Skip to main content
Log in

A review on the influencing factors of pavement surface temperature

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Pavement surface temperature is of great significance to pavement performance and pavement design, as well as the development of cool pavements. The variation of a pavement surface temperature is complicated as it is jointly affected by various factors, including air temperature, solar irradiance, wind speed, and pavement texture. This study overviews the internal and external factors that affect the pavement surface temperature in the field. It is found that air temperature is the main external climatic factor affecting the pavement surface temperature during the course of a day. Although solar radiation dictates the thermal partition at the pavement surface, it mainly influences daytime pavement temperature but vanishes at night. Pavements in calm weather can be 3–10 °C hotter than those in windy weather, depending on the time of the day and the season. Other external factors such as passing vehicles also influence the pavement surface temperature at a degree 1–3 °C. Also, the shading effect of urban trees can affect pavement surface temperature and urban microclimate. Internal factors that vary pavement surface temperature include albedo, thermal conductivity, heat capacity, and emissivity. Among them, albedo controls the pavement surface temperature while other factors play a secondary role. The results of this review provide a scope of research for developing sustainable and advanced solutions for future municipal pavement construction and urban heat island (UHI) mitigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data included in this study are available upon request by contact with the corresponding author.

References

  • Abreu L, Labaki L, Matzarakis A (2012) Reduction of mean radiant temperature by cluster of trees in urban and architectural planning in tropical climates. In: PLEA2012–28th conference, opportunities, limits & needs towards an environmentally responsible architecture, pp 7–9

    Google Scholar 

  • Adkins DF, Merkley GP (1990) Mathematical model of temperature changes in concrete pavements. J Transp Eng 116(3):349–358

    Article  Google Scholar 

  • Akbari H (2009) Cooling our communities. In: A guidebook on tree planting and light-colored surfacing

    Google Scholar 

  • Alavi MZ, Pouranian MR, Hajj EY (2014) Prediction of asphalt pavement temperature profile with finite control volume method. Transp Res Rec 2456(1):96–106

    Article  Google Scholar 

  • Ångström AJGA (1925) The Albedo of Various Surfaces of Ground 7(4):323–342

    Google Scholar 

  • Annaratone D (2010) Engineering heat transfer. Springer Science & Business Media

    Book  Google Scholar 

  • Aoki T (2009) Effect of solar illuminance and albedo on surface temperature of outdoor sport surfaces

    Google Scholar 

  • Armson D, Rahman MA, Ennos ARJA, Forestry U (2013) A comparison of the shading effectiveness of five different street tree species in Manchester. UK 39(4):157–164

    Google Scholar 

  • Artis DA, Carnahan WH (1982) Survey of emissivity variability in thermography of urban areas. Remote Sens Environ 12(4):313–329

    Article  Google Scholar 

  • Asaeda T, Ca VT, Wake A (1996) Heat storage of pavement and its effect on the lower atmosphere. Atmos Environ 30(3):413–427

    Article  CAS  Google Scholar 

  • Asefzadeh A, Hashemian L, Bayat A (2017) Development of statistical temperature prediction models for a test road in Edmonton, Alberta, Canada. Int J Pavement Res Technol 10(5):369–382

    Article  Google Scholar 

  • Barber ES (1957) Calculation of maximum pavement temperatures from weather reports. Highway Research Board Bulletin 168

  • Bobes-Jesus V, Pascual-Muñoz P, Castro-Fresno D, Rodriguez-Hernandez J (2013) Asphalt solar collectors: a literature review. Appl Energy 102:962–970

    Article  Google Scholar 

  • Bosscher PJ, Bahia HU, Thomas S, Russell JS (1998) Relationship between pavement temperature and weather data: Wisconsin field study to verify superpave algorithm. Transp Res Rec 1609(1):1–11

    Article  Google Scholar 

  • Brandani G, Napoli M, Massetti L, Petralli M, Orlandini, S (2016) Urban soil: assessing ground cover impact on surface temperature and thermal comfort. J Environ Qual 45(1):90–97

    Article  CAS  Google Scholar 

  • Cao X, Tang B, Zou X, He L (2015) Analysis on the cooling effect of a heat-reflective coating for asphalt pavement. Road Mater Pavement Design 16(3):716–726

    Article  CAS  Google Scholar 

  • Carnielo E, Zinzi M (2013) Optical and thermal characterisation of cool asphalts to mitigate urban temperatures and building cooling demand. Build Environ 60:56–65

    Article  Google Scholar 

  • Chapman L, Thornes JE (2005) The influence of traffic on road surface temperatures: implications for thermal mapping studies. Meteorol Appl 12(4):371–380

    Article  Google Scholar 

  • Chapman L, Thornes JE, Bradley AV (2001) Statistical modelling of road surface temperature from a geographical parameter database. Meteorol Appl 8:409–419

