Skip to main content

Advertisement

Log in

Carbon emission reduction cooperation of three-echelon supply chain under consumer environmental awareness and cap-and-trade regulation

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Considering that both the manufacturer’s production process and the transporter’s freight process produce carbon emissions, this paper constructed a three-echelon supply chain composed of a manufacturer, a transporter, and a retailer. This article studies the cooperative carbon emission reduction among the supply chain members under the carbon cap-and-trade policy and consumer environmental awareness. We used the Stackelberg game to explore four scenarios as follows: (1) in the non-cooperative decision model, no cooperation takes place among all supply chain members; (2) in the local cooperation decision of the manufacturer and the transporter alliance model, the manufacturer and the transporter work together to make decisions reducing carbon emissions, but each member of the supply chain makes its own pricing decisions; (3) in the local cooperation decision of the retailer-transporter alliance model, there is no cooperation except that the retailer and the transporter cooperate with each other to determine the selling price of the product; and (4) in the overall-cooperative decision model, there is complete cooperation among the members of the supply chain, who collectively decide on carbon emission reduction and the selling price of the product. Then, using the backward induction method, we derived and compared the equilibrium solutions and the profits of the supply chain system. The results showed that the scenario of complete cooperation among all supply chain members had the best performance in carbon emission reduction, market equilibrium quantity, and the supply chain system’s profit, but the selling price of the product was likely to be higher than other scenarios. Two contracts have been proposed to coordinate the supply chain system. The cost-sharing contract is effective but imperfect under limited constraints. The two-part tariff contract can realize perfect coordination of the supply chain. Finally, we obtained several interesting conclusions from the numerical example and provide managerial insights and policy implications from the analytical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

Download references

Availability of data and materials

The data sets supporting the results of this article are included within the article and its additional files.

Funding

This work was supported by the National Natural Science Foundation of China (grant numbers 72071002, 71771002).

Author information

Authors and Affiliations

Authors

Contributions

Yunfeng xZhang and Ying Qin conceived and designed the research question. Yunfeng Zhang constructed the models and analyzed the optimal solutions. Yunfeng Zhang and Ying Qin wrote the paper. Yunfeng Zhang and Ying Qin reviewed and edited the manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to Ying Qin.

Ethics declarations

Ethical approval

Not applicable

Consent to participate

Not applicable

Consent for publication

Not applicable

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Arshian Sharif

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

Proof of Theorem 1

Taking the second-order partial derivatives of \( {\Pi}_M^N \) and \( {\Pi}_T^N \) with respect to em and et, we have the following:

$$ \frac{\partial^2{\Pi}_M^N}{\partial {e}_m^2}=\frac{{\left(\eta +{bp}_0\right)}^2}{8b}-2{k}_1,\frac{\partial^2{\Pi}_T^N}{\partial {e}_t^2}=\frac{{\left(\eta +{bp}_0\right)}^2}{16b}-2{k}_2. $$

Let’s make \( {\partial}^2{\Pi}_M^N/\partial {e}_m^2 \) and \( {\partial}^2{\Pi}_T^N/\partial {e}_t^2 \) less than zero, and we get \( \eta <4\sqrt{bk_1}-{bp}_0 \) and \( \eta <4\sqrt{2{bk}_2}-{bp}_0 \). At this time, the manufacturer’s profit function, \( {\Pi}_M^N \), is concave in em, and the transporter’s profit function, \( {\Pi}_T^N \), is concave in et. Letting the first-order conditions of the profit function be zero, that is \( \partial {\Pi}_M^N/\partial {e}_m=0 \) and \( \partial {\Pi}_T^N/\partial {e}_t=0 \), and simultaneously solving the two equations, then the final carbon emissions from the manufacturer and the transporter are given, respectively, by

$$ \left\{{\displaystyle \begin{array}{c}{e}_m^N=\frac{32b{k}_1{k}_2{e}_{m0}-\left({k}_1{e}_{m0}-2{k}_2{e}_{t0}\right){\left(\eta +{bp}_0\right)}^2-2{k}_2\left(\eta +{bp}_0\right)\left.\left(a- bc- bv- Mb{p}_0\right)\right)}{32b{k}_1{k}_2-\left({k}_1+2{k}_2\right){\left(\eta +b{p}_0\right)}^2}\\ {}{e}_t^N=\frac{32b{k}_1{k}_2{e}_{t0}-\left(2{k}_2{e}_{t0}-{k}_1{e}_{m0}\right){\left(\eta +{bp}_0\right)}^2-{k}_1\left(\eta +{bp}_0\right)\left.\left(a- bc- bv- Mb{p}_0\right)\right)}{32b{k}_1{k}_2-\left({k}_1+2{k}_2\right){\left(\eta +b{p}_0\right)}^2}\end{array}}\right. $$

Thus, the carbon emission reduction of the supply chain system is expressed as follows:

$$ \Delta {e}_{SC}^N=\left({e}_{m0}-{e}_m^N\right)+\left({e}_{t0}-{e}_t^N\right)=\frac{\left({k}_1+2{k}_2\right)\left(\eta +{bp}_0\right)\left(a- bc- bv+{Mbp}_0-\left(\eta +{bp}_0\right)\left({e}_{m0}+{e}_{t0}\right)\right)}{32{bk}_1{k}_2-\left({k}_1+2{k}_2\right){\left(\eta +{bp}_0\right)}^2}. $$

Appendix B

Proof of Theorem 2

Substituting the equations of \( {e}_m^N \) and \( {e}_t^N \) into p(em, et), t(em, et), andw(em, et), it’s easy to get the expression of pN, tN, and wN. Substituting the expressions of pN, tN, and wN into Eq. (1) and the market demand function q(p, em, et), we can easily obtain \( {\Pi}_M^N \), \( {\Pi}_T^N \), \( {\Pi}_R^N \), and qN. Therefore, the profit of the supply chain system is expressed by \( {\varPi}_{SC}^N={\varPi}_M^N+{\varPi}_T^N+{\varPi}_R^N=\frac{k_1{k}_2\left(112b{k}_1{k}_2-\left({k}_1+4{k}_2\right){\left(\eta +{bp}_0\right)}^2\right)\left(a- bc- bv+ bM{p}_0-{\left(\eta +{bp}_0\right)}^2\left({e}_{m0}+{e}_{t0}\right)\right)}{32b{k}_1{k}_2-\left({k}_1+2{k}_2\right){\left(\eta +b{p}_0\right)}^2} \)

Appendix C

Proof of Corollary 1

Taking the first-order derivatives of \( \Delta {e}_{SC}^N \) with respect to η, we have the following:

$$ \frac{\partial \Delta {e}_{SC}^N}{\partial \eta }=\frac{\left({k}_1+2{k}_2\right)\left(\left({k}_1+2{k}_2\right)\left(a- bc- bv+ Mb{p}_0\right){\left(\eta +{bp}_0\right)}^2-64b{k}_1{k}_2\left({e}_{m0}+{e}_{t0}\right)\left(\eta +{bp}_0\right)+32b{k}_1{k}_2\left(a- bc- bv+ Mb{p}_0\right)\right)}{{\left(32b{k}_1{k}_2-\left({k}_1+2{k}_2\right){\left(\eta +b{p}_0\right)}^2\right)}^2} $$

