Skip to main content
Log in

Hydrogeochemical analysis of groundwater quality for drinking and irrigation with elevated arsenic and potential impact on agro-ecosystem in the upper Brahmaputra plain, India

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The upper Brahmaputra floodplain is considerably enriched with geogenic contaminants, mainly Arsenic (As) exhibiting high spatial heterogeneity. With this concern, the present study was conducted in Lakhimpur district located in the upper Brahmaputra floodplain aiming to assess the groundwater (GW) suitability for drinking and irrigation. Chemical analysis of 78 GW samples revealed significantly high As (max 0.12 mgL−1, mean 0.02 mgL−1) followed by iron (max 62.2 mgL−1, mean 19.94 mgL−1) showing uneven distribution. Hydrogeochemical analysis of the GW samples revealed that majority of the water samples belong to mixed Ca2+- Na+- HCO3 type with weathering and forward ion exchange as the dominant processes in the aquifer system. Positive correlation among iron (Fe) and As, together with close grouping in hierarchical cluster analysis and principal components analysis, indicated the involvement of reductive hydrolysis process. Calculation of saturation indices indicated that, precipitation of Fe minerals may lead to de-coupling of Fe and As contributing to the enrichment of both the elements in the GW. Further, assessment of key parameters for irrigation water quality including water quality index indicated the GW to be suitable for irrigation purpose. Finally, toxicity implications of crops produced from As contaminated water indicated higher accumulation potential of As in the food grains implying significant impacts on the agro-ecosystem and associated health hazards.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data generated during this study are included in the submitted manuscript (and its supplementary information files).

The study does not contain animal research component.

References

  • Adomako EE, Solaiman AR, Williams PN, Deacon C, Rahman G, Meharg AA (2009) Enhanced transfer of arsenic to grain for Bangladesh grown rice compared to US and EU. Environment International. Apr; 35(3):476–479. https://doi.org/10.1016/j.envint.2008.07.010. PMID: 18757098.

  • Ahsan DA, Del Valls AC, Blasco J (2008) Distribution of arsenic and trace metals in the floodplain agricultural soil of Bangladesh. Bull Environ Contam Toxico 82(1):11–15

    Article  Google Scholar 

  • Ahuja S (2019) Handbook of Water Purity and Quality, Elsevier, Academic Press, 1st Edition, ISBN 9780123741929.

  • Akinbil OC, Haque AMM (2012) Arsenic contamination in irrigation water for rice production in Bangladesh: a review. Trends in Applied Sciences Research 7(5):331–349. https://doi.org/10.3923/TASR.2012.331.349

    Article  Google Scholar 

  • Alam M, Snow E, Tanaka A (2003) Arsenic and heavy metal contamination of vegetables grown in Samta village. Bangladesh Sci Total Environ 308(1):83–96

    Article  CAS  Google Scholar 

  • Alam M, Rais S, Aslam M (2012) Hydrogeochemical investigation and quality assessment of groundwater in rural areas of Delhi. India Environ Earth Sci 66(1):97–110

    Article  CAS  Google Scholar 

  • Ali W, Mushtaq N, Javed T, Zhang H, Ali K, Rasool A, Farooqi A (2019) Environ Pollut 245:77. https://doi.org/10.1016/j.envpol.2018.10.103.[Crossref],[PubMed],[WebofScience®],[GoogleScholar]

    Article  CAS  Google Scholar 

  • Al-Omran AM, Al-Harbi AR, Wahb-Allah MA, Nadeem M, Al-Eter A (2010) Impact of irrigation water quality, irrigation systems, irrigation rates and soil amendments on tomato production in sandy calcareous soil. Turkish J Agric for 34:59–73

    Google Scholar 

  • Anawar HM, García-Sánchez A, Hossain MZ (2013) Biogeochemical cycling of arsenic in soil–plant continuum: perspectives for phytoremediation. Heavy metal stress in plants. Springer, Heidelberg, pp 203–224

    Chapter  Google Scholar 

  • APHA (2005) Standard methods for the examination of water and wastewater, 21st edn. American Public Health Association, Washington

    Google Scholar 

  • APHA (2017) Standard Methods for the Examination of Water and Wastewater, 23rd edn. American Public Health Association, Washington, DC

    Google Scholar 

  • Arslan H (2017) Determination of temporal and spatial variability of groundwater irrigation quality using geostatistical techniques on the coastal aquifer of Çarşamba Plain, Turkey, from 1990 to 2012. Environ Earth Sci 76:38. https://doi.org/10.1007/s12665-016-6375-x

    Article  CAS  Google Scholar 

  • Asadi E, Isazadeh M, Samadianfard S, Ramli MF, Mosavi A, Nabipour N, Chau KW (2020) Groundwater quality assessment for sustainable drinking and irrigation. Sustainability 12(1):177

    Article  CAS  Google Scholar 

  • Ahsan, D.A., Del Valls, T.A., 2011. Impact of arsenic contaminated irrigation water in food chain: an overview from Bangladesh. International Journal of Environmental Research 5, 627–638.