    Article  Google Scholar 

  • Chen H, Feng D, Zou C, Shang H (1999) Wind speed impact on soil moisture remote sensing in terms of NOAA/AVHRR data (In Chinese). Trans Atmos Sci 22(2):219–224

    Google Scholar 

  • Chen J, Luo S, Li L, Dan H, Zhao L (2013) Temperature distribution and method-experience prediction model of asphalt pavement. J Central South Univ (Sci Technol) 44(4):1647–1656

    Google Scholar 

  • Chen J, Zhang M, Wang H, Li L (2015) Evaluation of thermal conductivity of asphalt concrete with heterogeneous microstructure. Appl Therm Eng 84:368–374

    Article  CAS  Google Scholar 

  • Chen J, Wang H, Zhu HJ (2017) Analytical approach for evaluating temperature field of thermal modified asphalt pavement and urban heat island effect. Appl Therm Eng 113:739–748

    Article  Google Scholar 

  • Chen J, Chu R, Wang H, Xie P (2018) Experimental measurement and microstructure-based simulation of thermal conductivity of unbound aggregates. Constr Build Mater 189:8–18

    Article  Google Scholar 

  • Chen J, Chu R, Wang H, Zhang L, Chen X, Du Y (2019a) Alleviating urban heat island effect using high-conductivity permeable concrete pavement. J Clean Prod 237:117722

    Article  Google Scholar 

  • Chen J, Wang H, Xie P (2019b) Pavement temperature prediction: theoretical models and critical affecting factors. Appl Therm Eng 158:113755

    Article  Google Scholar 

  • Chen J, Wang H and Xie PJATE (2019c) Pavement temperature prediction: theoretical models and critical affecting factors 158: 113755

  • Chen J, Zhou Z, Wu J, Hou S, Liu M (2019d) Field and laboratory measurement of albedo and heat transfer for pavement materials. Constr Build Mater 202:46–57

    Article  CAS  Google Scholar 

  • Christison J, Anderson K (1972) The response of asphalt pavements to low temperature climatic environments. In: Presented at the third international conference on the structural Design of Asphalt Pavements, Grosvenor house, park lane, London, England, Sept. 11–15, 1(proceeding)

  • Coutts AM, White EC, Tapper NJ, Beringer J, Livesley SJ (2016) Temperature and human thermal comfort effects of street trees across three contrasting street canyon environments. Theor Appl Climatol 124(1):55–68

    Article  Google Scholar 

  • Dash P, Göttsche F-M, Olesen F-S, Fischer H (2002) Land surface temperature and emissivity estimation from passive sensor data: theory and practice-current trends. Int J Remote Sens 23(13):2563–2594

    Article  Google Scholar 

  • Dawson AR, Dehdezi PK, Hall MR, Wang J, Isola R (2012) Enhancing thermal properties of asphalt materials for heat storage and transfer applications. Road Mater Pavement Design 13(4):784–803

    Article  CAS  Google Scholar 

  • De Oliveira A, Machado A, Escobedo JF, Soares J (2002) Diurnal evolution of solar radiation at the surface in the city of São Paulo: seasonal variation and modeling. Theoret Appl Climatol 71(3):231–249

    Article  Google Scholar 

  • Diefenderfer BK, Al-Qadi IL, Reubush SD, Freeman TE (2003) Development and validation of a model to predict pavement temperature profile. TRB 2003 Annual Meeting 21:2003

    Google Scholar 

  • Diefenderfer BK, Al-Qadi IL, Diefenderfer SD (2006) Model to predict pavement temperature profile: development and validation. J Transp Eng 132(2):162–167

    Article  Google Scholar 

  • Dumais S, Doré G (2016) An albedo based model for the calculation of pavement surface temperatures in permafrost regions. Cold Reg Sci Technol 123:44–52

    Article  Google Scholar 

  • Dutta K, Basu D, Agrawal S (2021) Evaluation of seasonal variability in magnitude of urban heat islands using local climate zone classification and surface albedo. Int J Environ Sci Technol:1–22

  • Feng D, Hu W, Yu F, Cao P, Zhang X (2011) Impact of asphalt pavement thermophysical property on temperature field and sensitivity analysis. J Highway Trans Res Dev 11:12–19

    Google Scholar 

  • Fujimoto A, Watanabe H, Fukuhara T (2008) Effects of vehicle heat on road surface temperature of dry condition. In: Proceedings of the 14th standing international road weather conference

    Google Scholar 

  • Fujimoto A, Saida A, Fukuhara, T, Futagami T (2010) Heat transfer analysis on road surface temperature near a traffic light

    Google Scholar 

  • Fujimoto A, Saida A, Fukuhara T (2012) A new approach to modeling vehicle-induced heat and its thermal effects on road surface temperature. J Appl Meteorol Climatol 51(11):1980–1993