To simplify the discussion, we denote \( {f}_1^N\left(\eta +{bp}_0\right)=\left({k}_1+2{k}_2\right)\left(a- bc- bv-{Mbp}_0\right){\left(\eta +{bp}_0\right)}^2-64{bk}_1{k}_2\left({e}_{m0}+{e}_{t0}\right)\left(\eta +{bp}_0\right)+32{bk}_1{k}_2\left(a- bc- bv+{Mbp}_0\right) \), then we know that \( {f}_1^N\left(\eta +{bp}_0\right) \) has the same monotonicity as \( \mathrm{\partial \Delta }{e}_{SC}^N/\partial \eta \). Obviously, \( {f}_1^N\left(\eta +{bp}_0\right) \) is a quadratic function with a parabola going upwards, and its discriminant is given by

$$ {\Delta}_{f_1^N\left(\eta +{bp}_0\right)}=128{bk}_1{k}_2\left(32{bk}_1{k}_2{\left({e}_{m0}+{e}_{t0}\right)}^2-\left({k}_1+2{k}_2\right){\left(a- bc- bv+{Mbp}_0\right)}^2\right). $$

We can see that when the initial carbon emissions of the supply chain system meet \( {e}_{m0}+{e}_{t0}>\left(a- bc- bv+{Mbp}_0\right)\sqrt{\frac{k_1+2{k}_2}{32{bk}_1{k}_2}} \), then it satisfies \( {\Delta}_{f_1^N\left(\eta +{bp}_0\right)}>0 \). At this point, \(f^N_1(\eta+bp_0)\) has two intersections with the horizontal axis, represented by

$$ {\displaystyle \begin{array}{*{20}c}{\eta}_1^N+{bp}_0=\frac{32{bk}_1{k}_2\left({e}_{m0}+{e}_{t0}\right)+\sqrt{32{bk}_1{k}_2\left(32{bk}_1{k}_2{\left({e}_{m0}+{e}_{t0}\right)}^2-\left({k}_1+2{k}_2\right){\left(a- bc- bv+{Mbp}_0\right)}^2\right)}}{\left({k}_1+2{k}_2\right)\left(a- bc- bv+{Mbp}_0\right)},\\ {}{\eta}_2^N+{bp}_0=\frac{32{bk}_1{k}_2\left({e}_{m0}+{e}_{t0}\right)-\sqrt{32{bk}_1{k}_2\left(32{bk}_1{k}_2{\left({e}_{m0}+{e}_{t0}\right)}^2-\left({k}_1+2{k}_2\right){\left(a- bc- bv+{Mbp}_0\right)}^2\right)}}{\left({k}_1+2{k}_2\right)\left(a- bc- bv+{Mbp}_0\right)}.\end{array}} $$

Based on the given assumption \( 0<{e}_{m0}+{e}_{t0}<\frac{a- bc- bv+{Mbp}_0}{\eta +{bp}_0} \), we know that \( \eta +{bp}_0<\frac{a- bc- bv+{Mbp}_0}{e_{m0}+{e}_{t0}} \), so there is \( \eta +{bp}_0<\sqrt{\frac{32{bk}_1{k}_2}{k_1+2{k}_2}} \). Owing to \( {\eta}_1^N+{bp}_0>\frac{32{bk}_1{k}_2\left({e}_{m0}+{e}_{t0}\right)}{\left({k}_1+2{k}_2\right)\left(a- bc- bv+{Mbp}_0\right)}>\sqrt{\frac{32{bk}_1{k}_2}{k_1+2{k}_2}} \), the point \( {\eta}_1^N+{bp}_0 \) does not suit the assumption, so it will not be discussed. The above analysis shows that if \( 0<\eta <{\eta}_1^N \), then \( {f}_1^N\left(\eta +{bp}_0\right)>0 \), that is \( \mathrm{\partial \Delta }{e}_{SC}^N/\partial \eta >0 \); and if \( {\eta}_1^N<\eta <\sqrt{\frac{32{bk}_1{k}_2}{k_1+2{k}_2}}-{bp}_0 \), then \( {f}_1^N\left(\eta +{bp}_0\right)<0 \), that is \( \mathrm{\partial \Delta }{e}_{SC}^N/\partial \eta <0 \). In addition, if the initial carbon emissions of the supply chain system meet \( {e}_{m0}+{e}_{t0}<\left(a- bc- bv+{Mbp}_0\right)\sqrt{\frac{k_1+2{k}_2}{32{bk}_1{k}_2}} \), the result of \( {\Delta}_{f_1^N\left(\eta +{bp}_0\right)}<0 \) happens, and \( {f}_1^N\left(\eta +{bp}_0\right) \) has no intersection with the horizontal axis. Hence, as long as it meets \( 0<\eta <\sqrt{\frac{32{bk}_1{k}_2}{k_1+2{k}_2}}-{bp}_0 \), then there is \( {f}_1^N\left(\eta +{bp}_0\right)>0 \), that is \( \mathrm{\partial \Delta }{e}_{SC}^N/\partial \eta >0 \).

Appendix D

Proof of Theorem 3

Taking the second-order partial derivatives of \( {\Pi}_{M+T}^S \) with respect to em and et, we have the Hessian matrix:

$$ H=\left(\begin{array}{*{20}c}\kern-4pt\frac{3{\left(\eta +{bp}_0\right)}^2}{16b}-2{k}_1 \kern14pt \frac{3{\left(\eta +{bp}_0\right)}^2}{16b}\\ \kern9pt {}\frac{3{\left(\eta +{bp}_0\right)}^2}{16b} \kern49pt \kern-37pt \frac{3{\left(\eta +{bp}_0\right)}^2}{16b}-2{k}_2\end{array}\right) $$

Let’s make \( \frac{3{\left(\eta +{bp}_0\right)}^2}{16b}-2{k}_1<0 \) and \( \left|\mathrm{H}\right|=\frac{3\left({k}_1+{k}_2\right)}{8b}{\left(\eta +{bp}_0\right)}^2-4{k}_1{k}_2<0 \), that is \( 0<\eta <\sqrt{\frac{32{bk}_1{k}_2}{3\left({k}_1+{k}_2\right)}}-{bp}_0 \), then \( {\Pi}_{M+T}^S \) is a strictly jointly concave function on em and et. Therefore, the optimal solutions of this optimization problem exist. Taking the first-order conditions of \( {\Pi}_{M+T}^S \) with respect to em and et be zero, that is \( \partial {\Pi}_{M+T}^S/\partial {e}_m=0 \) and \( \partial {\Pi}_{M+T}^S/\partial {e}_t=0 \), and simultaneously solving the two equations, then the final carbon emissions from the manufacturer and the transporter are given, respectively, by

$$ \Big\{{\displaystyle \begin{array}{*{20}c}{e}_m^S=\frac{32b{k}_1{k}_2{e}_{m0}-3\left({k}_1{e}_{m0}-{k}_2{e}_{t0}\right){\left(\eta +b{p}_0\right)}^2-3{k}_2\left(\eta +b{p}_0\right)\left(a- bc- bv+ bM{p}_0\right)}{32b{k}_1{k}_2-3\left({k}_1+{k}_2\right){\left(\eta +b{p}_0\right)}^2}\\ {}{e}_t^S=\frac{32b{k}_1{k}_2{e}_{t0}-3\left({k}_2{e}_{t0}-{k}_1{e}_{m0}\right){\left(\eta +b{p}_0\right)}^2-3{k}_1\left(\eta +b{p}_0\right)\left(a- bc- bv+ bM{p}_0\right)}{32b{k}_1{k}_2-3\left({k}_1+{k}_2\right){\left(\eta +b{p}_0\right)}^2}\end{array}} $$

Thus, the carbon emission reduction of the supply chain system is expressed as follows:

$$ \Delta {e}_{SC}^S=\left({e}_{m0}-{e}_m^S\right)+\left({e}_{t0}-{e}_t^S\right)=\frac{3\left({k}_1+{k}_2\right)\left(\eta +{bp}_0\right)\left(a- bc- bv+{bMp}_0-\left(\eta +{bp}_0\right)\left({e}_{m0}+{e}_{t0}\right)\right)}{32{bk}_1{k}_2-3\left({k}_1+{k}_2\right){\left(\eta +{bp}_0\right)}^2}. $$