  • Banerjee M, Banerjee N, Bhattacharjee P, Mondal D, Lythgoe PR, Martínez M, Pan J, Polya DA, Giri AK (2013) High arsenic in rice is associated with elevated genotoxic effects in humans. Scientific Reports 2013 3:1, 3(1), 1–8. https://doi.org/10.1038/srep02195

  • Baruah KK, Bharali A (2015) Physiological basis of iron toxicity and its management of crops. Recent Advances in Crop Physiology 2:203–224

    Google Scholar 

  • Biswas A, Biswas S, Santra SC (2014) Arsenic in irrigated water, soil, and rice: perspective of the cropping seasons. Paddy Water Environ 12(4):407–12

    Article  Google Scholar 

  • Brammer H (2009) Mitigation of arsenic contamination in irrigated paddy soils in South and South-east Asia. Environ. Int. 35(6):856–863. https://doi.org/10.1016/j.envint.2009.02.008

    Article  CAS  Google Scholar 

  • Brammer H, Ravenscroft P (2009) Arsenic in groundwater: a threat to sustainable agriculture in South and South-East Asia. Environ Int 35(3):647–654

    Article  CAS  Google Scholar 

  • Central Ground Water Board (2013) Ground Water Information Booklet Lakhimpur District, Assam

  • Chaturvedi R, Banerjee S, Chattopadhyay P, Bhattacharjee CR, Raul P, Borah K (2014) High iron accumulation in hair and nail of people living in iron affected areas of Assam. India Ecotoxicology and Environmental Safety 110:216–220

    Article  CAS  Google Scholar 

  • Chetia M, Chatterjee S, Banerjee S, Nath MJ, Singh L, Srivastava RB, Sarma HP (2011) Groundwater arsenic contamination in Brahmaputra River basin: a water quality assessment in Golaghat (Assam) India. Environ Monit Assess 173(1–4):371–385. https://doi.org/10.1007/s10661-010-1393-8

    Article  CAS  Google Scholar 

  • Chowdhury NR, Das R, Joardar M, Ghosh S, Bhowmick S, Chowdhury TR (2018) Arsenic accumulation in paddy plants at different phases of pre-monsoon cultivation. Chemosphere 210:987–997

    Article  CAS  Google Scholar 

  • Chou MJ, Jean JS, Sun GX, Hseu ZY, Yang CM, Das S, Teng JH (2014) Distribution and Accumulation of Arsenic in Rice Plants Grown in Arsenic‐Rich Agricultural Soil. Agronomy Journal 106(3) 945-951 10.2134/agronj13.0497

    Article  CAS  Google Scholar 

  • Connolly EL, Guerinot M (2002) “Iron stress in plants.” Genome biology vol. 3, 8: REVIEWS1024. https://doi.org/10.1186/gb-2002-3-8-reviews1024

  • Dahal BM, Fuerhacker M, Mentler A, Karki K, Shrestha R, Blu W (2008) Arsenic contamination of soils and agricultural plants through irrigation water in Nepal. Environ Pollut 155(1):157–163

    Article  CAS  Google Scholar 

  • Das N, Deka JP, Shim J, Patel AK, Kumar A, Sarma KP, Kumar M (2016) Effect of river proximity on the arsenic and fluoride distribution in the aquifers of the Brahmaputra Floodplains, Assam, Northeast India, Groundwater for Sustainable Development, Volumes 2–3. ISSN 130–142:2352–2801. https://doi.org/10.1016/j.gsd.2016.07.001

    Article  Google Scholar 

  • Das N, Das A, Sarma KP, Kumar M (2018) Provenance, prevalence and health perspective of co-occurrences of arsenic, fluoride and uranium in the aquifers of the Brahmaputra River floodplain. Chemosphere 194:755–772

    Article  CAS  Google Scholar 

  • Dittmar J, Voegelin A, Roberts LC, Hug SJ, Saha GC, Ali MA, Badruzzaman MAB, Kretzschmar R (2007) Spatial distribution and temporal variability of arsenic in irrigated rice fields in Bangladesh-2. Paddy Soil Environ Sci Technol 41(17):5967–5972. https://doi.org/10.1021/es0702972

