Skip to main content

Advertisement

Log in

Simulations for double dividend of carbon tax and improved energy efficiency in the transportation industry

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The Chinese visional goal of achieving the “carbon peak” and “carbon neutrality” puts forward higher requirements for low-carbon development in the transportation industry. Seeking appropriate mitigation strategies to develop low-carbon transportation has been an important part of low-carbon economic development. This study develops a CGE model to analyze the impact of carbon-tax implementation on the transportation industry. It designs four carbon tax-recycling scenarios and simulates for double dividend of carbon tax policy. Then, it designs three scenarios including improved energy efficiency and a carbon tax to explore appropriate mitigation strategies combination. The carbon tax will reduce carbon emissions but it will also reduce sectoral outputs. However, carbon tax recycling can alleviate the negative impact on sectoral outputs, meanwhile achieving reducing carbon emissions. The energy rebound effect brought by improved energy efficiency will greatly reduce the carbon emissions reduction effect, but the carbon tax can promote the awareness of emission reduction of consumers and inhibit the energy rebound effect in the transportation industry. Therefore, at the same time of improved energy efficiency, carbon tax policies should be timely formulated to better promote the sustainable development of the varied transport sectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig.6

Similar content being viewed by others

Data availability

The datasets used and analyzed during the current study are available from the corresponding author upon reasonable request.

References

  • Appelbaum E (2021) Improving the efficacy of carbon tax policies. J Gov Econ 4:100027

    Google Scholar 

  • Bureau B (2011) Distributional effects of a carbon tax on car fuels in France. Energy Econ 33:121–130

    Article  Google Scholar 

  • Chiu F-P, Kuo H-I, Chen C-C, Hsu C-S (2015) The energy price equivalence of carbon taxes and emissions trading—theory and evidence. Appl Energy 160:164–171

    Article  Google Scholar 

  • Du H, Chen Z, Zhang Z, Southworth F (2020) The rebound effect on energy efficiency improvements in China’s transportation sector: a CGE analysis. J Manag Sci Eng 5:249–263

    Google Scholar 

  • Du Q, Li JT, Li Y, Huang N, Zhou J, Li Z (2020) Carbon inequality in the transportation industry: empirical evidence from China. Environ Sci Pollut Res 27:6300–6311

    Article  CAS  Google Scholar 

  • Du Q, Lu C, Zou PXW, Li Y, Li J, Cui X (2021) Estimating transportation carbon efficiency (TCE) across the belt and road initiative countries: an integrated approach of modified three-stage epsilon-based measurement model. Environ Impact Assess Rev 90:106634

    Article  Google Scholar 

  • Freire-González J, Martinez-Sanchez V, Puig-Ventosa I (2022) Tools for a circular economy: assessing waste taxation in a CGE multi-pollutant framework. Waste Manage 139:50–59

    Article  Google Scholar 

  • Fu Y, Huang G, Liu L, Zhai M (2021) A factorial CGE model for analyzing the impacts of stepped carbon tax on Chinese economy and carbon emission. Sci Total Environ 759:143512

    Article  CAS  Google Scholar 

  • Guo Z, Zhang X, Zheng Y, Rao R (2014) Exploring the impacts of a carbon tax on the Chinese economy using a CGE model with a detailed disaggregation of energy sectors. Energy Econ 45:455–462

    Article  Google Scholar 

  • Hou S, Chen X, Qiu R (2022) Sustainable biofuel consumption in air passenger transport driven by carbon-tax policy. Sustain Prod Consum 31:478–491

    Article  Google Scholar 

  • IEA, International Energy Agency (2015) https://www.iea.org/policiesandmeasures/pams/japan/name-139284-en.php

  • IEA, International Energy Agency (2021) https://www.iea.org/publications/freepublications

  • Jia Z, Lin B (2020) Rethinking the choice of carbon tax and carbon trading in China. Technol Forecast Soc Chang 159:120187