Appendix E

Proof of Theorem 4

Substituting the equations of \( {e}_m^S \) and \( {e}_t^S \) into p(em, et), t(em, et), andw(em, et), we can obtain the expression of pS, tS, andwS. Then, substituting the expressions of pS, tS, and wS into Eq. (1) and the market demand function q(p, em, et), we can easily get \(\Pi^S_M\), \(\Pi^C_T\), \(\Pi^C_R\), and qS. Hence, The profit of the supply chain system is expressed by

$$ {\Pi}_{SC}^S={\Pi}_M^S+{\Pi}_T^S+{\Pi}_R^S=\frac{k_1{k}_2\left(112{bk}_1{k}_2-9\left({k}_1+{k}_2\right){\left(\eta +{bp}_0\right)}^2\right)\left(a- bc- bv+{Mbp}_0-{\left(\eta +{bp}_0\right)}^2\left({e}_{m0}+{e}_{t0}\right)\right)}{32{bk}_1{k}_2-3\left({k}_1+{k}_2\right){\left(\eta +{bp}_0\right)}^2}. $$

Appendix F

Proof of Corollary 2

Taking the first-order derivatives of \( \Delta {e}_{SC}^S \) with respect to η, we have the following:

$$ \frac{\partial \varDelta {e}_{SC}^S}{\partial \eta }=\frac{3\left({k}_1+{k}_2\right)\left(3\left({k}_1+{k}_2\right)\left(a- bc- bv+ bM{p}_0\right){\left(\eta +b{p}_0\right)}^2-64b{k}_1{k}_2\left({e}_{m0}+{e}_{t0}\right)\left(\eta +b{p}_0\right)+32b{k}_1{k}_2\left(a- bc- bv+ bM{p}_0\right)\right)}{{\left(32b{k}_1{k}_2-3\left({k}_1+{k}_2\right){\left(\eta +b{p}_0\right)}^2\right)}^2}. $$

To simplify discussion, we denote \(f^S_1(\eta+bp_0)=3x(k_1+k_2)(a-bc-bv+bMp_0)(\eta+bp_o)^2-64bk_1k_2(e_{m0}+e_{t0})(\eta+bp_0)+32bk_1k_2(a-bc-bv+bMp_0)\), then we know that \( {f}_1^S\left(\eta +{bp}_0\right) \) has the same monotonicity as \( \mathrm{\partial \Delta }{e}_{SC}^S/\partial \eta \). Obviously, \( {f}_1^S\left(\eta +{bp}_0\right) \) is a quadratic function with a parabola going upwards, and its discriminant is given by

$$ {\Delta}_{f_1^S\left(\eta +{bp}_0\right)}=128{bk}_1{k}_2\left(32{bk}_1{k}_2{\left({e}_{m0}+{e}_{t0}\right)}^2-3\left({k}_1+{k}_2\right){\left(a- bc- bv+{bMp}_0\right)}^2\right). $$

We can see that when the initial carbon emissions of the supply chain system meet \( {e}_{m0}+{e}_{t0}>\left(a- bc- bv+{bMp}_0\right)\sqrt{\frac{3\left({k}_1+{k}_2\right)}{32{bk}_1{k}_2}} \), then it satisfies \( {\Delta}_{f_1^S\left(\eta +{bp}_0\right)}>0 \). At this point, \(f^S_1(\eta+bp_0)\) has two intersections with the horizontal axis, represented by

$$ {\displaystyle \begin{array}{*{20}c}{\eta}_1^S=\frac{32{bk}_1{k}_2\left({e}_{m0}+{e}_{t0}\right)+\sqrt{32{bk}_1{k}_2\left(32{bk}_1{k}_2{\left({e}_{m0}+{e}_{t0}\right)}^2-3\left({k}_1+{k}_2\right){\left(a- bc- bv+{bMp}_0\right)}^2\right)}}{3\left({k}_1+{k}_2\right)\left(a- bc- bv+{bMp}_0\right)}-{bp}_0,\\ {}{\eta}_2^S=\frac{32{bk}_1{k}_2\left({e}_{m0}+{e}_{t0}\right)-\sqrt{32{bk}_1{k}_2\left(32{bk}_1{k}_2{\left({e}_{m0}+{e}_{t0}\right)}^2-3\left({k}_1+{k}_2\right){\left(a- bc- bv+{bMp}_0\right)}^2\right)}}{3\left({k}_1+{k}_2\right)\left(a- bc- bv+{bMp}_0\right)}-{bp}_0.\end{array}} $$

Based on the given assumption \( 0<{e}_{m0}+{e}_{t0}<\frac{a- bc- bv+{bMp}_0}{\eta +{bp}_0} \), we know that \( \eta +{bp}_0<\frac{a- bc- bv+{bMp}_0}{e_{m0}+{e}_{t0}} \), so there is \( \eta +{bp}_0<\sqrt{\frac{32{bk}_1{k}_2}{3\left({k}_1+{k}_2\right)}} \). Owing to \( {\eta}_1^S+{bp}_0>\frac{32{bk}_1{k}_2\left({e}_{m0}+{e}_{t0}\right)}{3\left({k}_1+{k}_2\right)\left(a- bc- bv+{bMp}_0\right)}>\sqrt{\frac{32{bk}_1{k}_2}{3\left({k}_1+{k}_2\right)}} \), the point \( {\eta}_1^S+{bp}_0 \) does not suit the assumption, so it will not be discussed. The above analysis shows that of \( 0<\eta <{\eta}_1^S \), then \( {f}_1^S\left(\eta +{bp}_0\right)>0 \), that is \( \mathrm{\partial \Delta }{e}_{SC}^S/\partial \eta >0 \); and if \( {\eta}_1^S<\eta <\sqrt{\frac{32{bk}_1{k}_2}{3\left({k}_1+{k}_2\right)}}-{bp}_0 \), then \( {f}_1^S\left(\eta +{bp}_0\right)<0 \), that is \( \mathrm{\partial \Delta }{e}_{SC}^S/\partial \eta <0 \). In addition, if the initial carbon emissions of the supply chain system meet \( {e}_{m0}+{e}_{t0}<\left(a- bc- bv+{bMp}_0\right)\sqrt{\frac{3\left({k}_1+{k}_2\right)}{32{bk}_1{k}_2}} \), the result of \( {\Delta}_{f_1^S\left(\eta +{bp}_0\right)}<0 \) happens, and \( {f}_1^S\left(\eta +{bp}_0\right) \) has no intersection with the horizontal axis. Hence, as long as it meets \( 0<\eta <\sqrt{\frac{32{bk}_1{k}_2}{3\left({k}_1+{k}_2\right)}} \), then there is \( {f}_1^S\left(\eta +{bp}_0\right)>0 \), that is \( \mathrm{\partial \Delta }{e}_{SC}^S/\partial \eta >0 \).