    Article  CAS  Google Scholar 

  • Dittmar J, Voegelin A, Roberts LC, Hug SJ, Saha GC, Ali MA, Badruzzaman ABM, Kretzschmar R (2010) Arsenic accumulation in a paddy field in bangladesh: Seasonal dynamics and trends over a three-year monitoring period. Environ Sci Technol 44(8):2925–2931. https://doi.org/10.1021/ES903117R

    Article  CAS  Google Scholar 

  • Doneen LD (1964) Water quality for agriculture. Department of Irrigation, University of California, California, p 48

    Google Scholar 

  • Egbueri JC (2020) Groundwater quality assessment using pollution index of groundwater (PIG), ecological risk index (ERI) and hierarchical cluster analysis (HCA): a case study. Groundw Sustain Dev 10:100292

    Article  Google Scholar 

  • El Tahlawi MR, Abo-El Kassem M, Baghdadi GY, Saleem HA (2016) Estimating and plotting of groundwater quality using WQIUA and GIS in Assiut Governorate. Egypt World Journal of Engineering and Technology 4:59–70. https://doi.org/10.4236/wjet.2016.41007

    Article  Google Scholar 

  • Elsayed S, Hussein H, Moghanm FS, Khedher KM, Eid EM, Gad M (2020) Application of irrigation water quality indices and multivariate statistical techniques for surface water quality assessments in the Northern Nile Delta, Egypt. Water 2020, Vol. 12, Page 3300, 12(12), 3300. https://doi.org/10.3390/W12123300

  • Farooq SH, Chandrashekharam D, Dhanachandra W, Ram K (2019) Relationship of arsenic accumulation with irrigation practices and crop type in agriculture soils of Bengal Delta. India Applied Water Science 9:119. https://doi.org/10.1007/s13201-019-0904-1

    Article  CAS  Google Scholar 

  • Farrag AA (2005) The hydraulic and hydrogeological impacts of the Nile system on the groundwater in Upper Egypt. Assiut University Bulletin for Environmental Researches 8:87–102

    Google Scholar 

  • Fendorf S, Herbel MJ, Tufano KJ, Kocar BD (2008) Biogeochemical processes controlling the cycling of arsenic in soils and sediments. In Biophysico-Chemical Processes of Heavy Metals and Metalloids in Soil Environments, ed. A Violante, PM Huang, GM Gadd, pp. 313–38. Hoboken, NJ:Wiley

  • Gao Y, Qian H, Ren W, Wang H, Liu F, & Yang F (2020) Hydrogeochemical characterization and quality assessment of groundwater based on integrated-weight water quality index in a concentrated urban area. Journal of Cleaner Production, 121006.

  • Gibbs RJ (1970) Mechanism controlling world water chemistry. Science 170(10):1088–1090

    Article  CAS  Google Scholar 

  • Gillispie EC, Sowers TD, Duckworth OW, Polizzotto ML (2015) Soil pollution due to irrigation with arsenic-contaminated groundwater: current state of science. Curr Pollution Rep 1:1–12. https://doi.org/10.1007/s40726-015-0001-5

    Article  CAS  Google Scholar 

  • Goswami R, Kumar M, Biyani N, Shea PJ (2020) Arsenic exposure and perception of health risk due to groundwater contamination in Majuli (river island), Assam, India. Environmental Geochemistry and Health, ISSN 0269–4042(42):443–460. https://doi.org/10.1007/s10653-019-00373-9

    Article  CAS  Google Scholar 

  • Goswami, R., Rahman, M.M., Murrill, M., Sarma, K.P., Thakur, R., Chakraborti, D., 2014. Arsenic in the groundwater of Majuli–The largest river island of the Brahmaputra: Magnitude of occurrence and human exposure. Journal of Hydrology 518, 354–362.

    Article  CAS  Google Scholar 

  • Goswami, R., Kumar, M., Biyani, N., Shea, P.J., 2020. Arsenic exposure and perception of health risk due to groundwater contamination in Majuli (river island), Assam, India. Environmental geochemistry and health 42, 443–460.

