (2019) Ginsenoside Rd contributes the attenuation of cardiac hypertrophy in vivo and in vitro. Biomed Pharmacother 109:1016–1023

    Article  CAS  Google Scholar 

  • Zhang X, Shi M, Bjoras M, Wang W, Zhang G, Han J, Liu Z, Zhang Y, Wang B, Chen J, Zhu Y, Xiong L, Zhao G (2013) Ginsenoside Rd promotes glutamate clearance by up-regulating glial glutamate transporter GLT-1 via PI3K/AKT and ERK1/2 pathways. Front Pharmacol 4:152

    Article  Google Scholar 

  • Zhang X, Wang Y, Ma C, Yan Y, Yang Y, Wang X, Rausch WD (2016) Ginsenoside Rd and ginsenoside Re offer neuroprotection in a novel model of Parkinson’s disease. Am J Neurodegener Dis 5:52–61

    CAS  Google Scholar 

  • Zhu D, Liu M, Yang Y, Ma L, Jiang Y, Zhou L, Huang Q, Pi R, Chen X (2014) Ginsenoside Rd ameliorates experimental autoimmune encephalomyelitis in C57BL/6 mice. J Neurosci Res 92:1217–1226

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Our deepest gratitude goes to colleagues from Senior Department of Otolaryngology & Head and Neck Surgery, Chinese PLA General Hospital, led by Prof. Shi-ming Yang and Department of Otolaryngology, Xijing Hospital, led by Prof. Jian-hua Qiu for their valuable technical support.

Funding

This work was supported by grants from the Major Military Project (grant number AWS14L009) and Key Researcher and Development Plan in Shaanxi (grant number 2018SF-252).

Author information

Authors and Affiliations

Authors

Contributions

XMC, YHL, YMC, and XCW conceived and designed the experiment methods. XMC and YHL drafted the manuscript. SFJ performed bioinformatic analysis. XMC and LLW performed phalloidin staining, SEM observation RT-qPCR, and western blot analysis. SFJ and XMX performed TUNEL staining. YHL and XMX performed immunofluorescence staining for 4-HNE and 3-NT. XMX examined SOD, MDA, and GSH-Px levels. XMC, SFJ, and LLW conducted the statistics. XMC and SFJ revised the manuscript. XCW takes responsibility for the integrity of the data and the accuracy of data analysis.

Corresponding author

Correspondence to Xiao-cheng Wang.

Ethics declarations

Ethics approval and consent to participate

All experimental procedures were approved by the Animal Ethics Committee of Air Force Medical University (No. 20220331).

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Mohamed M. Abdel-Daim

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Xm., Liu, Yh., Ji, Sf. et al. Protective effect of ginsenoside Rd on military aviation noise-induced cochlear hair cell damage in guinea pigs. Environ Sci Pollut Res 30, 23965–23981 (2023). https://doi.org/10.1007/s11356-022-23504-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-022-23504-9

Keywords

Navigation