Appendix G

Proof of Theorem 5

Taking the second-order partial derivatives of \( {\Pi}_M^L \) and \( {\Pi}_{T+R}^L \) with respect to em and et, we have the following:

$$ \frac{\partial^2{\Pi}_M^L}{\partial {e}_m^2}=\frac{{\left(\eta +{bp}_0\right)}^2}{4b}-2{k}_1,\frac{\partial^2{\Pi}_{T+R}^L}{\partial {e}_t^2}=\frac{{\left(\eta +{bp}_0\right)}^2}{8b}-2{k}_2. $$

Let’s make \( {\partial}^2{\Pi}_M^L/\partial {e}_m^2 \) and \( {\partial}^2{\Pi}_{T+R}^L/\partial {e}_t^2 \) less than zero, and we get \( \eta <2\sqrt{2{bk}_1}-{bp}_0 \) and \( \eta <4\sqrt{bk_2}-{bp}_0 \). At that moment, the manufacturer’s profit function, \( {\Pi}_M^L \), is concave in em, and the transporter-retailer alliance’s profit function, \( {\Pi}_{T+R}^L \), is concave in et. Letting the first-order conditions of the profit function be zero, that is \( \partial {\Pi}_M^L/\partial {e}_m=0 \) and \( \partial {\Pi}_{T+R}^L/\partial {e}_t=0 \), and simultaneously solving the two equations, then the final carbon emissions from the manufacturer and the transporter-retailer alliance are given, respectively, by

$$ \left\{\begin{array}{*{20}c}{e}_m^L=\frac{16b{k}_1{k}_2{e}_{m0}-\left({k}_1{e}_{m0}-2{k}_2{e}_{t0}\right){\left(\eta +b{p}_0\right)}^2-2{k}_2\left(\eta +b{p}_0\right)\left(a- bc- bv+ bM{p}_0\right)}{16b{k}_1{k}_2-\left({k}_1+2{k}_2\right){\left(\eta +b{p}_0\right)}^2}\\ {}{e}_t^L=\frac{16b{k}_1{k}_2{e}_{t0}-\left(2{k}_2{e}_{t0}-{k}_1{e}_{m0}\right){\left(\eta +b{p}_0\right)}^2-{k}_1\left(\eta +b{p}_0\right)\left(a- bc- bv+ bM{p}_0\right)}{16b{k}_1{k}_2-\left({k}_1+2{k}_2\right){\left(\eta +b{p}_0\right)}^2}\end{array}\right. $$

Thus, the carbon emission reduction of the supply chain system is expressed as follows:

$$ \Delta {e}_{SC}^L=\left({e}_{m0}-{e}_m^L\right)+\left({e}_{t0}-{e}_t^L\right)=\frac{\left({k}_1+2{k}_2\right)\left(\eta +{bp}_0\right)\left(a- bc- bv+{bMp}_0-\left(\eta +{bp}_0\right)\left({e}_{m0}+{e}_{t0}\right)\right)}{16{bk}_1{k}_2-\left({k}_1+2{k}_2\right){\left(\eta +{bp}_0\right)}^2}. $$

Appendix H

Proof of Theorem 6

Substitute the equations of \( {e}_m^L \) and \( {e}_t^L \) into p(em, et) and w(em, et), it’s easy to gain the expression of pL and wL. Subsequently, continuing to substituting the expressions of pL and wL into Eq. (9) and the market demand function q(p, em, et), we can easily obtain \( {\Pi}_M^L \), \( {\Pi}_{T+R}^L \), and qL. Therefore, the profit function of the supply chain system is expressed by \( {\Pi}_{SC}^L={\Pi}_M^L+{\Pi}_{T+R}^L=\frac{k_1{k}_2\left(48{bk}_1{k}_2-\left({k}_1+4{k}_2\right){\left(\eta +{bp}_0\right)}^2\right)\left(a- bc- bv+{Mbp}_0-{\left(\eta +{bp}_0\right)}^2\left({e}_{m0}+{e}_{t0}\right)\right)}{16{bk}_1{k}_2-\left({k}_1+2{k}_2\right){\left(\eta +{bp}_0\right)}^2} \).

Appendix I

Proof of Corollary 3

Taking the first-order derivatives of \( \Delta {e}_{SC}^L \) with respect to η, we have the following:

$$ \frac{\mathrm{\partial \Delta }{e}_{SC}^L}{\partial \eta }=\frac{\left({k}_1+2{k}_2\right)\left(\left({k}_1+2{k}_2\right)\left(a- bc- bv+{bMp}_0\right){\left(\eta +{bp}_0\right)}^2-32{bk}_1{k}_2\left({e}_{m0}+{e}_{t0}\right)\left(\eta +{bp}_0\right)+16{bk}_1{k}_2\left(a- bc- bv+{bMp}_0\right)\right)}{{\left(16{bk}_1{k}_2-\left({k}_1+2{k}_2\right){\left(\eta +{bp}_0\right)}^2\right)}^2}. $$

To simplify the discussion, we denote \( {f}_1^L\left(\eta +{bp}_0\right)=\left({k}_1+2{k}_2\right)\left(a- bc- bv+{bMp}_0\right){\left(\eta +{bp}_0\right)}^2-32{bk}_1{k}_2\left({e}_{m0}+{e}_{t0}\right)\left(\eta +{bp}_0\right) \) +16bk1k2(a − bc − bv + bMp0), then we know that \( {f}_1^L\left(\eta +{bp}_0\right) \) has the same monotonicity an \( \mathrm{\partial \Delta }{e}_{SC}^L/\partial \eta \). Apparently, \( {f}_1^L\left(\eta +{bp}_0\right) \) is a quadratic function with a parabola going upwards, and its discriminant is given by

$$ {\Delta}_{f_1^L\left(\eta +{bp}_0\right)}=64{bk}_1{k}_2\left(16{bk}_1{k}_2{\left({e}_{m0}+{e}_{t0}\right)}^2-\left({k}_1+2{k}_2\right){\left(a- bc- bv+{bMp}_0\right)}^2\right). $$

We can see that when the initial carbon emissions of the supply chain system meet \( {e}_{m0}+{e}_{t0}>\left(a- bc- bv+{bMp}_0\right)\sqrt{\frac{k_1+2{k}_2}{16{bk}_1{k}_2}} \), then it satisfies \( {\Delta}_{f_1^L\left(\eta +{bp}_0\right)}>0 \). At this point, \(f^L_1(\eta+bp_0)\) has two intersections with the horizontal axis, represented by

$$ {\displaystyle \begin{array}{*{20}c}{\eta}_1^L+{bp}_0=\frac{16{bk}_1{k}_2\left({e}_{m0}+{e}_{t0}\right)+\sqrt{16{bk}_1{k}_2\left(16{bk}_1{k}_2\left({e}_{m0}+{e}_{t0}\right)-\left({k}_1+2{k}_2\right){\left(a- bc- bv+{bMp}_0\right)}^2\right)}}{\left({k}_1+2{k}_2\right)\left(a- bc- bv+{bMp}_0\right)},\\ {}{\eta}_2^L+{bp}_0=\frac{16{bk}_1{k}_2\left({e}_{m0}+{e}_{t0}\right)-\sqrt{16{bk}_1{k}_2\left(16{bk}_1{k}_2\left({e}_{m0}+{e}_{t0}\right)-\left({k}_1+2{k}_2\right){\left(a- bc- bv+{bMp}_0\right)}^2\right)}}{\left({k}_1+2{k}_2\right)\left(a- bc- bv+{bMp}_0\right)}.\end{array}} $$

Based on the given assumption \( 0<{e}_{m0}+{e}_{t0}<\frac{a- bc- bv+{bMp}_0}{\eta +{bp}_0} \), we know that \( \eta +{bp}_0<\frac{a- bc- bv+{bMp}_0}{e_{m0}+{e}_{t0}} \), so there is \( \eta +{bp}_0<\sqrt{\frac{16{bk}_1{k}_2}{k_1+2{k}_2}} \). Owing to \( {\eta}_1^L+{bp}_0>\frac{16{bk}_1{k}_2\left({e}_{m0}+{e}_{t0}\right)}{\left({k}_1+2{k}_2\right)\left(a- bc- bv+{bMp}_0\right)}>\sqrt{\frac{16{bk}_1{k}_2}{k_1+2{k}_2}} \), the point \( {\eta}_1^L+{bp}_0 \) does not suit the assumption, so it will not be discussed. The above analysis shows that if \( 0<\eta <{\eta}_1^L \), then \( {f}_1^L\left(\eta +{bp}_0\right)>0 \), that is \( \mathrm{\partial \Delta }{e}_{SC}^L/\partial \eta >0 \); and if \( {\eta}_1^L<\eta <\sqrt{\frac{16{bk}_1{k}_2}{k_1+2{k}_2}}-{bp}_0 \), then \( {f}_1^L\left(\eta +{bp}_0\right)<0 \), that is \( \mathrm{\partial \Delta }{e}_{SC}^L/\partial \eta <0 \). In addition, if the initial carbon emissions of the supply chain system meet \( {e}_{m0}+{e}_{t0}<\left(a- bc- bv+{bMp}_0\right)\sqrt{\frac{k_1+2{k}_2}{16{bk}_1{k}_2}} \), the result of \( {\Delta}_{f_1^L\left(\eta +{bp}_0\right)}<0 \) happens, and \( {f}_1^L\left(\eta +{bp}_0\right) \) has no intersection with the horizontal axis. Hence, as long as it meets \( 0<\eta <\sqrt{\frac{16{bk}_1{k}_2}{k_1+2{k}_2}}-{bp}_0 \), then there is \( {f}_1^L\left(\eta +{bp}_0\right)>0 \), that is \( \mathrm{\partial \Delta }{e}_{SC}^L/\partial \eta >0 \).