    Article  Google Scholar 

  • Jiang H-D, Liu L-J, Dong K, Fu Y-W (2022) How will sectoral coverage in the carbon trading system affect the total oil consumption in China? a CGE-based analysis. Energy Economics 110:105996

    Article  Google Scholar 

  • Khastar M, Aslani A, Nejati M (2020) How does carbon tax affect social welfare and emission reduction in Finland? Energy Rep 6:736–744

    Article  Google Scholar 

  • Li R, Li L, Wang Q (2022) The impact of energy efficiency on carbon emissions: evidence from the transportation sector in Chinese 30 provinces. Sustain Cities Soc 82:103880

    Article  Google Scholar 

  • Li W, Jia Z, Zhang H (2017) The impact of electric vehicles and CCS in the context of emission trading scheme in China: a CGE-based analysis. Energy 119:800–816

    Article  CAS  Google Scholar 

  • Liu H, Zhang J, Zhang X (2021) China’s carbon emission responsibility and image from the perspective of global supply chain. Resour Sci 43:652–668

    Google Scholar 

  • Liu J, Bai J, Deng Y, Chen X, Liu X (2021) Impact of energy structure on carbon emission and economy of China in the scenario of carbon taxation. Sci Total Environ 762:143093

    Article  CAS  Google Scholar 

  • Liu L, Huang CZ, Huang G, Baetz B, Pittendrigh SM (2018) How a carbon tax will affect an emission-intensive economy: a case study of the Province of Saskatchewan, Canada. Energy 159:817–826

    Article  Google Scholar 

  • Mardones C, Cabello M (2019) Effectiveness of local air pollution and GHG taxes: the case of Chilean industrial sources. Energy Econ 83:491–500

    Article  Google Scholar 

  • Moz-Christofoletti MA, Pereda PC (2021) Winners and losers: the distributional impacts of a carbon tax in Brazil. Ecol Econ 183:106945

    Article  Google Scholar 

  • Orlov A, Grethe H, McDonald S (2013) Carbon taxation in Russia: prospects for a double dividend and improved energy efficiency. Energy Econ 37:128–140

    Article  Google Scholar 

  • Pei Y, Zhu YM, Wang NA (2021) How do corruption and energy efficiency affect the carbon emission performance of China’s industrial sectors? Environ Sci Pollut Res 28:31403–31420

    Article  Google Scholar 

  • Pradhan BK, Ghosh J (2022) A computable general equilibrium (CGE) assessment of technological progress and carbon pricing in India’s green energy transition via furthering its renewable capacity. Energy Econ 106:105788

    Article  Google Scholar 

  • Paris Climate Change Conference (2015) Available at http://unfccc.int/meetings/paris_2015/meeting/8926.php

  • PlumerG, Popovich N (2019) These countries have prices on carbon. Are they working? https://www.nytimes.com/interactive/2019/04/02/climate/pricing-carbon-emissions.html

  • Sen S, Vollebergh H (2018) The effectiveness of taxing the carbon content of energy consumption. J Environ Econ Manag 92:74–99

    Article  Google Scholar 

  • Shahriari S, Rashidi T, Dixit V, Robson E (2021) Assessing economic benefits of transport projects using an integrated transport-CGE approach. Res Transp Econ 90:101115

    Article  Google Scholar 

  • Shi Q, Ren H, Cai W, Gao J (2019) How to set the proper level of carbon tax in the context of Chinese construction sector? a CGE analysis. J Clean Prod 240:117955

    Article  Google Scholar 

  • Sun Y, Mao X, Yin X, Liu G, Zhang J, Zhao Y (2021) Optimizing carbon tax rates and revenue recycling schemes: model development, and a case study for the Bohai Bay area China. J Clean Prod 296:126519

    Article  Google Scholar 

  • Thepkhun P, Limmeechokchai B, Fujimori S, Masui T, Shrestha RM (2013) Thailand’s low-carbon scenario 2050: the AIM/CGE analyses of CO2 mitigation measures. Energy Policy 62:561–572

