Skip to main content
Log in

Impact of air pollution on outdoor cultural heritage objects and decoding the role of particulate matter: a critical review

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Atmospheric gases and particulate matter (PM) in contact with the material’s surface lead to chemical and physical changes, which in most cases cause degradation of the cultural heritage material. Atmospheric damage and soiling are recognized as two pivotal forms of deterioration of cultural heritage materials caused by air pollution. However, the atmospheric damage effect of PM is rather complicated; its variable composition accelerates the deterioration process. Considering this, one of the important contributions of this work is to review the existing knowledge on PM influence on atmospheric damage, further recognize, and critically evaluate the main gaps in current understanding. The second phenomenon related to cultural heritage material and PM pollution is soiling. Even if soiling was recognized long ago, its definition and knowledge have not changed much for several decades. In the past, it was believed that black carbon (BC) was the primary soiling agent and that the change of the lightness could effectively measure the soiling. With the change of pollution situation, the lightness measurements do not represent the degree of soiling correctly. The additional contribution of this work is thus, the critical evaluation of soiling measurements, and accordingly, due to the change of pollution situation, redefinition of soiling is proposed. Even though numerous studies have treated soiling and atmospheric damage separately, there is an overlap between these two processes. No systematic studies exist on the synergy between soiling and atmospheric damage caused by atmospheric PM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

No supplementary information.

References

  • Aas W, Mortier A, Bowersox V, Cherian R, Faluvegi G, Fagerli H, Hand J, Klimont Z, Galy-Lacaux C, Lehmann CM (2019) Global and regional trends of atmospheric sulfur. Sci Rep 9:1–11

    Article  CAS  Google Scholar 

  • Abd El-Maksoud S (2008) The effect of organic compounds on the electrochemical behaviour of steel in acidic media. A review. Int J Electrochem Sci 3:528–555

    CAS  Google Scholar 

  • Agarwal A, Kaushik A, Kumar S, Mishra RK (2020) Comparative study on air quality status in Indian and Chinese cities before and during the COVID-19 lockdown period. Air Qual Atmos Health 13(10):1167–1178. https://doi.org/10.1007/s11869-020-00881-z

    Article  CAS  Google Scholar 

  • Al-Hasan AY, Ghoneim AA (2005) A new correlation between photovoltaic panel’s efficiency and amount of sand dust accumulated on their surface. Int J Sustain Energ 24:187–197

    Article  Google Scholar 

  • Amoroso GG, Fasina V (1983) Stone decay and conservation; Atmospheric pollution, cleaning; and consolidation. Elsevier Science Pub., New York, NY, United States

  • Amri J, Gulbrandsen E, Nogueira RP (2011) Role of acetic acid in CO2 top of the line corrosion of carbon steel, CORROSION 2011, NACE- 11329

  • Anaf W (2014) The influence of particulate matter on cultural heritage: Chemical characterisation of the interaction between the atmospheric environment and pigments. Universiteit Antwerpen (Belgium)

  • Andreae M, Gelencsér A (2006) Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols. Atmos Chem Phys 6(10):3131–3148. https://doi.org/10.5194/acp-6-3131-2006

  • Andreae MO, Crutzen PJ (1997) Atmospheric aerosols: biogeochemical sources and role in atmospheric chemistry. Science 276:1052–1058

    Article  CAS  Google Scholar 

  • Arroyave C, Morcillo M (1995) The effect of nitrogen oxides in atmospheric corrosion of metals. Corros Sci 37:293–305

    Article  CAS  Google Scholar 

  • Aulinas M, Garcia-Valles M, Gimeno D, Fernandez-Turiel JL, Ruggieri F, Pugès M (2009) Weathering patinas on the medieval (S. XIV) stained glass windows of the Pedralbes Monastery (Barcelona Spain). Environ Sci Pollut Res 16(4):443–452. https://doi.org/10.1007/s11356-008-0078-0

  • Azmat N, Ralston K, Muddle B, Cole I (2011) Corrosion of Zn under acidified marine droplets. Corros Sci 53:1604–1615

    Article  CAS  Google Scholar 

  • Beloin NJ, Haynie FH (1975) Soiling of building materials. J Air Pollut Control Assoc 25:399–403

    Article  Google Scholar 

  • Benzzi K, Tanouti B, Bouabdelli M, Alvarez A, Brianso J, Cherradi F (2008) Determination of the composition and the origin of the ochre brown patina on the monumental Bab Agnaou gate (Marrakech, Morocco). Environ Geol 53:1283–1288

    Article  CAS  Google Scholar 

  • Bhaskar S, Iyer NR, Rajasankar J (2004) Cumulative damage function model for prediction of uniform corrosion rate of metals in atmospheric corrosive environment. Corros Eng, Sci Technol 39:313–320

    Article  CAS  Google Scholar 

  • Bhosle N, Wagh A (1992) The effect of organic matter associated with the corrosion products on the corrosion of mild steel in the Arabian Sea. Corros Sci 33:647–655

    Article  CAS  Google Scholar 

  • Birbilis N, Hinton B (2011) 19 - Corrosion and corrosion protection of aluminium. In: Lumley R (ed) Fundamentals of Aluminium Metallurgy. Woodhead Publishing, pp 574–604

    Chapter  Google Scholar 

  • Blanco-Varela MT, Martínez-Ramírez S, Sabbioni C, Zappia G, Toumbakari E, Aguilera J, Palomo Á, Riontino C, Van Valen K (2001) Thaumasite formation in hydraulic mortars by atmospheric SO^ deposition

  • Bohren CF, Huffman DR (2008) Absorption and scattering of light by small particles. John Wiley & Sons

    Google Scholar 

  • Bonazza A, Sabbioni C, Ghedini N (2005) Quantitative data on carbon fractions in interpretation of black crusts and soiling on European built heritage. Atmos Environ 39:2607–2618

    Article  CAS  Google Scholar 

  • Bonazza A, Brimblecombe P, Grossi CM, Sabbioni C (2007) Carbon in black crusts from the Tower of London. Environ Sci Technol 41:4199–4204

    Article  CAS  Google Scholar 

  • Borggaard OK (1983) Iron oxides in relation to aggregation of soil particles. Acta Agriculturae Scandinavica 33:257–260

    Article  CAS  Google Scholar 

  • Boudeulle M, Muller J-P (1988) Structural characteristics of hematite and goethite and their relationships with kaolinite in a laterite from Cameroon. A TEM Study Bulletin De Minéralogie 111:149–166

    Article  CAS  Google Scholar 

  • Bowler C, Brimblecombe P (2000) Control of air pollution in Manchester prior to the Public Health Act, 1875. Environment and History 6:71–98

    Article  Google Scholar 

  • Brimblecombe P (1996) Air composition and chemistry. Cambridge University Press

    Google Scholar 

  • Brimblecombe P (2003) The effects of air pollution on the built environment. Imperial College Press

    Book  Google Scholar 

  • Brimblecombe P, Grossi CM (2005) Aesthetic thresholds and blackening of stone buildings. Sci Total Environ 349:175–189

    Article  CAS  Google Scholar 

  • Brimblecombe P, Hara H, Houle D, Novak M (2007) Acid rain-deposition to recovery. Springer

    Book  Google Scholar 

  • Brimblecombe P, Thickett D, Yoon YH (2009) The cementation of coarse dust to indoor surfaces. J Cult Herit 10:410–414

    Article  Google Scholar 

  • Brimblecombe P (2013) Environmental assessment and monitoring of cultural heritage, Science and Technology for the Conservation of Cultural Heritage. CRC Press, pp. 13–16

  • Bunker B (1994) Molecular mechanisms for corrosion of silica and silicate glasses. J Non-Cryst Solids 179:300–308