  • GEOLOGICAL SURVEY OF INDIA (2009) Geology and mineral resources of Assam. Miscellaneous Publication No. 30 Part IV Vol 2(i) Assam

  • Hossain M, Jahiruddin M, Panaullah G, Loeppert R, Islam M (2008) Duxbury J (2008) Spatial variability of arsenic concentration in soils and plants, and its relationship with iron, manganese and phosphorus. Environ Pollut 156(3):739–744

    Article  CAS  Google Scholar 

  • Hsu W-M, Hsi H-C, Huang Y-T, Liao C-S, Hseu Z-Y (2012) Partitioning of arsenic in soil–crop systems irrigated using groundwater: a case study of rice paddy soils in southwestern Taiwan. Chemosphere 86(6):606–613

    Article  CAS  Google Scholar 

  • Huang RQ, Gao SF, Wang WL, Staunton S, Wang G (2006) Soil arsenic availability and the transfer of soil arsenic to crops in suburban areas in Fujian Province, southeast China. Sci Total Environ 368(2–3):531–41. https://doi.org/10.1016/j.scitotenv.2006.03.013 (Epub 2006 Apr 19 PMID: 16624379)

    Article  CAS  Google Scholar 

  • Huhmann BL, Harvey CF, Uddin A, Choudhury I, Ahmed KM, Duxbury JM, Bostick BC, Van Geen A (2017) Field study of rice yield diminished by soil arsenic in Bangladesh. Environ Sci Technol 51(20):11553–11560

    Article  CAS  Google Scholar 

  • Hussain I, Mohd A, Hussain J (2012) Fluoride contamination in drinking water in rural habitations of Central Rajasthan, India. Environment Monit Assess 184:5151–5158. https://doi.org/10.1007/s10661-011-2329-7

    Article  CAS  Google Scholar 

  • Jain C K, Vaid U (2018) Assessment of groundwater quality for drinking and irrigation purposes using hydrochemical studies in Nalbari district of Assam, India. Environmental Earth Sciences 77( 254). https://doi.org/10.1007/s12665-018-7422-6

  • Joint FAO/WHO Expert Committee on Food Additives (2010) Seventy-second meeting Rome, 16–25 February 2010. JECFA/72/SC

  • Karanth KR (1989) Hydrogeology. Co., Ltd. New Delhi, Tata McGraw-Hill Publ, p 720

    Google Scholar 

  • Katsoyiannis IA, Katsoyiannis A (2007) Arsenic and other metal contamination of groundwaters in the industrial area of Thessaloniki Northern Greece January 2007. Environ Monit Assess 123(1–3):393–406. https://doi.org/10.1007/s10661-006-9204-y

    Article  CAS  Google Scholar 

  • Kaur T, Bhardwaj R, Arora S (2016) Assessment of groundwater quality for drinking and irrigation purposes using hydrochemical studies in Malwa region, southwestern part of Punjab. Appl Water Sci, India. https://doi.org/10.1007/s1320-1-016-0476-2

  • Kelly WP (1940) Permissible composition and concentration of irrigated waters. In: Proceedings of the A.S.C.F, 607

  • Khan TA, Abbasi MA (2013) Synthesis of parameters used to check the suitability of water for irrigation purposes. Int J Environ Sci 3(6):2031–2038. https://doi.org/10.6088/ijes.20130-30600-029

    Article  Google Scholar 

  • Khan MA, Islam MR, Panaullah G, Duxbury JM, Jahiruddin M, Loeppert RH (2010) Accumulation of arsenic in soil and rice under wetland condition in Bangladesh. Plant Soil 333(1–2):263–274

    Article  CAS  Google Scholar 

  • Khodapanah L, Sulaiman WNA, Khodapanah DN (2009) Groundwater quality assessment for different purposes in Eshtehard District, Tehran. Iran Eur J Sci Res 36(4):543–553

    Google Scholar 

  • Kumar M, Kumari K, Ramanathan AL, Saxena R (2007) A comparative evaluation of groundwater suitability for irrigation and drinking purposes in two intensively cultivated districts of Punjab, India. Environ Geol 53:553–574

    Article  CAS  Google Scholar 

  • Kumar M, Rahman MM, Ramanathan AL, Naidu R (2016a) Arsenic and other elements in drinking water and dietary component from the middle Gangetic plain of Bihar, India: health risk index. Sci Total Environ 539:125–134

    Article  CAS  Google Scholar 

  • Kumar, M., Ramanathan, A.L., Rao, M.S., Kumar, B., 2006. Identification and evaluation of hydrogeochemical processes in the groundwater environment of Delhi, India. Environmental geology 50, 1025–1039.

    Article  CAS  Google Scholar 

  • Kumar M, Das A, Das N, Goswami R, Singh, (2016b) UK Co-occurrence perspective of arsenic and fluoride in the groundwater of Diphu, Assam, North-eastern India. Chemosphere 150:227–238

    Article  CAS  Google Scholar 

  • Kumar M, Patel AK, Das A, Kumar P, Goswami R, Deka P, Das N (2017) Hydrogeochemical controls on mobilization of arsenic and associated health risk in Nagaon district of the central Brahmaputra Plain, India. Environ Geochem Health 39:161–178. https://doi.org/10.1007/s10653-016-9816-2

    Article  CAS  Google Scholar 

  • Kumar M, Kalpana, K., Singh, U.K., Ramanathan, A., 2009. Hydrogeochemical processes in the groundwater environment of Muktsar, Punjab: conventional graphical and multivariate statistical approach. Environmental Geology 57, 873–884.