    Article  Google Scholar 

  • Wang Q, Hubacek K, Feng K, Wei Y-M, Liang Q-M (2016) Distributional effects of carbon taxation. Appl Energy 184:1123–1131

    Article  Google Scholar 

  • Wang X, Du Q, Lu C, Li J (2022) Exploration in carbon emission reduction effect of low-carbon practices in prefabricated building supply chain. J Clean Prod 368:133153

    Article  CAS  Google Scholar 

  • Wu R, Dai H, Geng Y, Xie Y, Masui T, Tian X (2016) Achieving China’s INDC through carbon cap-and-trade: insights from Shanghai. Appl Energy 184:1114–1122

    Article  Google Scholar 

  • Wu X, Tian Z, Guo J (2022) A review of the theoretical research and practical progress of carbon neutrality. Sustain Oper Comput 3:54–66

    Article  Google Scholar 

  • Xu B, Xu R (2022) Assessing the role of environmental regulations in improving energy efficiency and reducing CO2 emissions: evidence from the logistics industry. Environ Impact Assess Rev 96:106831

    Article  Google Scholar 

  • Zhang T, Ma Y, Li A (2021) Scenario analysis and assessment of China’s nuclear power policy based on the Paris agreement: a dynamic CGE model. Energy 228:120541

    Article  Google Scholar 

  • Zhang Y, Qi L, Lin X, Pan H, Sharp B (2022) Synergistic effect of carbon ETS and carbon tax under China’s peak emission target: a dynamic CGE analysis. Sci Total Environ 825:154076

    Article  CAS  Google Scholar 

  • Zheng C, Deng F, Li C, Yang Z (2022) The impact of China’s western development strategy on energy conservation and emission reduction. Environ Impact Assess Rev 94:106743

    Article  Google Scholar 

  • Zhou Y, Fang W, Li M, Liu W (2018) Exploring the impacts of a low-carbon policy instrument: a case of carbon tax on transportation in China. Resour Conserv Recycl 139:307–314

    Article  Google Scholar 

Download references

Funding

The research work was supported by the National Natural Science Foundation of China [Grant No. 72171025], the Social Science Foundation of Shaanxi province [Grant No. 2020R008], the General Foundation for Soft Science of Shaanxi province [Grant No. 2022KRM012], the Natural Science Foundation Research Project of Shaanxi Province of China [Grant No. 2021JQ-296], the Foundation for Youth Innovation Team of Shaanxi Universities [Grant No. 21JP010], and the Youth Innovation Team of Shaanxi Universities.

Author information

Authors and Affiliations

Authors

Contributions

Jingtao Li: software, data curation, formal analysis, and writing—original draft.

Qiang Du: conceptualization, supervision, and methodology.

Cheng Lu: visualization and investigation.

Youdan Huang: writing—review, software.

Xiaoyan Wang: validation and data interpretation.

All authors have read and approved the final version manuscript.

Corresponding author

Correspondence to Qiang Du.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interests

The authors declare no competing interests.

Additional information

Responsible Editor: Nicholas Apergis

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix 1 Equation of the CGE model