    Article  CAS  Google Scholar 

  • Button H, Simm D (1985) The influence of particulate matter on the corrosion behaviour of type 316 stainless steel. Anti-Corros Methods Mater 32(6):8–10. https://doi.org/10.1108/eb020346

  • Calparsoro E, Maguregui M, Giakoumaki A, Morillas H, Madariaga JM (2017) Evaluation of black crust formation and soiling process on historical buildings from the Bilbao metropolitan area (north of Spain) using SEM-EDS and Raman microscopy. Environ Sci Pollut Res 24:9468–9480

    Article  CAS  Google Scholar 

  • Camuffo D, Del Monte M, Sabbioni C (1983) Origin and growth mechanisms of the sulfated crusts on urban limestone. Water Air Soil Pollut 19:351–359

    Article  CAS  Google Scholar 

  • Cardell-Fernández C, Vleugels G, Torfs K, Van Grieken R (2002) The processes dominating Ca dissolution of limestone when exposed to ambient atmospheric conditions as determined by comparing dissolution models. Environ Geol 43:160–171

    Article  CAS  Google Scholar 

  • Carey W (1959) Atmospheric deposits in Britain A study of dinginess. Int J Air Pollut 2:1

    CAS  Google Scholar 

  • Cariati F, Rampazzi L, Toniolo L, Pozzi A (2000) Calcium oxalate films on stone surfaces: experimental assessment of the chemical formation. Stud Conserv 45:180–188

    CAS  Google Scholar 

  • Cartalis C, Varotsos C (1994) Surface ozone in Athens, Greece, at the beginning and at the end of the twentieth century. Atmos Environ 28:3–8

    Article  CAS  Google Scholar 

  • Casati M, Rovelli G, D’Angelo L, Perrone MG, Sangiorgi G, Bolzacchini E, Ferrero L (2015) Experimental measurements of particulate matter deliquescence and crystallization relative humidity: application in heritage climatology. Aerosol Air Qual Res 15:399–409

    Article  CAS  Google Scholar 

  • Casey W, Bunker B, Hochella M, White A (1990) Mineral-water interface geochemistry. Rev Mineral 23:397–426

    CAS  Google Scholar 

  • Castaño J, Botero C, Restrepo A, Agudelo E, Correa E, Echeverría F (2010) Atmospheric corrosion of carbon steel in Colombia. Corros Sci 52:216–223

    Article  CAS  Google Scholar 

  • Chang S, Brodzinsky R, Gundel L, Novakov T (1982) Chemical and catalytic properties of elemental carbon, Particulate Carbon. Springer, 159–181

  • Chapoulie R, Cazenave S, Duttine M (2008) Laser cleaning of historical limestone buildings in Bordeaux appraisal using cathodoluminescence and electron paramagnetic resonance. Environ Sci Pollut Res 15:237–243

    Article  CAS  Google Scholar 

  • Chatoutsidou SE, Lazaridis M (2019) Assessment of the impact of particulate dry deposition on soiling of indoor cultural heritage objects found in churches and museums/libraries. J Cult Herit 39:221–228

    Article  Google Scholar 

  • Chen T, Li J, Shi P, Li Y, Lei J, Zhou J, Hu Z, Duan T, Tang Y, Zhu W (2017) Effects of montmorillonite on the mineralization and cementing properties of microbiologically induced calcium carbonate. Adv Mater Sci Eng 2017:7874251

    Google Scholar 

  • Chen Y, Bond T (2010) Light absorption by organic carbon from wood combustion. Atmos Chem Phys 10(4):1773–1787. https://doi.org/10.5194/acp-10-1773-2010

  • Chen ZY, Tidblad J, Persson D, Zakipour S, Kucera V, Leygraf C (2005) The Effect of Ammonium Sulfate Particles on the Atmospheric Corrosion of Copper, Swedish Corrosion Institute, diva2:11738

  • Chiavari C, Rahmouni K, Takenouti H, Joiret S, Vermaut P, Robbiola L (2007) Composition and electrochemical properties of natural patinas of outdoor bronze monuments. Electrochim Acta 52:7760–7769

    Article  CAS  Google Scholar 

  • Chico B, De la Fuente D, Díaz I, Simancas J, Morcillo M (2017) Annual atmospheric corrosion of carbon steel worldwide. An integration of ISOCORRAG, ICP/UNECE and MICAT databases. Materials 10, 601

  • Christodoulakis J, Tzanis CG, Varotsos CA, Ferm M, Tidblad J (2017) Impacts of air pollution and climate on materials in Athens. Greece Atmos Chem Phys 17:439

    Article  CAS  Google Scholar 

  • Chudnovsky A, Ben-Dor E (2009) Reflectance spectroscopy as a tool for settled dust monitoring in office environment. Int J Environ Waste Manage 4:32–49

    Article  CAS  Google Scholar 

  • Cole IS (2000) Mechanisms of atmospheric corrosion in tropical environments, Marine Corrosion in Tropical Environments. ASTM Int

  • Cooper OR, Parrish D, Ziemke J, Balashov N, Cupeiro M, Galbally I, Gilge S, Horowitz L, Jensen N, Lamarque J-F (2014) Global distribution and trends of tropospheric ozone: An observation-based review. Elementa: Science of the Anthropocene 2. https://doi.org/10.12952/journal.elementa.000029

  • Corbin JC, Mensah AA, Pieber SM, Orasche J, Michalke B, Zanatta M, Czech H, Massabò D, Buatier de Mongeot F, Mennucci C (2018) Trace metals in soot and PM2. 5 from heavy-fuel-oil combustion in a marine engine. Environ Sci Technol 52:6714–6722

    Article  CAS  Google Scholar 

  • Corn M (1976) Properties of non-viable particles in air. Academic Press, New York, p 1

    Google Scholar 

  • Coyle M, Smith R, Stedman J, Weston K, Fowler D (2002) Quantifying the spatial distribution of surface ozone concentration in the UK. Atmos Environ 36:1013–1024

    Article  CAS  Google Scholar 

  • Creighton PJ, Lioy PJ, Haynie FH, Lemmons TJ, Miller JL, Gerhart J (1990) Soiling by atmospheric aerosols in an urban industrial area. J Air Waste Manag Assoc 40:1285–1289

    Article  Google Scholar 

  • Crnković B, Tadej N, Pollak D (1994) UTJECAJ KISELIH KIŠA NA LITOTAMNIJSKI VAPNENAC NA GALERIJI KATEDRALE MARIJINOG UKAZANJA, ZAGREB, HRVATSKA. Rudarsko-Geološko-Naftni Zbornik 6:1–9

    Google Scholar 

  • De Buergo MÁ, González RF (2003) Protective patinas applied on stony façades of historical buildings in the past. Constr Build Mater 17:83–89

    Article  Google Scholar 

  • De la Fuente D, Vega JM, Viejo F, Díaz I, Morcillo M (2013) Mapping air pollution effects on atmospheric degradation of cultural heritage. J Cult Herit 14:138–145

    Article  Google Scholar 

  • Dean SW (1987) ISO CORRAG collaborative atmospheric exposure program: a preliminary report, degradation of metals in the atmosphere. ASTM Int

  • Del Monte M, Sabbioni C (1967) Vittori O (1981): Airborne carbon particles and marble deterioration. Atmos Environ 15:645–652

    Article  Google Scholar 

  • Del Monte M, Sabbioni C, Zappia G (1987) The origin of calcium oxalates on historical buildings, monuments and natural outcrops. Sci Total Environ 67:17–39

    Article  Google Scholar 

  • Di Turo F, Proietti C, Screpanti A, Fornasier MF, Cionni I, Favero G, De Marco A (2016) Impacts of air pollution on cultural heritage corrosion at European level: what has been achieved and what are the future scenarios. Environ Pollut 218:586–594