    Article  CAS  Google Scholar 

  • Kumar M, Goswami R, Patel A, Srivastava M & Das N. (2020). Scenario, Perspectives and Mechanism of Arsenic and Fluoride Co-occurrence in the Groundwater: A Review. Chemosphere. 249. 10.1016/j.chemosphere.2020.126126.

    Article  CAS  Google Scholar 

  • Lanjwani MF, Khuhawar MY, Khuhawar TMJ (2020a) Groundwater quality assessment of Shahdadkot, Qubo Saeed Khan and Sijawal Junejo Talukas of District Qambar Shahdadkot Sindh. Appl Water Sci 10:26. https://doi.org/10.1007/s13201-019-1098-2

    Article  CAS  Google Scholar 

  • Lanjwani MF, Khuhawar MY, Khuhawar TMJ (2020b) Assessment of groundwater quality for drinking and irrigation uses in taluka Ratodero, district Larkana. Sindh, Pakistan, International Journal of Environmental Analytical Chemistry,. https://doi.org/10.1080/03067319.2020.1780222

    Article  Google Scholar 

  • Lanjwani MF, Khuhawar MY, Khuhawar TMJ, Lanjwani AH, Soomro WA (2021a) Evaluation of hydrochemistry of the Dokri groundwater, including historical site Mohenjo-Daro. Sindh, Pakistan, International Journal of Environmental Analytical Chemistry,. https://doi.org/10.1080/03067319.2021.1884241.10.1080/03067319.2021.1884241

    Article  Google Scholar 

  • Lanjwani MF, Khuhawar MY, Khuhawar TMJ, Samtio MS, Memon SQ (2021b) Spatial variability and hydrogeochemical characterisation of groundwaters in Larkana of Sindh Pakistan. Groundwater for Sustainable Development 14:100632

    Article  Google Scholar 

  • Lanjwani MF, Khuhawar MY, Khuhawar TMJ, Memon SQ, Samtio MS, Lanjwani AH, Rind IK (2022) Spatial distribution of hydrochemistry and characterization of groundwater of taluka Bakrani, Larkana, Sindh Pakistan. Arab J Geosci 15:380. https://doi.org/10.1007/s12517-022-09609-y

    Article  CAS  Google Scholar 

  • Mahanta C, Enmark G, Nordborg D, Sracek O, Nath B, Nickson RT, Herbert R, Jacks G, Mukherjee A, Ramanathan AL, Choudhury R (2015) Hydrogeochemical controls on mobilization of arsenic in groundwater of a part of Brahmaputra River floodplain, India. Journal of Hydrology: Regional Studies 4:154–171

    Google Scholar 

  • Meharg AA, Rahman MM (2003) Arsenic contamination of Bangladesh paddy field soils: implications for rice contribution to arsenic consumption. Environ Sci Technol 37(2):229–234

    Article  CAS  Google Scholar 

  • Meharg AA, Williams PN, Adomako E, Lawgali YY, Deacon C, Villada A, Cambell RC, Sun G, Zhu YG, Feldmann J, Raab A, Zhao FJ, Islam R, Hossain S, Yanai J (2009) Geographical variation in total and inorganic arsenic content of polished (white) rice. Environ Sci Technol 43(5):1612–7. https://doi.org/10.1021/es802612a (PMID: 19350943)

    Article  CAS  Google Scholar 

  • Naujokas MF, Anderson B, Ahsan H, Aposhian HV, Graziano JH, Thompson C, Suk WA (2013) The broad scope of health effects from chronic arsenic exposure: update on a worldwide public health problem. Environ Health Perspect. 2013 Mar; 121(3):295–302. https://doi.org/10.1289/ehp.1205875. Epub 2013 Jan 3. PMID: 23458756; PMCID: PMC3621177.