Appendix J

Proof of Theorem 7

Taking the second-order partial derivatives of \( {\Pi}_{SC}^D \) with respect to em and et, we have the Hessian matrix as follows:

$$ H=\left(\begin{array}{*{20}c}\frac{{\left(\eta +{bp}_0\right)}^2}{2b}-2{k}_1 \kern34pt \frac{{\left(\eta +{bp}_0\right)}^2}{2b}\\ {}\frac{{\left(\eta +{bp}_0\right)}^2}{2b} \kern34pt \frac{{\left(\eta +{bp}_0\right)}^2}{2b}-2{k}_2\end{array}\right) $$

Let’s make \( \frac{{\left(\eta +{bp}_0\right)}^2}{2b}-2{k}_1<0 \) and \( \left|\mathrm{H}\right|=\frac{\left({k}_1+{k}_2\right){\left(\eta +{bp}_0\right)}^2}{b}-4{k}_1{k}_2<0 \), that is \( 0<\eta <\sqrt{\frac{4{bk}_1{k}_2}{k_1+{k}_2}}-{bp}_0 \), then \( {\Pi}_{SC}^D \) is a strictly jointly concave function on em and et. Therefore, the optimal solutions to this optimization problem exist. Taking the first-order conditions of \( {\Pi}_{SC}^D \) with respect to em and et be zero, that is \( \partial {\Pi}_{SC}^D/\partial {e}_m=0 \) and \( \partial {\Pi}_{SC}^D/\partial {e}_t=0 \), and simultaneously solving the two equations, then the final carbon emissions from the manufacturer and the transporter are given, respectively, by

$$ \Big\{{\displaystyle \begin{array}{*{20}c}{e}_m^D=\frac{4b{k}_1{k}_2{e}_{m0}-\left({k}_1{e}_{m0}-{k}_2{e}_{t0}\right){\left(\eta +b{p}_0\right)}^2-{k}_2\left(\eta +b{p}_0\right)\left(a- bc- bv+ bM{p}_0\right)}{4b{k}_1{k}_2-\left({k}_1+{k}_2\right){\left(\eta +b{p}_0\right)}^2}\\ {}{e}_t^D=\frac{4b{k}_1{k}_2{e}_{t0}-\left({k}_2{e}_{t0}-{k}_1{e}_{m0}\right){\left(\eta +b{p}_0\right)}^2-{k}_1\left(\eta +b{p}_0\right)\left(a- bc- bv+ bM{p}_0\right)}{4b{k}_1{k}_2-\left({k}_1+{k}_2\right){\left(\eta +b{p}_0\right)}^2}\end{array}} $$

Thus, the carbon emission reduction of the supply chain system is expressed as follows:

$$ \Delta {e}_{SC}^D=\left({e}_{m0}-{e}_m^D\right)+\left({e}_{t0}-{e}_t^D\right)=\frac{\left({k}_1+{k}_2\right)\left(\eta +{bp}_0\right)\left(a- bc- bv+{bMp}_0-\left(\eta +{bp}_0\right)\left({e}_{m0}+{e}_{t0}\right)\right)}{4{bk}_1{k}_2-\left({k}_1+{k}_2\right){\left(\eta +{bp}_0\right)}^2}. $$

Appendix K

Proof of Theorem 8

Substituting the equations of \( {e}_m^D \) and \( {e}_t^D \) into p(em, et), we can obtain the expression of pD. Next, substituting the expression of pD into Eq. (14) and it’s easy to obtain the profit of the supply chain system, simplified as \( {\varPi}_{SC}^D{}_{SC}{}^{D\kern0.5em }=\frac{k_1{k}_2{\left(a- bc- bv+{bMp}_0-\left(\eta +{bp}_0\right)\left({e}_{m0}+{e}_{t0}\right)\right)}^2}{4{bk}_1{k}_2-\left({k}_1+{k}_2\right){\left(\eta +{bp}_0\right)}^2}. \)

Appendix L

Proof of Corollary 4

Taking the first-order derivatives of \( \Delta {e}_{SC}^D \) with respect to η, we have the following:

$$ \frac{\mathrm{\partial \Delta }{e}_{SC}^D}{\partial \eta }=\frac{\left({k}_1+{k}_2\right)\left(\left({k}_1+{k}_2\right)\left(a- bc- bv+{bMp}_0\right){\left(\eta +{bp}_0\right)}^2-8{bk}_1{k}_2\left({e}_{m0}+{e}_{t0}\right)\left(\eta +{bp}_0\right)+4{bk}_1{k}_2\left(a- bc- bv+{bMp}_0\right)\right)}{{\left(4{bk}_1{k}_2-\left({k}_1+{k}_2\right){\left(\eta +{bp}_0\right)}^2\right)}^2}. $$

To simplify discussion, we denote \( {f}_1^D\left(\eta +{bp}_0\right)=\left({k}_1+{k}_2\right)\left(a- bc- bv+{bMp}_0\right){\left(\eta +{bp}_0\right)}^2-8{bk}_1{k}_2\left({e}_{m0}+{e}_{t0}\right)\left(\eta +{bp}_0\right) \) +4bk1k2(a − bc − bv + bMp0), then we know that \( {f}_1^D\left(\eta +{bp}_0\right) \) has the same monotonicity as \( \mathrm{\partial \Delta }{e}_{SC}^D/\partial \eta \). Obviously, \( {f}_1^D\left(\eta +{bp}_0\right) \) is a quadratic function with a parabola going upwards, and its discriminant is given by

$$ {\Delta}_{f_1^D\left(\eta +{bp}_0\right)}=16{bk}_1{k}_2\left(4{bk}_1{k}_2{\left({e}_{m0}+{e}_{t0}\right)}^2-\left({k}_1+{k}_2\right){\left(a- bc- bv+{bMp}_0\right)}^2\right). $$

We can see that when the initial carbon emissions of the supply chain system meet \( {e}_{m0}+{e}_{t0}>\left(a- bc- bv+{bMp}_0\right)\sqrt{\frac{k_1+{k}_2}{4{bk}_1{k}_2}} \), then it satisfies \( {\Delta}_{f_1^D\left(\eta +{bp}_0\right)}>0 \). At this point, \(f^D_1(\eta+bp_0)\) has two intersections with the horizontal axis, represented by

$$ {\displaystyle \begin{array}{*{20}c}{\eta}_1^D+{bp}_0=\frac{4{bk}_1{k}_2\left({e}_{m0}+{e}_{t0}\right)+\sqrt{4{bk}_1{k}_2\left(4{bk}_1{k}_2{\left({e}_{m0}+{e}_{t0}\right)}^2-\left({k}_1+{k}_2\right){\left(a- bc- bv+{bMp}_0\right)}^2\right)}}{\left({k}_1+{k}_2\right)\left(a- bc- bv+{bMp}_0\right)},\\ {}{\eta}_2^D+{bp}_0=\frac{4{bk}_1{k}_2\left({e}_{m0}+{e}_{t0}\right)-\sqrt{4{bk}_1{k}_2\left(4{bk}_1{k}_2{\left({e}_{m0}+{e}_{t0}\right)}^2-\left({k}_1+{k}_2\right){\left(a- bc- bv+{bMp}_0\right)}^2\right)}}{\left({k}_1+{k}_2\right)\left(a- bc- bv+{bMp}_0\right)}.\end{array}} $$