    Article  CAS  Google Scholar 

  • Diakumaku E, Gorbushina A, Krumbein W, Panina L, Soukharjevski S (1995) Black fungi in marble and limestones—an aesthetical, chemical and physical problem for the conservation of monuments. Sci Total Environ 167:295–304

    Article  CAS  Google Scholar 

  • Ding Y, Salvador CSC, Caldeira AT, Angelini E, Schiavon N (2021) Biodegradation and microbial contamination of limestone surfaces: an experimental study from Batalha Monastery, Portugal. Corros Mater Degrad 2:31–45

    Article  Google Scholar 

  • Eleftheriadis K, Balis D, Ziomas IC, ColBeck I, Manalis N (1998) Atmospheric aerosol and gaseous species in Athens, Greece. Atmos Environ 32:2183–2191

    Article  CAS  Google Scholar 

  • Erduran MS, Tuncel SG (2001) Gaseous and particulate air pollutants in the Northeastern Mediterranean Coast. Sci Total Environ 281:205–215

    Article  CAS  Google Scholar 

  • European Parliament CotEU (2008) Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on ambient air quality and cleaner air for Europe, European Parliament, Council of the European Union

  • Fassina V, Rattazzi A, Rossetti M, Realini M, Toniolo L (1996) Oxalate films on Venetian monuments using different analytical techniques to investigate the mechanism of formation, Proceedings of the Second International Symposium on The Oxalate Films in the Conservation of Works of Art, EDITEAM, 301–315

  • Fenter FF, Caloz F, Rossi MJ (1995) Experimental evidence for the efficient “dry deposition” of nitric acid on calcite. Atmos Environ 29:3365–3372

    Article  CAS  Google Scholar 

  • Ferm M, De Santis F, Varotsos C, Watt J, Hanlon O, S, (2004) New sampling methods for particulate matter and nitric acid. Bull-KORROSIONSINSTITUTET 110:177

    Google Scholar 

  • Ferm M, De Santis F, Varotsos C (2005) Nitric acid measurements in connection with corrosion studies. Atmos Environ 39:6664–6672

    Article  CAS  Google Scholar 

  • Ferm M, Watt J, O’Hanlon S, De Santis F, Varotsos C (2006) Deposition measurement of particulate matter in connection with corrosion studies. Anal Bioanal Chem 384:1320–1330

    Article  CAS  Google Scholar 

  • Ferm M (2004) Use of passive samplers in connection with atmospheric corrosion studies, International Workshop on Atmospheric Corrosion and Weathering Steels, Cartagena de Indias, Colombia

  • Fermo P, Goidanich S, Comite V, Toniolo L, Gulotta D (2018) Study and characterization of environmental deposition on marble and surrogate substrates at a monumental heritage site. Geosciences 8:349

    Article  CAS  Google Scholar 

  • Figgis B, Ennaoui A, Ahzi S, Rémond Y (2016) Review of PV soiling measurement methods, 2016 International Renewable and Sustainable Energy Conference (IRSEC). IEEE, pp. 176–180

  • Finlayson-Pitts BJ, Pitts JN Jr (1999) Chemistry of the upper and lower atmosphere: theory, experiments, and applications. Elsevier

    Google Scholar 

  • FitzGerald K, Nairn J, Skennerton G, Atrens A (2006) Atmospheric corrosion of copper and the colour, structure and composition of natural patinas on copper. Corros Sci 48:2480–2509

    Article  CAS  Google Scholar 

  • Fitzner B, Heinrichs K (2001) Damage diagnosis at stone monuments-weathering forms, damage categories and damage indices. Acta-Universitatis Carolinae Geologica 1:12–13

    Google Scholar 

  • Fonseca I, Picciochi R, Mendonca M, Ramos A (2004) The atmospheric corrosion of copper at two sites in Portugal: a comparative study. Corros Sci 46:547–561

    Article  CAS  Google Scholar 

  • Fox D, Stockburger L, Weathers W, Spicer C, Mackay G, Schiff H, Eatough D, Mortensen F, Hansen L, Shepson P (1988): Intercomparison of nitric acid diffusion denuder methods with tunable diode laser absorption spectroscopy. Atmos Environ 22:575–585

  • Gauri KL (1980) Deterioration of Architectural Structures and Monuments. In: Toribara, T.Y., Miller, M.W., Morrow, P.E. (eds) Polluted Rain. Environmental Science Research. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3060-8_7

  • Gjertsen SB, Palencsar A, Seiersten M, Hemmingsen T (2021) IOP Conference Series: Mater Sci Eng 1201(1):012079. https://doi.org/10.1088/1757-899X/1201/1/012079

  • Gorbushina AA (2007) Life on the rocks. Environ Microbiol 9:1613–1631

    Article  CAS  Google Scholar 

  • Grau-Bové J, Strlič M (2013) Fine particulate matter in indoor cultural heritage: a literature review. Heritage Science 1:1–17

    Article  CAS  Google Scholar 

  • Grau-Bové J, Mazzei L, Thickett D, Strlič M (2019) New perspectives on the study of particulate matter deposition within historic interiors. Stud Conserv 64:193–202

    Article  CAS  Google Scholar 

  • Grossi CM, Brimblecombe P (2004) Aesthetics of simulated soiling patterns on architecture. Environ Sci Technol 38:3971–3976

    Article  CAS  Google Scholar 

  • Grossi C, Esbert R, Dıaz-Pache F, Alonso F (2003) Soiling of building stones in urban environments. Build Environ 38:147–159

    Article  Google Scholar 

  • Grossi CM, Brimblecombe P, Bonazza A, Sabbioni C, Zamagni J (2006) Sulfate and carbon compounds in black crusts from the Cathedral of Milan and Tower of London. Int Conf Herit Weathering Conserv HWC 2006:441–446

    Google Scholar 

  • Hamilton R, Mansfield T (1993) The soiling of materials in the ambient atmosphere. Atmos Environ A Gen Top 27:1369–1374

    Article  Google Scholar 

  • Hancock RP, Esmen NA, Furber CP (1976) Visual response to dustiness. J Air Pollut Control Assoc 26:54–57

    Article  CAS  Google Scholar 

  • Haneef S, Johnson J, Dickinson C, Thompson G, Wood G (1992) Effect of dry deposition of NOx and SO2 gaseous pollutants on the degradation of calcareous building stones. Atmos Environ A Gen Top 26:2963–2974

    Article  Google Scholar 

  • O Hanlon S, Watt J, Hamilton R (2004) The soiling of cultural heritage materials. Bull-Korrosionsinstitutet 110, 201

  • Harker AB (1982) U.S Environmental Protection Agency (May 1982)

  • Haynie FH (1985) Size distribution of particles that may contribute to soiling of material surfaces. J Air Pollut Control Assoc 35:552–554

    Article  Google Scholar 

  • Haynie FH (1986) Theoretical model of soiling of surfaces by airborne particles

  • Haynie FH, Lemmons TJ (1990) Particulate matter soiling of exterior paints at a rural site. Aerosol Sci Technol 13:356–367

    Article  Google Scholar 

  • Hechler J-J, Boulanger J, Noël D (1991) Microclimates and corrosion on the exterior of a building. Ind Mater Inst

  • Henriksen J (2004) Environmental and pollution measurements in the Multi-Assess project. Bull-Korrosionsinstitutet 110:167

    Google Scholar 

  • Hinds WC (1999) Aerosol technology: properties, behavior, and measurement of airborne particles. John Wiley & Sons

    Google Scholar 

  • Hobbs PV (2000) Introduction to atmospheric chemistry. Cambridge University Press

    Book  Google Scholar 

  • Holloway AM, Wayne RP (2015) Atmospheric chemistry. Royal Society of Chemistry

    Google Scholar 

  • Huang J, Meng X, Zheng Z, Gao Y (2019) Effect of multi-pollutant state of ozone and sulfur dioxide on atmospheric corrosivity map of Guangdong Province. Environ Pollut 251:885–891