    Article  Google Scholar 

  • Fujimoto A, Tokunaga R, Kiriishi M, Kawabata Y, Takahashi N, Ishida T, Fukuhara T (2014) A road surface freezing model using heat, water and salt balance and its validation by field experiments. Cold Reg Sci Technol 106:1–10

    Article  Google Scholar 

  • Ge Z (2005) Predicting temperature and strength development of field concrete. Iowa State University, Amers

    Book  Google Scholar 

  • Gillner S, Vogt J, Tharang A, Dettmann S, Roloff AJL, Planning U (2015) Role of Street Trees in Mitigating Effects of Heat and Drought at Highly Sealed Urban Sites 143:33–42

    Google Scholar 

  • Golden JS, Kaloush KE (2006) Mesoscale and microscale evaluation of surface pavement impacts on the urban heat island effects. Int J Pavement Eng 7(1):37–52

    Article  Google Scholar 

  • Greene CS, Kedron PJ (2018) Beyond fractional coverage: a multilevel approach to analyzing the impact of urban tree canopy structure on surface urban heat islands. Appl Geogr 95:45–53

    Article  Google Scholar 

  • Guan B, Ma B,Qin F (2011) Application of asphalt pavement with phase change materials to mitigate urban heat island effect. In: 2011 international symposium on water resource and environmental protection. IEEE 3:2389–2392

  • Gui J, Carlson J, Phelan PE, Kaloush KE, Golden JS (2007a) Impact of pavement thickness on surface diurnal. J Green Building 2(2):121–130

    Article  Google Scholar 

  • Gui J, Phelan PE, Kaloush KE, Golden JS (2007b) Impact of pavement thermophysical properties on surface temperatures. J Mater Civ Eng 19(8):683–690

    Article  CAS  Google Scholar 

  • Guldentops G, Nejad AM, Vuye C, Rahbar N (2016) Performance of a pavement solar energy collector: model development and validation. Appl Energy 163:180–189

    Article  Google Scholar 

  • Han R, Jin X, Glover CJ (2011) Modeling pavement temperature for use in binder oxidation models and pavement performance prediction. J Mater Civ Eng 23(4):351–359

    Article  CAS  Google Scholar 

  • Haselbach L, Boyer M, Kevern JT, Schaefer VR (2011) Cyclic heat island impacts on traditional versus pervious concrete pavement systems. Transp Res Rec 2240(1):107–115

    Article  Google Scholar 

  • He B-J, Wang J, Liu H and Ulpiani GJER, (2021a) Localized synergies between heat waves and urban heat islands: implications on human thermal comfort and urban heat management 193: 110584

  • He B-J, Zhao D, Xiong K, Qi J, Ulpiani G, Pignatta G, Prasad D, Jones P (2021b) A framework for addressing urban heat challenges and associated adaptive behavior by the public and the issue of willingness to pay for heat resilient infrastructure in Chongqing, China. Sustain Cities Soc 75:103361

    Article  Google Scholar 

  • He B-J, Wang J, Zhu J, Qi J (2022) Beating the urban heat: situation, background, impacts and the way forward in China. Renew Sust Energ Rev 161:112350

    Article  Google Scholar 

  • Herb W, Velasquez R, Stefan H, Marasteanu MO, Clyne T (2009) Simulation and characterization of asphalt pavement temperatures. Road Mater Pavement Design 10(1):233–247

    Google Scholar 

  • Hermansson Å (2000) Simulation model for calculating pavement temperatures including maximum temperature. Transp Res Rec 1699(1):134–141

    Article  Google Scholar 

  • Hermansson Å (2004) Mathematical model for paved surface summer and winter temperature: comparison of calculated and measured temperatures. Cold Reg Sci Technol 40(1–2):1–17

    Article  Google Scholar 

  • Holst J, Mayer HJMZ (2011) Impacts of Street Design Parameters on Human-Biometeorological Variables 20(5):541

    Google Scholar 

  • Hu Z (2008) Advantages and disadvantages of asphalt pavement and cement concrete pavement. Sci Technol Innov Herald 2:54–54

    Google Scholar 

  • Huang K, Zollinger DG, Shi X, Sun PJC, Materials B (2017) A Developed Method of Analyzing Temperature and Moisture Profiles in Rigid Pavement Slabs 151:782–788

    Google Scholar 

  • Huber GA (1993) Weather database for the Superpave™ mix design system

    Google Scholar 

  • Hutjes R, Kabat P, Running SW, Shuttleworth W, Field C, Bass B, da Silva Dias M, Avissar R, Becker A, Claussen M (1998) Biospheric aspects of the hydrological cycle. J Hydrol 212:1–21

    Article  Google Scholar 

  • Idso S, Jackson R, Reginato R, Kimball B, Nakayama F (1975) The dependence of bare soil albedo on soil water content. J Appl Meteorol Climatol 14(1):109–113