Based on the given assumption \( 0<{e}_{m0}+{e}_{t0}<\frac{a- bc- bv+{bMp}_0}{\eta +{bp}_0} \), we know that \( \eta +{bp}_0<\frac{a- bc- bv+{bMp}_0}{e_{m0}+{e}_{t0}} \), so there is \( \eta +{bp}_0<\sqrt{\frac{4{bk}_1{k}_2}{k_1+{k}_2}} \). Owing to \( {\eta}_1^D+{bp}_0>\frac{4{bk}_1{k}_2\left({e}_{m0}+{e}_{t0}\right)}{\left({k}_1+{k}_2\right)\left(a- bc- bv+{bMp}_0\right)}>\sqrt{\frac{4{bk}_1{k}_2}{k_1+{k}_2}} \), the point \( {\eta}_1^D+{bp}_0 \) does not suit the assumption, so it will not be discussed. The above analysis shows that if \( 0<\eta <{\eta}_1^D \), then \( {f}_1^D\left(\eta +{bp}_0\right)>0 \), that is \( \mathrm{\partial \Delta }{e}_{SC}^D/\partial \eta >0 \); and if \( {\eta}_1^D<\eta <\sqrt{\frac{4{bk}_1{k}_2}{k_1+{k}_2}}-{bp}_0 \), then \( {f}_1^D\left(\eta +{bp}_0\right)<0 \), \( \mathrm{\partial \Delta }{e}_{SC}^D/\partial \eta <0 \). In addition, if the initial carbon emissions of the supply chain system meet \( {e}_{m0}+{e}_{t0}<\left(a- bc- bv+{bMp}_0\right)\sqrt{\frac{k_1+{k}_2}{4{bk}_1{k}_2}} \), the result of \( {\Delta}_{f_1^D\left(\eta +{bp}_0\right)}<0 \) happens, and \( {f}_1^D\left(\eta +{bp}_0\right) \) has no intersection with the horizontal axis. Hence, as long as it meets \( 0<\eta <\sqrt{\frac{4{bk}_1{k}_2}{k_1+{k}_2}}-{bp}_0 \), there is \( {f}_1^D\left(\eta +{bp}_0\right)>0 \), that is \( \mathrm{\partial \Delta }{e}_{SC}^D/\partial \eta >0 \).

Appendix M

Proof of Corollary 5

Comparing the carbon emission reductions of the NCD and LCDM models, we have the following:

$$ \frac{\Delta {e}_{SC}^S}{\Delta {e}_{SC}^N}=\frac{3\left({k}_1+{k}_2\right)\left(32{bk}_1{k}_2-\left({k}_1+2{k}_2\right){\left(\eta +{bp}_0\right)}^2\right)}{\left({k}_1+2{k}_2\right)\left(32{bk}_1{k}_2-3\left({k}_1+{k}_2\right){\left(\eta +{bp}_0\right)}^2\right)}>1. $$

Thus, there is \( \Delta {e}_{SC}^S>\Delta {e}_{SC}^N \).

Comparing the selling price of the NCD and LCDM models, we have the following:

$$ {p}^S-{p}^N=\frac{4{k}_1{k}_2\left(2{k}_1+{k}_2\right)\left(\eta +{bp}_0\right)\left(7\eta -{bp}_0\right)\left(a- bc- bv+{bMp}_0-\left({e}_{m0}+{e}_{t0}\right)\left(\eta +{bp}_0\right)\right)}{\left(32{bk}_1{k}_2-\left({k}_1+2{k}_2\right){\left(\eta +{bp}_0\right)}^2\right)\left(32{bk}_1{k}_2-3\left({k}_1+{k}_2\right){\left(\eta +{bp}_0\right)}^2\right)}. $$

If it meets \( 0<\eta <\frac{1}{7}{bp}_0 \), then there is pS < pN; if it meets \( \frac{bp_0}{7}<\eta <\sqrt{\frac{32{bk}_1{k}_2}{3\left({k}_1+{k}_2\right)}}-{bp}_0 \), then there is pS > pN.

Comparing the market demand of the NCD and LCDM models, we have the following:

$$ \frac{q^S}{q^N}=\frac{32{bk}_1{k}_2-\left({k}_1+2{k}_2\right){\left(\eta +{bp}_0\right)}^2}{32{bk}_1{k}_2-3\left({k}_1+{k}_2\right){\left(\eta +{bp}_0\right)}^2}>1. $$

Thus, there is qS > qN.

Comparing the supply chain system’s profit of the NCD and LCDM models, we have the following:

$$ \frac{\varPi_{SC}^S}{\varPi_{SC}^N}=\frac{{\left(32{bk}_1{k}_2-\left({k}_1+2{k}_2\right){\left(\eta +{bp}_0\right)}^2\right)}^2\left(112{bk}_1{k}_2-9\left({k}_1+{k}_2\right){\left(\eta +{bp}_0\right)}^2\right)}{{\left(32{bk}_1{k}_2-\left({k}_1+2{k}_2\right){\left(\eta +{bp}_0\right)}^2\right)}^2\left(112{bk}_1{k}_2-\left({k}_1+4{k}_2\right){\left(\eta +{bp}_0\right)}^2\right)}. $$