    Article  CAS  Google Scholar 

  • Illumination TCICo (1998) Practical methods for the measurement of reflectance and transmittance. Comm Internat de l'Eclairage

  • Institute SC (1989) Swedish Corrosion Institute (1989). Convection on long-range transboundary air polution. http://www.corr-institute.se/icp-materials/web/page.aspx?refid=16

  • Ionescu A, Lefèvre R-A, Chabas A, Lombardo T, Ausset P, Candau Y, Rosseman L (2006) Modeling of soiling based on silica-soda-lime glass exposure at six European sites. Sci Total Environ 369:246–255

    Article  CAS  Google Scholar 

  • Ivaskova M, Kotes P, Brodnan M (2015) Air pollution as an important factor in construction materials deterioration in Slovak Republic. Procedia Eng 108:131–138

    Article  CAS  Google Scholar 

  • Jacobson M, Hansson HC, Noone K, Charlson R (2000) Organic atmospheric aerosols: review and state of the science. Rev Geophys 38:267–294

    Article  CAS  Google Scholar 

  • Johansson L-G, Lindqvist O, Mangio R (1988) Corrosion of calcareous stones in humid air containing SO 2 and NO 2. Durab Build Mater 5:439–449

    CAS  Google Scholar 

  • Johnson CM, Leygraf C (2006) Atmospheric corrosion of zinc by organic constituents: Iii An infrared reflection-absorption spectroscopy study of the influence of formic acid. J Electrochem Soc 153:B547

    Article  CAS  Google Scholar 

  • Johnson CM, Leygraf C (2006) Atmospheric corrosion of zinc by organic constituents: Ii Reaction routes for zinc-acetate formation. J Electrochem Soc 153:B542

    Article  CAS  Google Scholar 

  • Kahyarian A, Schumaker A, Brown B, Nesic S (2017) Acidic corrosion of mild steel in the presence of acetic acid: Mechanism and prediction. Electrochim Acta 258:639–652

    Article  CAS  Google Scholar 

  • Kirkitsos P, Sikiotis D (1995) Deterioration of Pentelic marble, Portland limestone and Baumberger sandstone in laboratory exposures to gaseous nitric acid. Atmos Environ 29:77–86

    Article  CAS  Google Scholar 

  • Kirkitsos P, Sikiotis D (1996) Deterioration of Pentelic marble, Portland limestone and Baumberger sandstone in laboratory exposures to NO2: a comparison with exposures to gaseous HNO3. Atmos Environ 30:941–950

    Article  CAS  Google Scholar 

  • Kitanovski Z, Grgić I, Veber M (2011) Characterization of carboxylic acids in atmospheric aerosols using hydrophilic interaction liquid chromatography tandem mass spectrometry. J Chromatogr A 1218:4417–4425

    Article  CAS  Google Scholar 

  • Klimm E, Ost L, Lorenz T, Köhl M, Weiss K (2014) Impact of sand deposition and adhesion on solar glass under dew conditions. Gleisdorf Solar 2014

  • Knotkov D (1993) Atmospheric corrosivity classification-- results of the international testing program isocorrag. D. Knotkov, Paper

  • Knotkova D, Kreislova K, Burcher M (2005) Corrosion rate and wash-off rate of zinc from exposed galvanized steel—an update, Proc. of Zinc and Lead Conf.(Kyoto, Japan: The Mining and Materials Processing Institute of Japan, 2005)

  • Knotkova D, Kreislova K (2007) Atmospheric corrosion and conservation of copper and bronze. WIT Trans State Art Sci Eng 28:107–142

    Article  Google Scholar 

  • Korshin GV, Ferguson JF, Lancaster AN (2000) Influence of natural organic matter on the corrosion of leaded brass in potable water. Corros Sci 42:53–66

    Article  CAS  Google Scholar 

  • Krätschmer A, Wallinder IO, Leygraf C (2002) The evolution of outdoor copper patina. Corros Sci 44:425–450

    Article  Google Scholar 

  • Kreislova K, Knotkova D (2017) The results of 45 years of atmospheric corrosion study in the Czech Republic. Materials 10:394

    Article  CAS  Google Scholar 

  • Kreislova K, Knotkova D, Kopecky L (2009) Changes in corrosion rates in atmospheres with changing corrosivity. Corros Eng Sci Technol 44:433–440

    Article  CAS  Google Scholar 

  • Kreislova K, Jaglova M, Turek L, Koukalova A (2013) Evaluation of corrosion of long-term exposed aluminium conductor/Hodnocení korozního napadení hliníkových vodičù po dlouhodobé expozici. Koroze a Ochrana Materiálu 57:25–34

    CAS  Google Scholar 

  • Kucera V (2005) Model for multi-pollutant impact and assessment of threshold levels for cultural heritage. Swedish corrosion Institute, Stockholm

  • Kucera V, Tidblad J, Yates T (2004) Trends of pollution and deterioration of heritage materials, Proceedings of the 10th International congress on Deterioration and Conservation of Stone 1, 15–26

  • Kucera V, Tidblad J, Kreislova K, Knotkova D, Faller M, Snethlage R, Yates T, Henriksen J, Schreiner M, Ferm M (2005) The UN/ECE ICP Materials multi-pollutants exposure on effects on materials including historic and cultural monuments, 7th International Conference on Acid Deposition. Prague, Czech Republic, June 12–17, 2005. Conference Abstracts

  • Kucera V, Tidblad J, Kreislova K, Knotkova D, Faller M, Reiss D, Snethlage R, Yates T, Henriksen J, Schreiner M (2007) UN/ECE ICP materials dose-response functions for the multi-pollutant situation, Acid Rain-Deposition to Recovery. Springer, 249–258

  • Kucera V, Fitz S (1995) Direct and indirect air pollution effects on materials including cultural monuments. Water Air Soil Pollut 85:153–165

    Article  CAS  Google Scholar 

  • Kusmierek E, Chrzescijanska E (2015) Atmospheric corrosion of metals in industrial city environment. Data Brief 3:149–154

    Article  Google Scholar 

  • Laakso L, Hussein T, Aarnio P, Komppula M, Hiltunen V, Viisanen Y, Kulmala M (2003) Diurnal and annual characteristics of particle mass and number concentrations in urban, rural and Arctic environments in Finland. Atmos Environ 37:2629–2641

    Article  CAS  Google Scholar 

  • Lai AC, Nazaroff WW (2000) Modeling indoor particle deposition from turbulent flow onto smooth surfaces. J Aerosol Sci 31:463–476

    Article  CAS  Google Scholar 

  • Lanting R, Lee S, Schneider T, Grnat L (1986) Black smoke and soiling in aerosols, Proceedings of the Second US-Dutch Symposium, ed. Lee SD, Lewis Publisher, Williamsburgh, VA

  • Laskin A, Laskin J, Nizkorodov SA (2015) Chemistry of atmospheric brown carbon. Chem Rev 115:4335–4382

    Article  CAS  Google Scholar 

  • Lee SD, Schneider T, Grant L, Verkeck P (1985) Aerosols research, risk assessment and control strategies.