    Article  Google Scholar 

  • Irmak MA, Yilmaz S, Dursun D (2017) Effect of different pavements on human thermal comfort conditions. Atmósfera 30(4):355–366

    Article  Google Scholar 

  • Islam MR, Ahsan S, Tarefder RA (2015) Modeling temperature profile of hot-mix asphalt in flexible pavement. Int J Pavement Res Technol 8(1):47

    Google Scholar 

  • Jamei E, Rajagopalan P, Seyedmahmoudian M, Jamei YJR, Reviews SE (2016) Rev Impact Urban Geo Pedestrian Level Greening on Outdoor Thermal Comfort 54:1002–1017

    Google Scholar 

  • Jia L, Sun L, Yu Y (2008) Asphalt pavement statistical temperature prediction models developed from measured data in China. In: Plan, build, and manage transportation infrastructure in China, pp 723–732

    Chapter  Google Scholar 

  • Kang H, Zheng Y, Cai Y, Liu Y (2007) Regression analysis of actual measurement of temperature field distribution rules of asphalt pavement. China J Highway Transport 20(6):13–18

    Google Scholar 

  • Keikha P, Hall M, Dawson A (2010) Concrete pavements as a source of heating and cooling

    Google Scholar 

  • Kinouchi T, Yoshinaka T, Fukae N, Kanda M (2003) 4.7 Development of cool pavement with dark colored high albedo coating. Target 50(40):40

    Google Scholar 

  • Kodide U (2010) Thermal conductivity and its effects on the performance of PCC pavements in MEPDG

    Google Scholar 

  • Konopacki S, Akbari H (2002) Energy savings for heat-island reduction strategies in Chicago and Houston (including updates for Baton Rouge, Sacramento, and Salt Lake City). Lawrence Berkeley National Lab (LBNL), Berkeley

    Book  Google Scholar 

  • Lee H, Mayer HJUF, Greening U (2018) Maximum Extent of Human Heat Stress Reduction on Building Areas Due to Urban Greening 32:154–167

    Google Scholar 

  • Leuzinger S, Vogt R, Körner CJA, Meteorology F (2010) Tree Surface Temperature in an Urban Environment 150(1):56–62

    Google Scholar 

  • Li H, Xia Z, Ma G (2007) Study on the effect of water content variation on soil temperature and water exchange. J Hohai Univ (Nat Sci) 35(2):172–175

    Google Scholar 

  • Li Y, Zhang Q, Xie L, He Y, Liu J (2012a) Testing of asphalt mixture thermal conductivity and its influences on asphalt pavement temperature field. Functional Materials 43(B08):129–132

    Google Scholar 

  • Li Y, Zhang Y, Sun J, Li Y (2012b) Influence of asphalt pavement material parameters on pavement temperature field. Sino-Foreign Highway 32(6):103–107

    Google Scholar 

  • Li H, Harvey J, Kendall A (2013) Field measurement of albedo for different land cover materials and effects on thermal performance. Build Environ 59:536–546

    Article  Google Scholar 

  • Lin T-P, Ho Y-F, Huang Y-S (2007) Seasonal effect of pavement on outdoor thermal environments in subtropical Taiwan. Build Environ 42(12):4124–4131

    Article  Google Scholar 

  • Ma Z, Wei H (2000) Relationship between regional soil moisture variation and climatic variability over East China (In Chinese). Acta Meteor Sin 58(3):278–287

    Google Scholar 

  • Ma S, Ma J, Sun W, Ji X, Gou X (2013) Research on forecasting method of road surface temperature and puncture index in Yinchuan city. J Arid Meteorol 31(4):825–830

    CAS  Google Scholar 

  • Mammeri A, Ulmet L, Petit C, Mokhtari A (2015) Temperature modelling in pavements: the effect of long-and short-wave radiation. Int J Pavement Eng 16(3):198–213

    Article  Google Scholar 

  • Manteghi G, Mostofa T (2019) Evaporative pavements as an urban heat island (Uhi) mitigation strategy: a review. International Transaction Journal of Engineering, Management, & Applied Sciences & Technologies (ITJEMAST) 11(1):1–15

    Google Scholar 

  • Mascaró JJ (2012) Shaded pavements in the urban environment–a case study. Road Mater Pavement Des 13(3):556–565

    Article  Google Scholar 

  • Massetti L, Petralli M, Napoli M, Brandani G, Orlandini S, Pearlmutter D (2019) Effects of deciduous shade trees on surface temperature and pedestrian thermal stress during summer and autumn. Int J Biometeorol 63(4):467–479

    Article  Google Scholar 

  • Matić B, Matić D, Ćosić Đ, Sremac S, Tepić G, Ranitović P (2013) A model for the pavement temperature prediction at specified depth. Metalurgija 52(4):505–508