Letting x = (η + bp0)2, y = 32bk1k2/3, then there is y > (k1 + k2)x. We know that, \( {\left(32{bk}_1{k}_2-\left({k}_1+2{k}_2\right){\left(\eta +{bp}_0\right)}^2\right)}^2\big(112{bk}_1{k}_2-9\left({k}_1+{k}_2\right){\left(\eta +{bp}_0\right)}^2-{\left(32{bk}_1{k}_2-3\left({k}_1+{k}_2\right){\left(\eta +{bp}_0\right)}^2\right)}^2{\left(112{bk}_1{k}_2-\left({k}_1+4{k}_2\right){\left(\eta +{bp}_0\right)}^2\right)}^2={\left(3y-\left({k}_1+2{k}_2\right)x\right)}^2\left(\frac{21y}{2}-9\left({k}_1+{k}_2\right)x\right)-{\left(3y-3\left({k}_1+{k}_2\right)x\right)}^2\left(\frac{21y}{2}-\left({k}_1+4{k}_2\right)x\right)=\frac{21y}{2}{\left(3y-\left({k}_1+2{k}_2\right)x\right)}^2-9\left({k}_1+{k}_2\right)x{\left(3y-\left(k+2k\right)x\right)}^2-\frac{21y}{2}{\left(3y-3\left({k}_1+{k}_2\right)x\right)}^2+\left({k}_1+4{k}_2\right)x{\left(3y-3\left({k}_1+{k}_2\right)x\right)}^2=\frac{21y}{2}\left({\left(3y-\left({k}_1+2{k}_2\right)x\right)}^2-{\left(3y-3\left({k}_1+{k}_2\right)x\right)}^2\right)-9\left({k}_1+{k}_2\right)x\left(9{y}^2-6 xy\left({k}_1+2{k}_2\right)+{\left({k}_1+2{k}_2\right)}^2{x}^2\right)+\left({k}_1+4{k}_2\right)x\left(9{y}^2-18 xy\left({k}_1+{k}_2\right)+9\left({k}_1+{k}_2\right){x}^2\right)=\frac{21y}{2}\left(6y-\left(4{k}_1+5{k}_2\right)x\right)\left(2{k}_1+{k}_2\right)x-9{xy}^2\left(8{k}_1+5{k}_2\right)+36{x}^2y{\left({k}_1+{k}_2\right)}^2+9{x}^3{k}_1{k}_2\left({k}_1+{k}_2\right)=63{xy}^2\left(2{k}_1+{k}_2\right)-\frac{21}{2}{x}^2y\left(2{k}_1+{k}_2\right)\left(4{k}_1+5{k}_2\right)-9{xy}^2\left(8{k}_1+5{k}_2\right)+36{x}^2y{\left({k}_1+{k}_2\right)}^2+9{x}^3{k}_1{k}_2\left({k}_1+{k}_2\right)= xy\left(63y\left(2{k}_1+{k}_2\right)-9y\left(8{k}_1+5{k}_2\right)+36x{\left({k}_1+{k}_2\right)}^2-\frac{21}{2}x\left(2{k}_1+{k}_2\right)\left(4{k}_1+5{k}_2\right)\right)+9{x}^3{k}_1{k}_2\left({k}_1+{k}_2\right)= xy\left(18y\left(3{k}_1+{k}_2\right)-x\left(48{k}_1^2+75{k}_1{k}_2+\frac{33}{2}{k}_2^2\right)\right)+9{x}^3{k}_1{k}_2\left({k}_1+{k}_2\right)> xy\left(18x\left({k}_1+{k}_2\right)\left(3{k}_1+{k}_2\right)-x\left(48{k}_1^2+75{k}_1{k}_2+\frac{33}{2}{k}_2^2\right)\right)+9{x}^3{k}_1{k}_2\left({k}_1+{k}_2\right)= xy\left(6{k}_1^2-3{k}_1{k}_2+\frac{3}{2}{k}_2^2\right)+9{x}^3{k}_1{k}_2\left({k}_1+{k}_2\right)>{x}^3\left(6{k}_1^2-3{k}_1{k}_2+\frac{3}{2}{k}_2^2\right)\left({k}_1+{k}_2\right)+9{x}^3{k}_1{k}_2\left({k}_1+{k}_2\right)={x}^3\left(6{k}_1^2+6{k}_1{k}_2+\frac{3}{2}{k}_2^2\right)\left({k}_1+{k}_2\right)>0 \), then there is \( {\Pi}_{SC}^S>{\Pi}_{SC}^N \).

Appendix N

Proof of Corollary 6

Comparing the carbon emission reductions of the NCD and LCDR models, we have the following:

$$ \frac{\Delta {e}_{SC}^L}{\Delta {e}_{SC}^N}=\frac{32{bk}_1{k}_2-\left({k}_1+2{k}_2\right){\left(\eta +{bp}_0\right)}^2}{16{bk}_1{k}_2-\left({k}_1+2{k}_2\right){\left(\eta +{bp}_0\right)}^2}>1. $$

Thus, there is \( \Delta {e}_{SC}^L>\Delta {e}_{SC}^N \).

Comparing the selling price of the NCD and LCDR models, we have the following:

$$ {p}^L-{p}^N=\frac{16{k}_1{k}_2\left(a- bc- bv+ bM{p}_0-\left({e}_{m0}+{e}_{t0}\right)\left(\eta +b{p}_0\right)\right)\left(\left({k}_1+2{k}_2\right)\eta \left(\eta +b{p}_0\right)-4b{k}_1{k}_2\right)}{\left(32b{k}_1{k}_2-\left({k}_1+2{k}_2\right){\left(\eta +b{p}_0\right)}^2\right)\left(16b{k}_1{k}_2-\left({k}_1+2{k}_2\right){\left(\eta +b{p}_0\right)}^2\right)}. $$

We know that, If it meets (k1 + 2k2)η(η + bp0) − 4bk1k2 > 0, that is \( \sqrt{\frac{\left({k}_1+2{k}_2\right){\left({bp}_0\right)}^2+16{bk}_1{k}_2}{4\left({k}_1+2{k}_2\right)}}-\frac{bp_0}{2}<\eta <\sqrt{\frac{16{bk}_1{k}_2}{k_1+2{k}_2}}-{bp}_0 \), then there is pL > pN; and when \( 0<\eta <\sqrt{\frac{\left({k}_1+2{k}_2\right){\left({bp}_0\right)}^2+16{bk}_1{k}_2}{4\left({k}_1+2{k}_2\right)}}-\frac{bp_0}{2} \), then there is pL < pN.

Comparing the market demand of the NCD and LCR models, we have the following:

$$ \frac{q^L}{q^N}=\frac{32{bk}_1{k}_2-\left({k}_1+2{k}_2\right){\left(\eta +{bp}_0\right)}^2}{16{bk}_1{k}_2-\left({k}_1+2{k}_2\right){\left(\eta +{bp}_0\right)}^2}>1. $$

Thus, there is qL > qN.

Comparing the supply chain system’s profit of the NCD and LCDR models, we have the following:

$$ \frac{\varPi_{SC}^L}{\varPi_{SC}^N}=\frac{\left(48{bk}_1{k}_2-\left({k}_1+4{k}_2\right){\left(\eta +{bp}_0\right)}^2\right){\left(32{bk}_1{k}_2-\left({k}_1+2{k}_2\right){\left(\eta +{bp}_0\right)}^2\right)}^2}{{\left(16{bk}_1{k}_2-\left({k}_1+2{k}_2\right){\left(\eta +{bp}_0\right)}^2\right)}^2\left(112{bk}_1{k}_2-\left({k}_1+4{k}_2\right){\left(\eta +{bp}_0\right)}^2\right)}. $$

Letting x = (η + bp0)2, y = 16bk1k2, then there is y > (k1 + 2k2)x. We know that (48bk1k2 − (k1 + 4k2)(η + bp0)2)(32bk1k2 − (k1 + 2k2)(η + bp0)2)2 − (16bk1k2 − (k1 + 2k2)(η + bp0)2)2(112bk1k2 − (k1 + 4k2)(η + bp0)2) = (3y − (k1 + 4k2)x)(2y − (k1 + 2k2)x)2 − (y − (k1 + 2k2)x)2(7y − (k1 + 4k2)x) = 3y(2y − (k1 + 2k2)x)2 − 7y(y − (k1 + 2k2)x)2 − (k1 + 4k2)x(2y − (k1 + 2k2)x)2 − (k1 + 4k2)x ⋅ (y − (k1 + 2k2)x)2 = y(3(2y − (k1 + 2k2)x)2 − 7(y − (k1 + 2k2)x)2) − (k1 + 4k2)x((2y − (k1 + 2k2)x)2 − (y − (k1 + 2k2)x)2) = y(5y2 + 2xy(k1 + 2k2) + 4x2(k1 + 2k2)2 − xy(k1 + 4k2)(3y − 2(k1 + 2k2)x) = y(5y2 + 2xy(k1 + 2k2) − 4x2(k1 + 2k2)2 − 3xy(k1 + 4k2) + 2x2(k1 + 2k2)(k1 + 4k2) = y(5y2 − xy(k1 + 8k2) − 2x2k1(k1 + 2k2)) = y(y(5y − x(k1 + 8k2)) − 2x2k1(k1 + 2k2)) > y(y(5x(k1 + 2k2) − x(k1 + 8k2)) − 2x2k1(k1 + 2k2)) = y(2xy(2k1 + k2) − 2x2k1(k1 + 2k2)) = 2xy(y(2k1 + k2) − xk1(k1 + 2k2)) > 2xy(x(k1 + 2k2)(2k1 + k2) − xk1(k1 + 2k2)) = 2x2y(k1 + 2k2)(k1 + k2) > 0, then there is \( {\Pi}_{SC}^L>{\Pi}_{SC}^N \).