  • Leygraf C, Wallinder IO, Tidblad J, Graedel T (2016) Atmospheric corrosion. John Wiley & Sons

    Book  Google Scholar 

  • Li S, Hihara L (2014) Aerosol salt particle deposition on metals exposed to marine environments: a study related to marine atmospheric corrosion. J Electrochem Soc 161:C268

    Article  CAS  Google Scholar 

  • Lin H, Frankel G (2013) Atmospheric corrosion of Cu by UV, ozone and NaCl. Corros Eng Sci Technol 48:461–468

    Article  CAS  Google Scholar 

  • Lipfert F, Dupuis L, Malone R, Schaedler J (1985) Case study of materials damage due to air pollution and acid rain in New Haven, CT, Conference: 2. US-Dutch international symposium on aerosols: research, risk assessment and control strategies, Williamsburg, VA, USA, 19 May 1985, United States, pp. Medium: X; Size: Pages: 42

  • Livingston RA (1985) The role of nitrogen oxides in the deterioration of carbonate stone, Ve congres international sur l'alteration et la conservation de la pierre. Actes. Vth international congress on deterioration and conservation of stone. Proceedings, lausanne, 25–27–9, 1985, 509–516

  • Lobnig R, Frankenthal R, Siconolfi D, Sinclair J, Stratmann M (1994) Mechanism of atmospheric corrosion of copper in the presence of submicron ammonium sulfate particles at 300 and 373 K. J Electrochem Soc 141:2935

    Article  CAS  Google Scholar 

  • Lombardo T, Ionescu A, Lefèvre R, Chabas A, Ausset P, Cachier H (2005) Soiling of silica-soda-lime float glass in urban environment: measurements and modelling. Atmos Environ 39:989–997

    Article  CAS  Google Scholar 

  • Macchiarola M, Sabbioni C, Zappia G, Riontino C, Gobbi G (1999) Environmental deterioration of stone buildings in Ortigia island (Sicily, Italy). WIT Transactions on The Built Environment 42

  • Mansfield TA (1989) The soiling of materials in urban areas, Middlesex Polytechnic

  • Manual M (2008) Manual on methodologies and criteria for modelling and mapping critical loads & levels and air pollution effects, risks and trends. Federal Environmental Agency (Umweltbundesamt) Berlin, UBA-Texte 52

  • Mariaca L, Morcillo M (1998) Funciones de daño (dosis/respuesta) de la corrosion atmosferica en Iberoamerica: Programa CYTED. Seccion B-7, 629–660

  • MariC L (1938) Litotamnijski vapnenjak (kretnjak) u prirodi i gradevini (Lithothamnion limestone in nature and building). Tisak jug. Stampe dd 22

  • Maro D, Connan O, Flori JP, Hébert D, Mestayer P, Olive F, Rosant JM, Rozet M, Sini JF, Solier L (2014) Aerosol dry deposition in the urban environment: assessment of deposition velocity on building facades. J Aerosol Sci 69:113–131

    Article  CAS  Google Scholar 

  • Marsh A, Miles RE, Rovelli G, Cowling AG, Nandy L, Dutcher CS, Reid JP (2017) Influence of organic compound functionality on aerosol hygroscopicity: dicarboxylic acids, alkyl-substituents, sugars and amino acids. Atmos Chem Phys 17:5583–5599

    Article  CAS  Google Scholar 

  • Martin K, Souprounovich A (1986) Soiling of building materials about Melbourne: an exposure study.

  • Martin-Gil J, Ramos-Sánchez MdC, Martín-Gil FJ (1999) Ancient pastes for stone protection against environmental agents. Stud Conserv 44:58–62

    CAS  Google Scholar 

  • Massey S (1999) The effects of ozone and NOx on the deterioration of calcareous stone. Sci Total Environ 227:109–121

    Article  CAS  Google Scholar 

  • Matteini M, Moles A (1986) Le patine di ossalato di calcio sui manufatti in marmo. OPD restauro: Quaderni dell'Opificio delle pietre dure e Laboratori di restauro di Firenze, 65–73

  • Matteini M, Moles A, Giovannoni S (1994) Calcium oxalate as a protective mineral system for wall paintings: methodology and analyses, La conservazione dei monumenti nel bacino del Mediterraneo: atti del 3° simposio internazionale, Venezia, 22–25 giugno 1994, 155–162

  • McNamara CJ, Mitchell R (2005) Microbial deterioration of historic stone. Front Ecol Environ 3:445–451

    Article  Google Scholar 

  • Melcher M, Schreiner M, Kreislova K (2008) Artificial weathering of model glasses with medieval compositions–an empirical study on the influence of particulates. Phys Chem Glas-Eur J Glass Sci Technol B 49:346–356

    CAS  Google Scholar 

  • Mendoza AR, Corvo F, Gómez A, Gómez J (2004) Influence of the corrosion products of copper on its atmospheric corrosion kinetics in tropical climate. Corros Sci 46:1189–1200

    Article  CAS  Google Scholar 

  • Metaxa E (2011) Air pollution and cultural heritage: searching for “the relation between cause and effect”. Monit Control Effects Air Pollut 153

  • Molki A (2010) Dust affects solar-cell efficiency. Phys Educ 45:456–458

    Article  Google Scholar 

  • Monte M (2003) Oxalate film formation on marble specimens caused by fungus. J Cult Herit 4:255–258

    Article  Google Scholar 

  • Morcillo M (1995) Atmospheric corrosion in Ibero-America: the MICAT project, Atmospheric corrosion. ASTM Int

  • Morcillo M, Chico B, De la Fuente D, Simancas J (2012) Looking back on contributions in the field of atmospheric corrosion offered by the MICAT ibero-american testing network. Int J Corros 20121-24. https://doi.org/10.1155/2012/824365

  • Murray D, Atwater M, Yocom J (1985) Assessment of material damage and soiling from air pollution in the South Coast Air Basin. Final report, TRC Environmental Consultants, Inc., East Hartford, CT (USA), PB-86-232840/XAB

  • NAEI (2017) National atmospheric emissions inventory; air pollutants- sulphur dioxide. National Atmospheric Emissions Inventoryhttps://naei.beis.gov.uk/overview/pollutants?pollutant_id=8

  • Nazaroff WW (2004) Indoor Particle Dynamics Indoor Air 14:175–183

    Article  Google Scholar 

  • Nazaroff WW, Cass GR (1987) Particle deposition from a natural convection flow onto a vertical isothermal flat plate. J Aerosol Sci 18:445–455

    Article  CAS  Google Scholar 

  • Nazaroff WW, Cass GR (1989) Mathematical modeling of indoor aerosol dynamics. Environ Sci Technol 23:157–166

    Article  CAS  Google Scholar 

  • Newby P, Mansfield T, Hamilton R (1991) Sources and economic implications of building soiling in urban areas. Sci Total Environ 100:347–365

    Article  Google Scholar 

  • Ninic D, Stark HL (2007) A multiaxial fatigue damage function. Int J Fatigue 29:533–548

    Article  CAS  Google Scholar 

  • Noziere B, Kalberer M, Claeys M, Allan J, D’Anna B, Decesari S, Finessi E, Glasius M, Grgic I, Hamilton JF (2015) The molecular identification of organic compounds in the atmosphere: state of the art and challenges. Chem Rev 115:3919–3983

    Article  CAS  Google Scholar 

  • Odnevall Wallinder I, Leygraf C, Karlén C, Heijerick D, Janssen CR (2001) Atmospheric corrosion of zinc-based materials: runoff rates, chemical speciation and ecotoxicity effects. Corros Sci 43:809–816

    Article  Google Scholar 

  • Oh SJ, Cook D, Townsend H (1999) Atmospheric corrosion of different steels in marine, rural and industrial environments. Corros Sci 41:1687–1702

    Article  CAS  Google Scholar 

  • Palomino AM, Burns SE, Santamarina JC (2008) Mixtures of fine-grained minerals–kaolinite and carbonate grains. Clays Clay Miner 56:599–611

    Article  CAS  Google Scholar 

  • Papida S, Murphy W, May E (2000) Enhancement of physical weathering of building stones by microbial populations. Int Biodeterior Biodegradation 46:305–317

    Article  CAS  Google Scholar 

  • Patil SM, Kasthurba A, Patil MV (2021) Characterization and assessment of stone deterioration on heritage buildings. Case Stud Constr Mater 15:e00696