    Google Scholar 

  • Mayer H, Holst J, Dostal P, Imbery F, Schindler DJMZ (2008) Human Thermal Comfort in Summer within an Urban Street Canyon in Central Europe 17(3):241–250

    Google Scholar 

  • McCullough BF, Rasmussen RO (1999) Fast-track paving: concrete temperature control and traffic opening criteria for bonded concrete overlays, volume I. Federal Highway Administration. Office of Infrastructure Research and Development, United States

    Google Scholar 

  • Meehl GA, Tebaldi CJS (2004) More intense, more frequent, and longer lasting heat waves in the 21st century. Science 305(5686):994–997

    Article  CAS  Google Scholar 

  • Menberg K, Bayer P, Zosseder K, Rumohr S, Blum P (2013) Subsurface urban heat islands in German cities. Sci Total Environ 442:123–133

    Article  CAS  Google Scholar 

  • Mills BN, Tighe SL, Andrey J, Smith JT, Huen K (2009) Climate change implications for flexible pavement design and performance in southern Canada. J Transp Eng 135(10):773–782

    Article  Google Scholar 

  • Mingyu C, Shaopeng W, Yuan Z, Hong W (2010) Effects of conductive fillers on temperature distribution of asphalt pavements. Phys Scr 2010(T139):014046

    Article  Google Scholar 

  • Minhoto M, Pais J, Pereira P (2006) Asphalt pavement temperature prediction. Asphalt rubber 2006 conference

    Google Scholar 

  • Mirzaei PA (2015) Recent challenges in modeling of urban heat island. Sustain Cities Soc 19:200–206

    Article  Google Scholar 

  • Mohajerani A, Bakaric J, Jeffrey-Bailey T (2017) The urban heat island effect, its causes, and mitigation, with reference to the thermal properties of asphalt concrete. J Environ Manag 197:522–538

    Article  Google Scholar 

  • Mohd Hasan MR, Hiller JE, You Z (2016) Effects of mean annual temperature and mean annual precipitation on the performance of flexible pavement using ME design. Int J Pavement Eng 17(7):647–658

    Article  CAS  Google Scholar 

  • Murakami S, Ooka R, Mochida A, Yoshida S, Kim S (1999) CFD analysis of wind climate from human scale to urban scale. J Wind Eng Ind Aerodyn 81(1–3):57–81

    Article  Google Scholar 

  • Naik B, Matlack G, Khoury I, Sinha G, McAvoy DS (2017) Effects of tree canopy on rural highway pavement condition, safety, and maintenance: phase 1. Ohio Research Institute for Transportation and the Environment

    Google Scholar 

  • Napoli M, Massetti L, Brandani G, Petralli M, Orlandini, S (2016) Modeling tree shade effect on urban ground surface temperature. J Environ Qual 45(1):146–156

    Article  CAS  Google Scholar 

  • Nivitha M, Krishnan J (2014) Development of pavement temperature contours for India. J Ins Eng (India) Series A 95(2):83–90

    Article  Google Scholar 

  • Nuijten AD (2016) Runway temperature prediction, a case study for Oslo Airport, Norway. Cold Reg Sci Technol 125:72–84

    Article  Google Scholar 

  • Oke TR (1989) The micrometeorology of the urban forest. Philosophical Transactions of the Royal Society of London B, Biological Sciences 324(1223):335–349

    Article  Google Scholar 

  • Oke TR, Mills G, Christen A, Voogt JA (2017) Urban climates. Cambridge University Press

    Book  Google Scholar 

  • Ongel A, Harvey J (2004) Analysis of 30 years of pavement temperatures using the enhanced integrated climate model (EICM). Pavement Research Centre

  • Pan P, Wu S, Xiao Y, Liu G (2015) A review on hydronic asphalt pavement for energy harvesting and snow melting. Renew Sustain Energy Rev 48:624–634

    Article  Google Scholar 

  • Parmenter B, Thornes JE (1986) The use of a computer model to predict the formation of ice on road surfaces, vol 71. Research report-Transport and Road Research Laboratory

    Google Scholar 

  • Phelan PE, Kaloush K, Miner M, Golden J, Phelan B, Silva H III, Taylor RA (2015) Urban heat island: mechanisms, implications, and possible remedies. Annu Rev Environ Resour 40:285–307

    Article  Google Scholar 

  • Pomerantz M (2000) The effect of pavements' temperatures on air temperatures in large cities

    Google Scholar 

  • Pomerantz M, Akbari H, Chang S-C, Levinson R, Pon B (2003) Examples of cooler reflective streets for urban heat-island mitigation: Portland cement concrete and chip seals

    Book  Google Scholar 

  • Qin Y (2015) A review on the development of cool pavements to mitigate urban heat island effect. Renew Sust Energ Rev 52:445–459