  • Neumann RB, St. Vincent AP, Roberts LC, Badruzzaman ABM, Ali MA, Harvey CF (2011) Rice field geochemistry and hydrology: an explanation for why groundwater irrigated fields in Bangladesh is net sinks of arsenic from groundwater. Environ Sci Technol 45(6):2072–2078.https://doi.org/10.1021/es102635d

  • Nickson R, McArthur J, Shrestha B, Kyaw-Myint T, Lowry D (2005) Arsenic and other drinking water quality issues, Muzaffargarh District Pakistan. Appl Geochem 20:55–68

    Article  CAS  Google Scholar 

  • Panaullah GM, Alam T, Hossain MB, Loeppert RH, Lauren JG, Meisner CA, Ahmed ZU, Duxbury JM (2009) Arsenic toxicity to rice (Oryza sativa L.) in Bangladesh. Plant Soil 317:31. https://doi.org/10.1007/s11104-008-9786-y

    Article  CAS  Google Scholar 

  • Patel AK, Das N, Goswami R, Kumar M (2019) Arsenic mobility and potential co-leaching of fluoride from the sediments of three tributaries of the Upper Brahmaputra floodplain, Lakhimpur, Assam, India. J Geochem Explor 203:45–58. https://doi.org/10.1016/j.gexplo.2019.04.004

    Article  CAS  Google Scholar 

  • Patton H, Krometis L-A, Sarver E (2020) Springing for safe water: drinking water quality and source selection in Central Appalachian communities. Water 12(3):888. https://doi.org/10.3390/w12030888

    Article  CAS  Google Scholar 

  • Phan K, Sthiannopkao S, Heng S, Phan S, Huoy L, Wong MH, Kim KW(2013) Arsenic contamination in the food chain and its risk assessment of populations residing in the Mekong River basin of Cambodia. J Hazard Mater. Nov 15; 262:1064–71. https://doi.org/10.1016/j.jhazmat.2012.07.005. Epub 2012 Jul 7. PMID: 22818591.

  • Piper AM (1944) A graphic procedure in geochemical interpretation of water analysis. Am Geophys Union Trans 25:914–923

    Article  Google Scholar 

  • Polizzotto ML, Lineberger EM, Matteson AR, Neumann RB, Badruzzaman AB, Ali MA (2013) Arsenic transport in irrigation water across rice-field soils in Bangladesh. Environ Pollut 179:210–217

    Article  CAS  Google Scholar 

  • Poyen FB, Kundu PK, Ghosh AK (2018) pH control of untreated water for irrigation. Journal of The Institution of Engineers (India) Series A 99(2):1–8. https://doi.org/10.1007/s40030-018-0297-4

  • Qishlaqi A, Abdolahi M, Abbasnejad S (2018). Hydrogeochemical evolution of groundwater resource in an arid region of southeast Iran (Ravar plain-Kerman province). Journal of sciences, Islamic Republic of Iran 29(3): 253-269, ISSN 1016-1104.

  • Rahman M, Das R, Hassan N, Roy K, Haque F, Akber MA (2014) Environmental study on water quality of Mayur River with reference to suitability for irrigation. Int J Environ Sci 4(6):1150

    CAS  Google Scholar 

  • Rahman MA, Rahman A, Khan MZK, Renzaho AMN (2018) Human health risks and socio-economic perspectives of arsenic exposure in Bangladesh: a scoping review. Ecotoxicol Environ Saf 150:335–343

    Article  CAS  Google Scholar 

  • Rahman MA, Rahman MM, Hasegawa H (2012) Arsenic-induced straighthead: an impending threat to sustainable rice production in South and South-East Asia! Bull Environ Contam Toxicol.; 88(3):311–5. This article quantifies yield reductions in rice associated with application of As-rich groundwater and soil As accumulation.

  • Rajmohan N, Elango L (2004) Identification and evolution of hydrogeochemical processes in the groundwater environment in an area of the Palar and Cheyyar River Basins, Southern India. Environ Geol 46:47–61

    CAS  Google Scholar 

  • Rasheed H, Kay P, Slack R, Gong YY (2018) Arsenic species in wheat, raw and cooked rice: exposure and associated health implications. Sci Total Environ 634:366–373

    Article  CAS  Google Scholar 

  • Rasool A, Xiao T, Farooqi A, Shafeeque M, Liu Y, Kamran MA, Katsoyiannis IA, Akber Shah Eqani SAM (2016) Quality of tube well water intended for irrigation and human consumption with special emphasis on arsenic contamination at the area of Punjab, Pakistan. Environ Geochem Health. https://doi.org/10.1007/s10653-016-9855-8.