    Google Scholar 

  • Pedace EA, Sansone EB (1972) The relationship between “soiling index” and suspended particulate matter concentrations. J Air Pollut Control Assoc 22:348–351

    Article  CAS  Google Scholar 

  • Perry TD IV, Duckworth OW, McNamara CJ, Martin ST, Mitchell R (2004) Effects of the biologically produced polymer alginic acid on macroscopic and microscopic calcite dissolution rates. Environ Sci Technol 38:3040–3046

    Article  CAS  Google Scholar 

  • Pesava P, Aksu R, Toprak S, Horvath H, Seidl S (1999) Dry deposition of particles to building surfaces and soiling. Sci Total Environ 235:25–35

    Article  CAS  Google Scholar 

  • Pio CA, Ramos MM, Duarte AC (1998) Atmospheric aerosol and soiling of external surfaces in an urban environment. Atmos Environ 32:1979–1989

    Article  CAS  Google Scholar 

  • Piringer M, Ober E, Puxbaum H, Kromp-Kolb H (1997) Occurrence of nitric acid and related compounds in the northern Vienna basin during summertime anticyclonic conditions. Atmos Environ 31:1049–1057

    Article  CAS  Google Scholar 

  • Pöschl U (2002) Formation and decomposition of hazardous chemical components contained in atmospheric aerosol particles. J Aerosol Med 15:203–212

    Article  Google Scholar 

  • Pöschl U (2005) Atmospheric aerosols: composition, transformation, climate and health effects. Angew Chem Int Ed 44:7520–7540

    Article  CAS  Google Scholar 

  • Price CA, Doehne E (2011) Stone conservation: an overview of current research. Getty publications

  • Rampazzi L (2019) Calcium oxalate films on works of art: a review. J Cult Herit 40:195–214

    Article  Google Scholar 

  • Reisener A, Stöckle B, Snethlage R (1995) Deterioration of copper and bronze caused by acidifying air pollutants. Water Air Soil Pollut 85:2701–2706

    Article  CAS  Google Scholar 

  • Risteen B, Schindelholz E, Kelly R (2014) Marine aerosol drop size effects on the corrosion behavior of low carbon steel and high purity iron. J Electrochem Soc 161:C580

    Article  CAS  Google Scholar 

  • Rodríguez LM (1999) Corrosividad atmosférica:(Micat-México). Plaza y Valdes

  • Roots O (2008) Materials corrosion and air pollution. Long-term studies at the Lahemaa monitoring station Estonia. Proceedings of the Estonian Academy of Sciences 57(2):107. https://doi.org/10.3176/proc.2008.2.05

  • Rost E, Hecker C, Schodlok MC, Van der Meer FD (2018) Rock sample surface preparation influences thermal infrared spectra. Minerals 8:475

    Article  CAS  Google Scholar 

  • Rosvall J, Aleby S, institutet i Rom S (1986) Air pollution and conservation: safeguarding our architectural heritage: declarati on and final statement from an interdisciplinary symposium, Rome, October 15–17, 1986.

  • Roth EP, Anaya AJ (1980) The effect of natural soiling and cleaning on the size distribution of particles deposited on glass mirrors. J SolEnergy Eng 102:248–256

    Google Scholar 

  • Sabbioni C (2003) Mechanisms of air pollution damage to stone. Eff Air Pollut Built Environ 2:63–88

    Article  Google Scholar 

  • Sabbioni C, Zappia G, Gobbi G (1996) Carbonaceous particles and stone damage in a laboratory exposure system. J Geophys Res: Atmos 101:19621–19627

    Article  CAS  Google Scholar 

  • Sabbioni C, Zappia G, Riontino C, Blanco-Varela MT, Aguilera J, Puertas F, Van Balen K, Toumbakari E (2001) Atmospheric deterioration of ancient and modern hydraulic mortars. Atmos Environ 35:539–548

    Article  CAS  Google Scholar 

  • Sabbioni C, Ghedini N, Bonazza A (2003) Organic anions in damage layers on monuments and buildings. Atmos Environ 37:1261–1269

    Article  CAS  Google Scholar 

  • Sabbioni C, Ghedini N, Gobbi G, Riontino C, Zappia G (2000) Analytic methodologies for carbon compound identification: leaning tower and baptistery of pisa, Proceedings of the 9th International Congress on Deterioration and Conservation of Stone. Elsevier, 383–390

  • Saiz-Jimenez C (1993) Deposition of airborne organic pollutants on historic buildings. Atmos Environ b Urban Atmos 27:77–85

    Article  Google Scholar 

  • Samie F, Tidblad J, Kucera V, Leygraf C (2005) Atmospheric corrosion effects of HNO3—method development and results on laboratory-exposed copper. Atmos Environ 39:7362–7373

    Article  CAS  Google Scholar 

  • Samie F, Tidblad J, Kucera V, Leygraf C (2006) Atmospheric corrosion effects of HNO3—influence of concentration and air velocity on laboratory-exposed copper. Atmos Environ 40:3631–3639

    Article  CAS  Google Scholar 

  • Samie F, Tidblad J, Kucera V, Leygraf C (2007) Atmospheric corrosion effects of HNO3—comparison of laboratory-exposed copper, zinc and carbon steel. Atmos Environ 41:4888–4896

    Article  CAS  Google Scholar 

  • Samie F, Tidblad J, Kucera V, Leygraf C (2007) Atmospheric corrosion effects of HNO3—influence of temperature and relative humidity on laboratory-exposed copper. Atmos Environ 41:1374–1382

    Article  CAS  Google Scholar 

  • Sand W, Bock E (1991) Biodeterioration of mineral materials by microorganisms—biogenic sulfuric and nitric acid corrosion of concrete and natural stone. Geomicrobiol J 9:129–138

    Article  CAS  Google Scholar 

  • Schanda J (2007) Colorimetry: understanding the CIE system. John Wiley & Sons

    Book  Google Scholar 

  • Schneider IL, Teixeira EC, Silva Oliveira LF, Wiegand F (2015) Atmospheric particle number concentration and size distribution in a traffic–impacted area. Atmos Pollut Res 6:877–885

    Article  CAS  Google Scholar 

  • Schreiner M, Melcher M (2004) Qualitative and quantitative investigations of weathering effects on historic (medieval) potash-lime-silica glasses. Bull-Korrosionsinstitutet 110:103

    Google Scholar 

  • Schroeder M (1999) Das Programm ISOCORRAG: Ermittlung von Korrosivitaetsklassen aus Massenverlustraten, Bundesanstalt für Straßenwesen (BASt), International Organization for Standardization

  • Schultz E (1983) Mikroskopische Routineuntersuchungen des Staubniederschlages. Staub Reinhaltung Der Luft 43:482–489

    Google Scholar 

  • Screpanti A, De Marco A (2009) Corrosion on cultural heritage buildings in Italy: a role for ozone? Environ Pollut 157:1513–1520

    Article  CAS  Google Scholar 

  • Seinfeld JH, Pandis SN (2016) Atmospheric chemistry and physics: from air pollution to climate change. John Wiley & Sons

    Google Scholar 

  • Shilova O, Vlasov DY, Khamova T, Zelenskaya M, Frank-Kamenetskaya O (2022) Microbiologically induced deterioration and protection of outdoor stone monuments, Biodegradation and Biodeterioration At the Nanoscale. Elsevier, 339–367

  • Siegesmund S, Snethlage R (2011) Stone in architecture: properties, durability. Springer

    Book  Google Scholar 

  • Siegesmund S, Török A, Hüpers A, Müller C, Klemm W (2007) Mineralogical, geochemical and microfabric evidences of gypsum crusts: a case study from Budapest. Environ Geol 52:385–397