Appendix 1 Equation of the CGE model

Production block

$$U(PS)=\left(\frac{X\left(PS\right)}{AP\left(PS\right)}\right)\times {\left(\beta (PS)\times AP(PS)\times \frac{CX(PS)}{PU(PS)}\right)}^{sp(PS)}$$
(4)
$$PU(PS)=\frac{\sum_{CC}QX(CC,PS)\times PC(CC)}{U(PS)}$$
(5)
$$V(PS)=\left(\frac{X\left(PS\right)}{AP\left(PS\right)}\right)\times {\left(\gamma (PS)\times AP(PS)\times \frac{CX(PS)}{PV(PS)}\right)}^{sp(PS)}$$
(6)
$$PV(PS)=\left(\frac{1}{AV(PS)}\right)\times {\left(\frac{W}{{\gamma }_{L}(PS)}\right)}^{{\gamma }_{l}(PS)}\times {\left(\frac{R}{{\gamma }_{k}(PS)}\right)}^{{\gamma }_{k}(PS)}$$
(7)
$$QX(CC,PS)=ut(CC,PS)\times U(PS)$$
(8)
$$PX(PS)=\sum_{CC}vt(PS,CC)\times PQ(CC)$$
(9)
$$L(PS)={\gamma }_{L}(PS)\times \frac{PV(PS)\times V(PS)}{W}$$
(10)
$$K(PS)={\gamma }_{K}(PS)\times \frac{PV(PS)\times V(PS)}{R}$$
(11)
$$CX(PS)={AP(PS)}^{-1}\times \left(\sum_{PS}{\beta (PS)}^{sp(PS)}\times {PU(PS)}^{1-sp(PS)}+{\gamma (PS)}^{sp(PS)}\times {PV(PS)}^{1-sp(PS)}\right)\frac{1}{1-sp(PS)}$$
(12)
$$UEN(PS)=ut1(PS)\times U(PS)$$
(13)
$$UNEN(PS)=ut2(PS)\times U(PS)$$
(14)
$$QXEN(CC,PS)=\left(\frac{UEN\left(PS\right)}{APEN\left(PS\right)}\right)\times {\left(\beta (CC,PS)\times APEN(PS)\times \frac{CXEN(PS)}{PQXEN(PS)}\right)}^{spen(PS)}$$
(15)
$$QXNEN(CC,PS)=utnen(CC,PS)\times UNEN(PS)$$
(16)
$$PQXEN(CC)=PC(CC)+PCO2\times emf(CC)$$
(17)
$$CXEN(PS)={AP(PS)}^{-1}\times \left(\sum_{CC}{\beta (CC,PS)}^{sp(PS)}\times {PQXEN(CC)}^{1-spen(PS)}\right)\frac{1}{1-spen(PS)}$$
(18)

Trade block

$$Q(CC)=\sum_{PS}vt(PS,CC)\times X(PS)$$
(19)
$$QD(CC)=\left(\frac{Q\left(CC\right)}{AT\left(CC\right)}\right)\times {\left(\varepsilon (CC)\times AT(CC)\times \frac{PQ\left(CC\right)}{PQD\left(CC\right)}\right)}^{st(CC)}$$
(20)
$$EXP(CC)=\left(\frac{Q\left(CC\right)}{AT\left(CC\right)}\right)\times {\left((1-\varepsilon \left(CC\right))\times AT(CC)\times \frac{PQ(CC)}{PEXP(CC)}\right)}^{st(CC)}$$
(21)
$$QD(CC)=\left(\frac{Q\left(CC\right)}{AA\left(CC\right)}\right)\times {\left(\delta (CC)\times AA(CC)\times \frac{PC(CC)}{PQD(CC)}\right)}^{sa(CC)}$$
(22)
$$IMP(CC)=\left(\frac{QC\left(CC\right)}{AA\left(CC\right)}\right)\times {\left((1-\delta \left(CC\right))\times AA(CC)\times \frac{PC(CC)}{PIMP(CC)}\right)}^{sa(CC)}$$
(23)
$$PIMP(CC)=EXR\times wpi(CC)$$
(24)
$$PC(CC)\times QC(CC)=PQD(CC)\times QD(CC)+PIMP(CC)\times IMP(CC)$$
(25)
$$PQ(CC)=\left(\frac{1}{AT\left(CC\right)}\right)\times {\left(\varepsilon {\left(CC\right)}^{st\left(CC\right)}\times {PQD\left(CC\right)}^{1-st\left(CC\right)}+{\left(1-\varepsilon \left(CC\right)\right)}^{st\left(CC\right)}\times {PEXP(CC)}^{1-st(CC)}\right)}^{1-st(CC)}$$
(26)
$$\begin{array}{c}PQ(CC)=PQD(CC)\\ PC(CC)=\left(\frac{1}{AA(CC)}\right)\\ \times {\left({\delta (CC)}^{sa(CC)}\times {PQD(CC)}^{1-sa(CC)}+{(1-\delta \left(CC\right))}^{sa(CC)}\times {PIMP(CC)}^{1-sa(CC)}\right)}^{\frac{1}{1-sa(CC)}}\end{array}$$
(27)
$$PQD(CC)=PEXP\left(CC\right)$$
(28)
$$PEXP(CC)=PQD(CC)$$
(29)
$$PEXP(CC)=EXR\times wpe(CC)$$
(30)