  • Rawat KS, Singh SK, Gautam SK (2018) Assessment of groundwater quality for irrigation use: a peninsular case study. Appl Water Sci 8:233. https://doi.org/10.1007/s13201-018-0866-8

    Article  CAS  Google Scholar 

  • Roychowdhury T., Tokunaga H., Uchino T., Ando M. (2005) Effect of arsenic-contaminated irrigation water on agricultural land soil and plants in West Bengal India. Chemosphere 58(6) 799-810 10.1016/j.chemosphere.2004.08.098

    Article  CAS  Google Scholar 

  • Roberts LC, Hug SJ, Dittmar J, Voegelin A, Saha GC, Ali MA, Badruzzaman ABM, Kretzschmar R (2007) (2007) Spatial distribution and temporal variability of arsenic in irrigated rice fields in Bangladesh. Environ Sci Technol 41(17):5960–5966. https://doi.org/10.1021/es070298u

    Article  CAS  Google Scholar 

  • Sahoo, P.K., Zhu, W., Kim, SH., Jung MC., Kim K.  (2013) Relations of arsenic concentrations among groundwater, soil and paddy from an alluvial plain of Korea. Geosci J 17, 363–370 . https://doi.org/10.1007/s12303-013-0031-1

    Article  CAS  Google Scholar 

  • Saha S, Reza AHMS, Roy MK (2019) Hydrochemical evaluation of groundwater quality of the Tista floodplain, Rangpur. Bangladesh Applied Water Science 9:198. https://doi.org/10.1007/s13201-019-1085-7

    Article  CAS  Google Scholar 

  • Schoeller H (1962) Les eaux souterraines Massio et Cie. France, Paris

    Google Scholar 

  • Seyfferth AL, McCurdy S, Schaefer MV, Fendorf S (2014) Arsenic concentrations in paddy soil and rice and health implications for major rice-growing regions of Cambodia. Environ Sci Technol 48(9):4699–4706

    Article  CAS  Google Scholar 

  • Shah BA (2015) Status of groundwater arsenic contamination in the states of North-East India: a review. Indian Groundwater, Vol. V, pp. 32–37

  • Shaji E, Santosh M, Sarath KV, Prakash P, Deepchand V, Divya BV (2021) Arsenic contamination of groundwater: a global synopsis with focus on the Indian Peninsula. Geosci Front 12:101079

    Article  CAS  Google Scholar 

  • Smedley P, Kinniburgh D (2002) A review of the source, behaviour and distribution of arsenic in natural waters. Appl Geochem 17(5):517–568

    Article  CAS  Google Scholar 

  • Sparks DL (2003) Environmental soil chemistry. Academic, Boston

    Book  Google Scholar 

  • Sridharan M, Senthil ND (2017) Groundwater quality assessment for domestic and agriculture purposes in Puducherry region. Appl Water Sci 7(7):4037–4053

    Article  CAS  Google Scholar 

  • Stroud JL, Norton GJ, Islam MR, Dasgupta T, White RP, Price AH, Meharg AA, McGrath SP, Zhao F-J (2011) The dynamics of arsenic in four paddy fields in the Bengal delta. Environ Pollut 159(4):947–953. https://doi.org/10.1016/J.ENVPOL.2010.12.016

    Article  CAS  Google Scholar 

  • Su YH, McGrath SP, Zhao FJ (2010) Rice is more efficient in arsenite uptake and translocation than wheat and barley. In press, Plant and Soil. https://doi.org/10.1007/s11104-099-074-2

    Book  Google Scholar 

  • Tanvir Rahman MATM, Saadat AHM, Islam MS, Al-Mansur MA, Ahmed S (2017) Groundwater characterization and selection of suitable water type for irrigation in the western region of Bangladesh. Appl Water Sci 7:233–243. https://doi.org/10.1007/s13201-014-0239-x

    Article  CAS  Google Scholar 

  • Todd DK (1980) Groundwater hydrology, 2nd edn. Wiley, New York, p 70

    Google Scholar 

  • Tong J, Guo H, Wei C (2014) Arsenic contamination of the soil–wheat system irrigated with high arsenic groundwater in the Hetao Basin Inner Mongolia China. Science of The Total Environment 496479-487 10.1016/j.scitotenv.2014.07.073

    Article  CAS  Google Scholar 

  • Todd DK, Mays LW (2005) Groundwater hydrology, 3rd edn. Wiley, Hoboken, NJ, p 656

    Google Scholar 

  • Tripathi AK, Mishra UK, Mishra A, Tiwari S, Dubey P (2012) Studies of hydrogeochemical in groundwater quality around Chakghat Area, Rewa District, Madhya Pradesh, India. Int J Mod Eng Res Technol 2:4051–4059

    Google Scholar 

  • Uddin MG, Nash S, Olbert AI (2021) A review of water quality index models and their use for assessing surface water quality. Ecol Ind 122:107218. https://doi.org/10.1016/j.ecolind.2020.107218

    Article  CAS  Google Scholar 

  • Wen X, Wu Y, Su J, Zhang Y, Liu F (2005) Hydrochemical characteristics and salinity of groundwater in the Ejina Basin, Northwestern China. Environ Geol 48:665–675

    Article  CAS  Google Scholar 

  • WHO (2011) Guidelines for Drinking-water Quality. World Health Organization, Geneva

    Google Scholar 

  • Wilcox LV (1955) Classification and use of irrigation water. Washington DC: US Dept. of Agriculture, Circular 969.