    Article  CAS  Google Scholar 

  • Siegesmund S, Snethlage R, Ruedrich J (2008) Monument futures: climate change, air pollution, decay and conservation—the Wolf-Dieter Grimm-volume. Springer

    Google Scholar 

  • Sikiotis D, Kirkitsos P (1995) The adverse effects of nitrates on stone monuments. Sci Total Environ 171:173–182

    Article  CAS  Google Scholar 

  • Strekalov P, Panchenko YM (1996) Monitoring of atmospheric corrosivity using standard flat and wire metal specimens. A Russian part of the isocorrag international test program. Физикoxимия Пoвepxнocти и Зaщитa Мaтepиaлoв 32:626–641

    Google Scholar 

  • Sun S, Zheng Q, Li D, Wen J (2009) Long-term atmospheric corrosion behaviour of aluminium alloys 2024 and 7075 in urban, coastal and industrial environments. Corros Sci 51:719–727

    Article  CAS  Google Scholar 

  • Sun H, Biedermann L, Bond TC (2007) Color of brown carbon: A model for ultraviolet and visible light absorption by organic carbon aerosol. Geophys Res Lett 34(17). https://doi.org/10.1029/2007GL029797

  • Svensson JE, Johansson LG (1993) A laboratory study of the effect of ozone, nitrogen dioxide, and sulfur dioxide on the atmospheric corrosion of zinc. J Electrochem Soc 140:2210

    Article  CAS  Google Scholar 

  • Svuom K, Lisa T, Mdx R (2007) Assessment of air pollution effects on cultural heritage—management strategies. Specific Targeted Research Project (STREP), Priority 8

  • Szatyłowicz E, Skoczko I (2019) Evaluation of the PAH content in soot from solid fuels combustion in low power boilers. Energies 12:4254

    Article  CAS  Google Scholar 

  • Tanaka H, Inoue M, Ishikawa T, Nakayama T (2016) Simulating study of atmospheric corrosion of steels in a coastal industrial zone: effect of SO32− on the formation of β-FeOOH rust particles synthesized from FeCl3 solutions. Corros Sci 112:241–245

    Article  CAS  Google Scholar 

  • Tanner RL, Valente RJ, Meagher JF (1998) Measuring inorganic nitrate species with short time resolution from an aircraft platform by dual-channel ozone chemiluminescence. J Geophys Res: Atmos 103:22387–22395

    Article  CAS  Google Scholar 

  • Terrat M-N, Joumard R (1990) The measurement of soiling. Sci Total Environ 93:131–138

    Article  CAS  Google Scholar 

  • Thornbush MJ (2010) Measurements of soiling and colour change using outdoor rephotography and image processing in Adobe Photoshop along the southern façade of the Ashmolean Museum, Oxford. Geol Soc London Spec Publ 331:231–236

    Article  CAS  Google Scholar 

  • Thornbush M (2014) A soiling index based on quantitative photography at Balliol College in central Oxford, UK. J Earth Ocean Atmos Sci 1:1–15

    Google Scholar 

  • Thornbush MJ (2014) New (Digital) Technique for areal measurements of stonewall surface roughness. Am J Geosci 4:24

    Google Scholar 

  • Thornbush M, Viles H (2004) Integrated digital photography and image processing for the quantification of colouration on soiled limestone surfaces in Oxford, England. J Cult Herit 5:285–290

    Article  Google Scholar 

  • Tidblad J (2004) Overview and introduction to the Multi-Assess project. Bull-Korrosionsinstitutet 110:63

    Google Scholar 

  • Tidblad V, Kucera J (2003) Air pollution damage to metals. Imperial College Press, London, UK

    Book  Google Scholar 

  • Tidblad J, Leygraf C (1995) Atmospheric corrosion effects of SO 2 and NO 2: a comparison of laboratory and field-exposed copper. J Electrochem Soc 142:749

    Article  CAS  Google Scholar 

  • Tidblad J, Leygraf C, Kucera V (1991) Acid deposition effects on materials: evaluation of nickel and copper. J Electrochem Soc 138:3592

    Article  CAS  Google Scholar 

  • Tidblad J, Leygraf C, Kucera V (1993) Acid deposition effects on materials: evaluation of nickel after four years of exposure. J Electrochem Soc 140:1912

    Article  CAS  Google Scholar 

  • Tidblad J, Kreislová K, Faller M, De la Fuente D, Yates T, Verney-Carron A, Grøntoft T, Gordon A, Hans U (2017) ICP Materials trends in corrosion, soiling and air pollution (1987–2014). Materials 10:969

    Article  CAS  Google Scholar 

  • Tidblad J, Leygraf C, Kucera V (1995) Acid deposition effects on materials: evaluation of electric contact materials after 4 years of exposure, Atmospheric Corrosion. ASTM Int

  • Tidblad J, Mikhailov A, Kucera V (1999) Quantification of Effects of Air Pollutants on Materials

  • Tidblad J, Kucera V, Mikhailov AA, Henriksen J, Kreislova K, Yates T, Stöckle B, Schreiner M (2001) UN ECE ICP Materials: Dose-Response Functions on Dry and Wet Acid Deposition Effects After 8 Years of Exposure. In: Satake K et al. (Editors), Acid rain 2000: Proceedings from the 6th International Conference on Acidic Deposition: Looking back to the past and thinking of the future Tsukuba, Japan, 10–16 December 2000 Volume III/III Conference Statement Plenary and Keynote Papers. Springer Netherlands, Dordrecht, pp. 1457–1462

  • Tidblad J, Kucera V, Ferm M, Kreislova K, Brüggerhoff S, Doytchinov S, Screpanti A, Grøntoft T, Yates T, De La Fuente D et al (2012) Effects of air pollution on materials and cultural heritage: ICP materials celebrates 25 years of research. Int J Corros 20121–16. https://doi.org/10.1155/2012/496321

  • Timonen HJ, Saarikoski SK, Aurela MA, Saarnio KM, Hillamo RE (2008) Water-soluble organic carbon in urban aerosol: concentrations, size distributions and contribution to particulate matter.

  • Titakis C, Vassiliou P (2020) Evaluation of 4-year atmospheric corrosion of carbon steel, aluminum, copper and zinc in a coastal military airport in Greece. Corros Mater Degrad 1:8

    Article  Google Scholar 

  • Toprak S, Aksu R, Pesava P, Horvath H (1997) The soiling of materials under simulated atmospheric conditions in a wind tunnel. J Aerosol Sci 1001:S585–S586

    Article  Google Scholar 

  • Török Á, Licha T, Simon K, Siegesmund S (2011) Urban and rural limestone weathering; the contribution of dust to black crust formation. Environ Earth Sci 63:675–693

    Article  CAS  Google Scholar 

  • Tzanis C, Varotsos C, Christodoulakis J, Tidblad J, Ferm M, Ionescu A, Lefevre R-A, Theodorakopoulou K, Kreislova K (2011) On the corrosion and soiling effects on materials by air pollution in Athens, Greece. Atmos Chem Phys 11:12039–12048

    Article  CAS  Google Scholar 

  • Tzanis C, Varotsos C, Ferm M, Christodoulakis J, Assimakopoulos M, Efthymiou C (2009) Nitric acid and particulate matter measurements at Athens, Greece, in connection with corrosion studies. Atmos Chem Phys 9(21):8309–8316. https://doi.org/10.5194/acp-9-8309-2009

  • US Environmental Protection Agency, Air Quality Criteria for Particulate Matter and Sulfur Oxides (Final Report, 1982), Environmental Protection Agency, Washington, D.C., EPA/600/8-82/029 (1982)

  • Van Aalst R (1986) Dry deposition of aerosol particles. Lee, D., Schneider, T., Grant, L. et Verkerk, P., éditeurs, Aerosols, 933–949