    Article  Google Scholar 

  • Qin Y (2016) Pavement surface maximum temperature increases linearly with solar absorption and reciprocal thermal inertial. Int J Heat Mass Transf 97:391–399

    Article  Google Scholar 

  • Qin Y, Hiller JE (2011a) Modeling temperature distribution in rigid pavement slabs: impact of air temperature. Constr Build Mater 25(9):3753–3761

    Article  Google Scholar 

  • Qin Y, Hiller JE (2011b) Modeling the temperature and stress distributions in rigid pavements: impact of solar radiation absorption and heat history development. KSCE J Civ Eng 15(8):1361–1371

    Article  Google Scholar 

  • Qin Y, Hiller JE (2013) Ways of formulating wind speed in heat convection significantly influencing pavement temperature prediction. Heat Mass Transf 49(5):745–752

    Article  Google Scholar 

  • Qin Y, Hiller JE (2014a) Understanding pavement-surface energy balance and its implications on cool pavement development. Energy and Buildings 85:389–399

    Article  Google Scholar 

  • Qin Y, Hiller JEJE (2014b) and Buildings. Understanding Pavement-Surf Energy Bal Implications on Cool Pavement Dev 85:389–399

    Google Scholar 

  • Qin J, Sun L (2006) Study on asphalt pavement temper atur e field distr ibution pattern. J Highway Trans Res Dev 23(8):18–21

    Google Scholar 

  • Qin YJR and Reviews (2015) A review on the development of cool pavements to mitigate urban heat island effect. 52: 445–459

  • Qin YJIJoH and Transfer M (2016) Pavement surface maximum temperature increases linearly with solar absorption and reciprocal thermal inertial. 97: 391–399

  • Qin J, Zhang H, Sun L (2004) Distribution characteristics and prediction of temperature field of asphalt pavement. In: The 2nd China national forum on innovation highway technology (volume 2)

    Google Scholar 

  • Qin Y, Hiller JE, Meng D (2019) Linearity between pavement thermophysical properties and surface temperatures. J Mater Civ Eng 31(11):04019262

    Article  CAS  Google Scholar 

  • Raad L, Saboundjian S, Sebaaly P, Epps J (1998) Minimum pavement temperature modeling and mapping for Alaskan conditions. Transp Res Rec 1643(1):86–94

    Article  Google Scholar 

  • Rafiee A, Dias E, Koomen EJUF, Greening U (2016) Local Impact of Tree Volume on Nocturnal Urban Heat Island: a Case Study in Amsterdam 16:50–61

    Google Scholar 

  • Ramadhan RH, Wahhab HIA-A (1997) Temperature variation of flexible and rigid pavements in Eastern Saudi Arabia. Build Environ 32(4):367–373

    Article  Google Scholar 

  • Rizwan AM, Dennis LY, Chunho, L (2008) A review on the generation, determination and mitigation of urban Heat Island. J Environ Sci 20(1):120–128

    Article  CAS  Google Scholar 

  • Robertson W (1995) Using the SHRP specification to select asphalt binders for low temperature service. In: Proceedings of the fortieth annual conference of the Canadian technical asphalt association. PEI, Charlottetown

    Google Scholar 

  • Rosado PJ, Ban-Weiss G, Mohegh A, Levinson R (2017) Influence of street setbacks on solar reflection and air cooling by reflective streets in urban canyons. Sol Energy 144:144–157

    Article  Google Scholar 

  • Rumney TN (1970) Pavement temperatures in the southwest. Highw Res Rec 361:1–13

    Google Scholar 

  • Sabziparvar AA (2008) A simple formula for estimating global solar radiation in central arid deserts of Iran. Renewable Energy 33(5):1002–1010

    Article  Google Scholar 

  • Salem HA, Uzelac D, Crvenkovic ZL (2014) Development of a model to predict pavement temperature for Ghat region in Libya. Applied Mechanics and Materials Trans Tech Publications Ltd. 587:1115–1124

    Article  Google Scholar 

  • Santamouris M (2013) Using cool pavements as a mitigation strategy to fight urban heat island—a review of the actual developments. Renew Sustain Energy Rev 26:224–240

    Article  Google Scholar 

  • Sherif A, Hassan Y (2004) Modelling pavement temperature for winter maintenance operations. Can J Civ Eng 31(2):369–378

    Article  Google Scholar 

  • Shi X, Rew Y, Ivers E, Shon C-S, Stenger EM, Park P (2019) Effects of thermally modified asphalt concrete on pavement temperature. Int J Pavement Eng 20(6):669–681

    Article  CAS  Google Scholar 

  • Shi C, Xie Z, Qian H, Liang M, Yang X (2011) China land soil moisture EnKF data assimilation based on satellite remote sensing data. Science China Earth Sciences 54(9):1430–1440