  • Williams PN, Villada A, Deacon C, Raab A, Figuerola J, Green AJ, Feldmann J, Meharg AA (2007) Greatly enhanced arsenic shoot assimilation in rice leads to elevated grain levels compared to wheat and barley. Environ Sci Technol 41(19):6854–6859. https://doi.org/10.1021/ES070627I

    Article  CAS  Google Scholar 

  • Williams PN, Zhang H, Davison W, Meharg AA, Hossain M, Norton GJ, Brammer H, Islam MR (2011) Organic matter–solid phase interactions are critical for predicting arsenic release and plant uptake in Bangladesh paddy soils. Environ Sci Technol 45(14):6080–6087

    Article  CAS  Google Scholar 

  • Wu J, Zhang Y, Zhou H (2020) Groundwater chemistry and groundwater quality index incorporating health risk weighting in Dingbian County, Ordos basin of northwest China. Geochemistry 125607

  • Xu XY, McGrath SP, Meharg A, Zhao FJ (2008) Growing rice aerobically markedly decreases arsenic accumulation. Environ Sci Technol 42:5574–5579

    Article  CAS  Google Scholar 

  • Yamaguchi N, Ohkura T, Takahashi Y, Maejima Y, Arao T (2014) Arsenic distribution and speciation near rice roots influenced by iron plaques and redox conditions of the soil matrix. Environ Sci Technol 48(3):1549–1556

    Article  CAS  Google Scholar 

  • Yang C, Li S, Liu R, Sun P, Liu K (2015) Effect of reductive dissolution of iron (hydr)oxides on arsenic behavior in a water–sediment system: First release, then adsorption. Ecol Eng 83:176–183. https://doi.org/10.1016/J.ECOLENG.2015.06.018

    Article  CAS  Google Scholar 

  • Yıldız S, Karakuş CB (2019) Estimation of irrigation water quality index with development of an optimum model: a case study. Environment, Development and Sustainability 2019 22:5, 22(5), 4771–4786. https://doi.org/10.1007/S10668-019-00405-5

  • Zahra N, Hafeez MB, Shaukat K, Wahid A, Hasanuzzaman M (2021) Fe toxicity in plants: Impacts and remediation. Physiol Plant.https://doi.org/10.1111/PPL.13361

  • Zaman M, Shahid SA, Heng L (2018) Irrigation Water Quality. Guideline for Salinity Assessment, Mitigation and Adaptation Using Nuclear and Related Techniques, 113–131.https://doi.org/10.1007/978-3-319-96190-3_5

  • Zavala YJ, Duxbury JM (2008) Arsenic in rice: I. Estimating normal levels of total arsenic in rice grain. Environ Sci Technol 42:3856–3860

    Article  CAS  Google Scholar 

  • Zhao F-J, McGrath SP, Meharg AA (2010) Arsenic as a food chain contaminant: mechanisms of plant uptake and metabolism and mitigation strategies. Annu Rev Plant Biol 61:535–559

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are thankful to North Eastern Regional Institute of Water and Land Management (NERIWALM), Tezpur, India, for providing laboratory facilities to carry out the experimental works.

Funding

This work is funded by Science and Engineering Research Board (SERB), the Department of Science and Technology (DST), Govt. of India under SERB-STAR grant (grant number STR/2020/000126) awarded to Dr. Ritusmita Goswami.

Author information

Authors and Affiliations

Authors

Contributions

Ritusmita Goswami: Conceptualization, Methodology, Resources, Writing – review & editing, Funding acquisition, Supervision, Nikita Neog: Writing – review & editing, Data curation, Software, Validation, Ritu Thakur: Formal analysis, Methodology.

Corresponding author

Correspondence to Ritusmita Goswami.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

All authors have read and agreed to the published version of the manuscript.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Xianliang Yi

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Ritusmita Goswami and Nikita Neog are Joint first authors.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 44 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goswami, R., Neog, N. & Thakur, R. Hydrogeochemical analysis of groundwater quality for drinking and irrigation with elevated arsenic and potential impact on agro-ecosystem in the upper Brahmaputra plain, India. Environ Sci Pollut Res 29, 68735–68756 (2022). https://doi.org/10.1007/s11356-022-20600-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-022-20600-8

Keywords

Navigation