Income and expenditure blocks

$$HC(CC)=\frac{{\alpha }_{h}(CC)\times HY}{PC(CC)}$$
(31)
$$GC(CC)=\frac{{\alpha }_{\mathrm{g}(CC)\times GY}}{PC(CC)}$$
(32)
$$\sum_{CC}PC(CC)\times HC(CC)+HS=W\times LS+R\times KS$$
(33)
$$GY=\sum_{PS}rpt(PS)\times PX(PS)\times X(PS)+\sum_{CC}rdct(CC)\times PQD(CC)\times QD(CC)+DT+{TXENCO}_{2}$$
(34)
$$HS=sg\times HY$$
(35)
$$GS=s\mathrm{g}\times GY$$
(36)
$$TSAV=HS+GS$$
(37)
$$INV(CC)=\frac{{\alpha }_{i}(CC)\times TINV}{PC(CC)}$$
(38)
$$INVS=ivs\times TINV$$
(39)
$$INVF=TINV-\sum_{CC}PC(CC)\times INV(CC)-INVS$$
(40)

Macroscopic-closure and market-clearing block

$$QC(CC)=\sum_{PS}QX\left(CC,PS\right)+HC\left(CC\right)+GC\left(CC\right)+INV\left(CC\right)+SC(CC)$$
(41)
$$\sum_{CC}PEXP(CC)\times EXP(CC)=\sum_{CC}PIMP(CC)\times IMP(CC)+INVF$$
(42)
$$TINV=TSAV$$
(43)
$$\sum_{PS}L(PS)=LS$$
(44)
$$\sum_{PS}K(PS)=KS$$
(45)
$$SC(CC)=\frac{{\alpha }_{s}(CC)\times INVS}{PC(CC)}$$
(46)
$$(1-it\left(PS\right))\times PX(PS)=CX(PS)$$
(47)
$$\begin{array}{l}BT=\sum\limits_{CC}\sum\limits_{PS}vt(PS,CC)\times\frac{CX\left(PS\right)}{1-it\left(PS\right)}\times X(PS)+\sum\limits_{CC}PIMP(CC)\times IMP(CC)\\-\sum\limits_{PS}\sum\limits_{CC}PC(CC)\times QX(CC,PS)\\\begin{array}{l}-\sum\limits_{CC}PC(CC)\times(HC(CC)+GC(CC)+INV(CC)+SC(CC)\\-\sum\limits_{CC}PEXP(CC)\times EXP(CC)\end{array}\end{array}$$
(48)
$$GDP=\sum_{CC}\sum_{PS}PQ(CC)\times vt(PS,CC)\times X(PS)-\sum_{PS}\sum_{CC}PC(CC)\times QX(CC,PS)$$
(49)

Carbon-policy block

$$ENCO2(PS)=\sum_{CC}QXEN\left(CC,PS\right)\times emf(CC)$$
(50)
$$TCO2=\sum_{PS}ENCO2(PS)$$
(51)
$$TXENCO2=PCO2\times \sum_{PS}ENCO2(PS)$$
(52)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Du, Q., Lu, C. et al. Simulations for double dividend of carbon tax and improved energy efficiency in the transportation industry. Environ Sci Pollut Res 30, 19083–19096 (2023). https://doi.org/10.1007/s11356-022-23411-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-022-23411-z

Keywords

Navigation