    Article  Google Scholar 

  • Shimazaki Y, Aoki M, Nitta J, Okajima H, Yoshida A (2021) Experimental determination of pedestrian thermal comfort on water-retaining pavement for UHI adaptation strategy. Atmosphere 12(2):127

    Article  Google Scholar 

  • Solaimanian M and Kennedy TW (1993) Predicting maximum pavement surface temperature using maximum air temperature and hourly solar radiation Transportation Research Record 1–1

  • Song J, Wang Z-H, Myint SW, Wang C (2017) The hysteresis effect on surface-air temperature relationship and its implications to urban planning: an examination in Phoenix, Arizona, USA. Landsc Urban Plan 167:198–211

    Article  Google Scholar 

  • Sreedhar S, Biligiri KP (2016a) Comprehensive laboratory evaluation of thermophysical properties of pavement materials: effects on urban heat island. J Mater Civ Eng 28(7):04016026

    Article  Google Scholar 

  • Sreedhar S, Biligiri KP (2016b) Development of pavement temperature predictive models using thermophysical properties to assess urban climates in the built environment. Sustain Cities Soc 22:78–85

    Article  Google Scholar 

  • Stempihar JJ, Pourshams-Manzouri T, Kaloush KE, Rodezno MC (2012) Porous asphalt pavement temperature effects for urban heat island analysis. Transp Res Rec 2293(1):123–130

    Article  Google Scholar 

  • Stoll MJ, Brazel AJ (1992) Surface-air temperature relationships in the urban environment of Phoenix. Arizona Phys Geog 13(2):160–179

    Article  Google Scholar 

  • Synnefa A, Karlessi T, Gaitani N, Santamouris M, Assimakopoulos D, Papakatsikas C (2011a) Experimental testing of cool colored thin layer asphalt and estimation of its potential to improve the urban microclimate. Build Environ 46(1):38–44

    Article  Google Scholar 

  • Synnefa A, Karlessi T, Gaitani N, Santamouris M, Assimakopoulos D, Papakatsikas CJB and Environment (2011b) Experimental testing of cool colored thin layer asphalt and estimation of its potential to improve the urban microclimate 46(1): 38–44

  • Taleghani M, Berardi U (2018) The effect of pavement characteristics on pedestrians’ thermal comfort in Toronto. Urban Climate 24:449–459

    Article  Google Scholar 

  • Taleghani M, Sailor DJ, Tenpierik M, van den Dobbelsteen AJB, Environment (2014) Thermal assessment of heat mitigation strategies: the case of Portland State University, Oregon. USA 73:138–150

    Google Scholar 

  • Tan J, Zheng Y, Tang X, Guo C, Li L, Song G, Zhen X, Yuan D, Kalkstein AJ, Li F (2010) The urban heat island and its impact on heat waves and human health in Shanghai. Int J Biometeorol 54(1):75–84

    Article  Google Scholar 

  • Tan K, Qin Y, Du T, Li L, Zhang L, Wang J (2021) Biochar from waste biomass as hygroscopic filler for pervious concrete to improve evaporative cooling performance. Constr Build Mater 287:123078

    Article  Google Scholar 

  • Tang L-L, Chen X-L, Wang J-N, Zhao H-M, Huang Q-T (2014) A study of the coupling relationship between concrete surface temperature and concrete surface emissivity in natural conditions. Guang pu xue yu Guang pu fen xi=Guang pu 34(7):1736–1741

    CAS  Google Scholar 

  • Thompson M, Dempsey B, Hill H, Vogel J (1987) Characterizing temperature effects for pavement analysis and design. Transp Res Rec 1121

  • Velasquez R, Marasteanu M, Clyne TR, Engineer MF, Worel B (2008) Improved model to predict flexible pavement temperature profile. In: Third international conference on accelerated pavement testing, Madrid

  • Wan WC, Hien WN, Ping TP, Aloysius AZW (2012) A study on the effectiveness of heat mitigating pavement coatings in Singapore. J Heat Island Inst Int 7(2)

  • Wang D, Roesler JR, Guo D (2009) Analytical approach to predicting temperature fields in multilayered pavement systems. J Eng Mech 135(4):334–344

    Google Scholar 

  • Wang H, Wu S, Chen M, Zhang Y (2010) Numerical simulation on the thermal response of heat-conducting asphalt pavements. Phys Scr 2010(T139):014041

    Article  Google Scholar 

  • Wang J, Meng Q, Zou Y, Qi Q, Tan K, Santamouris M, He B (2022) Performance synergism of pervious pavement on stormwater management and urban heat island mitigation: a review of its benefits, key parameters, and co-benefits approach. Water Res 118755

  • Whiting ML, Li L, Ustin SL (2004) Predicting water content using Gaussian model on soil spectra. Remote Sens Environ 89(4):535–552