  • Van Grieken R, Delalieux F, Gysels K (1998) Cultural heritage and the environment. Pure Appl Chem 70:2327–2331

    Article  Google Scholar 

  • Van Grieken R, Gysels K, Hoornaert S, Joos P, Osan J, Szaloki I, Worobiec A (2000) Characterisation of individual aerosol particles for atmospheric and cultural heritage studies. Water Air Soil Pollut 123:215–228

    Article  Google Scholar 

  • Varotsos C, Tzanis C, Cracknell A (2009) The enhanced deterioration of the cultural heritage monuments due to air pollution. Environ Sci Pollut Res 16:590–592

    Article  Google Scholar 

  • Vendrell Saz M, Krumbien W, Urzi C (1996) Garcia Vallès M (1996): Are patinas of the Mediterranean monuments really related to the rock substrate? Áreas Revista Internacional De Ciencias Sociales 1996:609–624

    Google Scholar 

  • Verney-Carron A, Dutot A, Lombardo T, Chabas A (2012) Predicting changes of glass optical properties in polluted atmospheric environment by a neural network model. Atmos Environ 54:141–148

    Article  CAS  Google Scholar 

  • Vidal F, Vicente R, Silva JM (2019) Review of environmental and air pollution impacts on built heritage: 10 questions on corrosion and soiling effects for urban intervention. J Cult Herit 37:273–295

    Article  Google Scholar 

  • Videla HA, Guiawet P, Gomez de Saravia SG, Maldonado-Lopez L (2001) Mechanisms of microbial biodeterioration of limestone in Mayan Buildings, CORROSION 2001. OnePetro

  • Vilche JR, Varela FE, Acuña G, Codaro EN, Rosales BM, Fernández A, Moriena G (1995) A survey of Argentinean atmospheric corrosion: I—aluminium and zinc samples. Corros Sci 37:941–961

    Article  CAS  Google Scholar 

  • Wallinder IO, Zhang X, Goidanich S, Le Bozec N, Herting G, Leygraf C (2014) Corrosion and runoff rates of Cu and three Cu-alloys in marine environments with increasing chloride deposition rate. Sci Total Environ 472:681–694

    Article  CAS  Google Scholar 

  • Wang Z-y, Ma T, Han W, Yu G-c (2007) Corrosion behavior on aluminum alloy LY12 in simulated atmospheric corrosion process. Trans Nonferrous Metals Soc China 17:326–334

    Article  CAS  Google Scholar 

  • Warscheid T, Braams J (2000) Biodeterioration of stone: a review. Int Biodeterior Biodegradation 46:343–368

    Article  CAS  Google Scholar 

  • Watchman AL (1991) Age and composition of oxalate-rich crusts in the Northern Territory, Australia. Stud Conserv 36:24–32

    CAS  Google Scholar 

  • Watt J, Jarrett D, Hamilton R (2008) Dose–response functions for the soiling of heritage materials due to air pollution exposure. Sci Total Environ 400:415–424

    Article  CAS  Google Scholar 

  • Watt J, Tidblad J, Kucera V, Hamilton R (2009) The effects of air pollution on cultural heritage, 6. Springer

    Google Scholar 

  • Watt J, O’Hanlon S, Hamilton R (2004) Field studies to examine effects of particulate matter of different origin on building soiling in multipollutant environments–preliminary results from the Multi-Assess project in London, Air Pollution and Cultural Heritage. CRC Press, pp. 215–220

  • Weissenrieder J, Kleber C, Schreiner M, Leygraf C (2004) In situ studies of sulfate nest formation on iron. J Electrochem Soc 151:B497

    Article  CAS  Google Scholar 

  • Wilson M (2004) Weathering of the primary rock-forming minerals: processes, products and rates. Clay Miner 39:233–266

    Article  CAS  Google Scholar 

  • Winkler EM (1966) Important agents of weathering for building and monumental stone. Eng Geol 1:381–400

    Article  CAS  Google Scholar 

  • Wu Z, Hu M, Lin P, Liu S, Wehner B, Wiedensohler A (2008) Particle number size distribution in the urban atmosphere of Beijing, China. Atmos Environ 42:7967–7980

    Article  CAS  Google Scholar 

  • Xia C, Chunchun X (2006) Effect of chloride on the atmospheric corrosion of cast iron in sulphur‐bearing pollutant environments. Anti-Corros Methods Mater 53(3):161–168. https://doi.org/10.1108/00035590610665572

  • Xiang Y, Wang Z, Xu C, Zhou C, Li Z, Ni W (2011) Impact of SO2 concentration on the corrosion rate of X70 steel and iron in water-saturated supercritical CO2 mixed with SO2. J Supercrit Fluids 58:286–294

    Article  CAS  Google Scholar 

  • Xiao K, Dong C-f, Li X-g, Wang F-m (2008) Corrosion products and formation mechanism during initial stage of atmospheric corrosion of carbon steel. J Iron Steel Res Int 15:42–48

    Article  CAS  Google Scholar 

  • Yang X, Jiang L, Zhao W, Xiong Q, Zhao W, Yan X (2018) Comparison of Ground-based PM(2.5) and PM(10) concentrations in China, India, and the U.S. Int J Environ Res Public Health 15, 1382

  • Yocom JE (1979) Air pollution damage to buildings on the Acropolis. J Air Pollut Control Assoc 29:333–338

    Article  CAS  Google Scholar 

  • Yocom J, Kawecki J (1986) Overview of soiling and materials damage from aerosols. Aerosols. Boca Raton7 Lewis Publishers, 913–22

  • Yu Q, Dong C-f, Fang Y-h, Xiao K, Guo C-y, He G, Li X-g (2016) Atmospheric corrosion of Q235 carbon steel and Q450 weathering steel in Turpan, China. J Iron Steel Res Int 23:1061–1070

    Article  Google Scholar 

  • Yu X, Wang Z, Lu Z (2020) In situ investigation of atmospheric corrosion behavior of copper under thin electrolyte layer and static magnetic field. Microelectron Reliab 108:113630

    Article  CAS  Google Scholar 

  • Zakipour S, Tidblad J, Leygraf C (1997) Atmospheric corrosion effects of SO 2, NO 2, and O 3: a comparison of laboratory and field exposed nickel. J Electrochem Soc 144:3513

    Article  CAS  Google Scholar 

  • Zallmanzig J (1985) Investigations on the rates of immission and effects in selected places of europe for the quantitative examination of the influence of air pollution on the destruction of ashlar. A Report Nato/ccms Pilot Study Conserv Restor Monum

Download references

Acknowledgements

The author gratefully acknowledges dr. Božidar Ogorevc and dr. Palma Orlović-Leko for reading the manuscript and for the fruitful discussion.

Samo Hočevar: writing — review & editing, funding acquisition.

Eva Menart: writing — review & editing.

Ivana Drventić: discussion, manuscript editing.

Irena Grgić: discussion, writing — review & editing.

Ana Kroflič: discussion, writing — review & editing, funding acquisition.

Funding

This work was financially supported by the Slovenian Research Agency (Contract No. P1-0034 and project Impact of PM Pollution on cultural Heritage, J1-1707 (C), and the Croatian Research Agency (IP-2018–01-1717 MARRES).

Author information

Authors and Affiliations

Authors

Contributions

Kristijan Vidović: conceptualization, writing-original draft, writing-review & editing.

Corresponding author

Correspondence to Kristijan Vidović.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Michel Sablier

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vidović, K., Hočevar, S., Menart, E. et al. Impact of air pollution on outdoor cultural heritage objects and decoding the role of particulate matter: a critical review. Environ Sci Pollut Res 29, 46405–46437 (2022). https://doi.org/10.1007/s11356-022-20309-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-022-20309-8

Keywords

Navigation