    Article  Google Scholar 

  • Yang W, Gu H, Shan Y (2008) Influence of pavement temperature on urban heat island. J Highway Trans Res Dev 25(3):147–152

    Google Scholar 

  • Yang J, Wang Z-H, Kaloush KE, Dylla H (2016) Effect of pavement thermal properties on mitigating urban heat islands: a multi-scale modeling case study in Phoenix. Build Environ 108:110–121

    Article  Google Scholar 

  • Yang X, You Z, Hiller J, Watkins D (2017) Sensitivity of flexible pavement design to Michigan’s climatic inputs using pavement ME design. Int J Pavement Eng 18(7):622–632

    Article  CAS  Google Scholar 

  • Yao T, Zhang Q (2014) Study on land-surface albedo over different types of underlying surfaces in North China. Acta Phys Sin 63(8):460–468

    Google Scholar 

  • Yinfei D, Qin S, Shengyue W (2014) Highly oriented heat-induced structure of asphalt pavement for reducing pavement temperature. Energy and Buildings 85:23–31

    Article  Google Scholar 

  • Yinfei D, Zheng H, Jiaqi C, Weizheng L (2018) A novel strategy of inducing solar absorption and accelerating heat release for cooling asphalt pavement. Sol Energy 159:125–133

    Article  Google Scholar 

  • Zapata CE, Andrei D, Witczak MW, Houston W (2007) Incorporation of environmental effects in pavement design. Road Mater Pavement Design 8(4):667–693

    Article  Google Scholar 

  • Zhang Y, Wu H (2014) Refinement prediction model of highway pavement temperature based on weight method. In: The 31st annual meeting of the Chinese meteorological society S10 the 4th forum on the development of meteorological services - improving the level of hydro-meteorological disaster prevention and mitigation, and promoting the social development of meteorological services

  • Zhang X, Pang J, Li L (2015) Estimation of land surface temperature under cloudy skies using combined diurnal solar radiation and surface temperature evolution. Remote Sensing 7(1):905–921

    Article  Google Scholar 

  • Zhang L, Wang H, Ren Z (2017) Computational analysis of thermal conductivity of asphalt mixture using virtually generated three-dimensional microstructure. J Mater Civ Eng 29(12):04017234

    Article  Google Scholar 

  • Zhao X, Liu Y (2013) Influence of road surface reflectivity on road surface temperature. Technol Innov App 30:211–212

    Google Scholar 

  • Zhao D, Arshad M, Wang J, Triantafilis J (2021a) Soil exchangeable cations estimation using Vis-NIR spectroscopy in different depths: effects of multiple calibration models and spiking. Comput Electron Agric 182:105990

    Article  Google Scholar 

  • Zhao Z, Sharifi A, Dong X, Shen L, He B (2021b) Spatial variability and temporal heterogeneity of surface urban heat island patterns and the suitability of local climate zones for land surface temperature characterization. Remote Sens 13(21):4338

    Article  Google Scholar 

  • Zheng M, Cheng C, Wang Y, Huang H (2012) Experimental research on asphalt pavement cooling technology based on improving pavement albedo. Highway Traffic Technol (Appl Technol Edition) 9:63

    Google Scholar 

  • Zheng M, He L, Gao X, Wang F, Cheng C (2013) Analysis of heat-reflective coating property for asphalt pavement based on cooling function. J Traffic Trans Eng 13(5):10–16

    Google Scholar 

  • Zhou Z, Wang X, Zhang X, Chen G, Zuo J, Pullen S (2015) Effectiveness of pavement-solar energy system–an experimental study. Appl Energy 138:1–10

    Article  Google Scholar 

  • Zhou J, Wei C, Wei H, Chen P (2016) Applicability of line heat source method in measuring thermal parameters of frozen soil. Chinese J Geotech Eng 38(4):681–687

    Google Scholar 

Download references

Funding

This work was jointly supported by the high-level innovation team and outstanding scholar program in Guangxi colleges (granted to Dr. Yinghong Qin), the National Natural Science Foundation of China (Nos. 41561015 and 51678164), and Innovation Project of Guangxi Graduate Education China (YCBZ2021022).

Author information

Authors and Affiliations

Authors

Contributions

Kanghao Tan: writing-original draft. Xingyue Zhang: literature management and data analysis. Junsong Wang: data analysis and plotting. Yinghong Qin: project administration, writing-review & editing and supervision.

Corresponding author

Correspondence to Kanghao Tan.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Responsible Editor: Philippe Garrigues.

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, Y., Zhang, X., Tan, K. et al. A review on the influencing factors of pavement surface temperature. Environ Sci Pollut Res 29, 67659–67674 (2022). https://doi.org/10.1007/s11356-022-22295-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-022-22295-3

Keywords

Navigation