Appendix O

Proof of Corollary 7

Comparing the carbon emission reductions of the LCDM and OCD models, we have the following:

$$ \frac{\Delta {e}_{SC}^D}{\Delta {e}_{SC}^S}=\frac{32{bk}_1{k}_2-3\left({k}_1+{k}_2\right){\left(\eta +{bp}_0\right)}^2}{12{bk}_1{k}_2-3\left({k}_1+{k}_2\right){\left(\eta +{bp}_0\right)}^2}>1. $$

Thus, there is \( \Delta {e}_{SC}^D>\Delta {e}_{SC}^S \).

Comparing the selling price of the LCDM and OCD models, we have the following:

$$ {p}^D-{p}^S=\frac{2{k}_1{k}_2\left(a- bc- bv+ bM{p}_0-\left({e}_{m0}+{e}_{t0}\right)\left(\eta +b{p}_0\right)\right)\left(\left({k}_1+{k}_2\right)\left(\eta +b{p}_0\right)\left(11\eta +b{p}_0\right)-24b{k}_1{k}_2\right)}{\left(4b{k}_1{k}_2-\left({k}_1+{k}_2\right){\left(\eta +b{p}_0\right)}^2\right)\left(32b{k}_1{k}_2-3\left({k}_1+{k}_2\right){\left(\eta +b{p}_0\right)}^2\right)}. $$

We know that, if it meets (k1 + k2)(η + bp0)(11η + bp0) − 24bk1k2 > 0, that is \( \sqrt{\frac{25\left({k}_1+{k}_2\right){\left({bp}_0\right)}^2+264{bk}_1{k}_2}{121\left({k}_1+{k}_2\right)}}-\frac{6{bp}_0}{11}<\eta \) \( <\sqrt{\frac{4{bk}_1{k}_2}{k_1+{k}_2}}-{bp}_0 \), then there is pD > pS; and when \( 0<\eta <\sqrt{\frac{25\left({k}_1+{k}_2\right){\left({bp}_0\right)}^2+264{bk}_1{k}_2}{121\left({k}_1+{k}_2\right)}}-\frac{6{bp}_0}{11} \), then there is pD < pS.

Comparing the market demand of the LCDM and OCD models, we have the following:

$$ \frac{q^D}{q^S}=\frac{32{bk}_1{k}_2-3\left({k}_1+{k}_2\right){\left(\eta +{bp}_0\right)}^2}{8{bk}_1{k}_2-2\left({k}_1+{k}_2\right){\left(\eta +{bp}_0\right)}^2}>\frac{32{bk}_1{k}_2-3\left({k}_1+{k}_2\right){\left(\eta +{bp}_0\right)}^2}{12{bk}_1{k}_2-3\left({k}_1+{k}_2\right){\left(\eta +{bp}_0\right)}^2}>1. $$

Thus, there is qD > qS.

Comparing the supply chain system’s profit of the LCDM and OCD models, we have the following:

$$ \frac{\varPi_{SC}^D}{\varPi_{SC}^S}=\frac{{\left(32{bk}_1{k}_2-3\left({k}_1+{k}_2\right){\left(\eta +{bp}_0\right)}^2\right)}^2}{\left(4{bk}_1{k}_2-\left({k}_1+{k}_2\right){\left(\eta +{bp}_0\right)}^2\right)\left(112{bk}_1{k}_2-9\left({k}_1+{k}_2\right){\left(\eta +{bp}_0\right)}^2\right)}. $$

Letting x = (η + bp0)2, y = 4bk1k2, then there is y > (k1 + k2)x. We know that (32bk1k2 − 3(k1 + k2)(η + bp0)2)2 − (4bk1k2 − (k1 + k2)(η + bp0)2)(112bk1k2 − 9(k1 + k2)(η + bp0)2) = (8y − 3(k1 + k2)x)2 − (y − (k1 + k2)x)(28y − 9(k1 + k2)x) = 36y2 − 11xy(k1 + k2) > y(36x(k1 + k2) − 11x(k1 + k2)) = 25xy(k1 + k2) > 0, then there is \( {\Pi}_{SC}^D>{\Pi}_{SC}^S \).

Appendix P

Proof of Corollary 8

Comparing the carbon emission reductions of the LCDR and OCD models, we have the following:

$$ \frac{\Delta {e}_{SC}^D}{\Delta {e}_{SC}^L}=\frac{16{bk}_1{k}_2\left({k}_1+{k}_2\right)-\left({k}_1+{k}_2\right)\left({k}_1+2{k}_2\right){\left(\eta +{bp}_0\right)}^2}{4{bk}_1{k}_2\left({k}_1+2{k}_2\right)-\left({k}_1+{k}_2\right)\left({k}_1+2{k}_2\right){\left(\eta +{bp}_0\right)}^2}>1. $$

Thus, there is \( \Delta {e}_{SC}^D>\Delta {e}_{SC}^L \).

Comparing the selling price of the LCDR and OCD models, we have the following:

$$ {p}^D-{p}^L=\frac{2{k}_1{k}_2\left(a- bc- bv+ bM{p}_0-\left({e}_{m0}+{e}_{t0}\right)\left(\eta +b{p}_0\right)\right)\left(\left(\eta +b{p}_0\right)\left(4{k}_2\eta +{k}_1\left(5\eta -b{p}_0\right)\right)-8{bk}_1{k}_2\right)}{\left(16{bk}_1{k}_2-\left({k}_1+2{k}_2\right){\left(\eta +b{p}_0\right)}^2\right)\left(4{bk}_1{k}_2-\left({k}_1+{k}_2\right){\left(\eta +b{p}_0\right)}^2\right)} $$

We know that, if it meets (η + bp0)(4k2η + k1(5η − bp0)) − 8bk1k2 > 0, that is \( \frac{\sqrt{\left(9{k}_1^2+12{k}_1{k}_2+4{k}_2^2\right){\left({bp}_0\right)}^2+8{bk}_1{k}_2\left(5{k}_1+4{k}_2\right)}}{5{k}_1+4{k}_2} \) \( -\frac{2\left({k}_1+{k}_2\right){bp}_0}{5{k}_1+4{k}_2}<\eta <\sqrt{\frac{4{bk}_1{k}_2}{k_1+{k}_2}}-{bp}_0 \), then there is pD > pL; and when \( 0<\eta <\frac{\sqrt{\left(9{k}_1^2+12{k}_1{k}_2+4{k}_2^2\right){\left({bp}_0\right)}^2+8{bk}_1{k}_2\left(5{k}_1+4{k}_2\right)}}{5{k}_1+4{k}_2} \) \( -\frac{2\left({k}_1+{k}_2\right){bp}_0}{5{k}_1+4{k}_2} \), then there is pD < pL.

Comparing the market demand of the LCDR and OCD models, we have the following:

$$ \frac{q^D}{q^L}=\frac{16{bk}_1{k}_2-\left({k}_1+2{k}_2\right){\left(\eta +{bp}_0\right)}^2}{8{bk}_1{k}_2-2\left({k}_1+{k}_2\right){\left(\eta +{bp}_0\right)}^2}>1. $$

Thus, there is qD > qL.

Comparing the supply chain system’s profit of the LCDR and OCD models, we have the following:

$$ \frac{\varPi_{SC}^D}{\varPi_{SC}^L}=\frac{{\left(16{bk}_1{k}_2-\left({k}_1+2{k}_2\right){\left(\eta +{bp}_0\right)}^2\right)}^2}{\left(4{bk}_1{k}_2-\left({k}_1+{k}_2\right){\left(\eta +{bp}_0\right)}^2\right)\left(48{bk}_1{k}_2-\left({k}_1+4{k}_2\right){\left(\eta +{bp}_0\right)}^2\right)}. $$

Letting x = (η + bp0)2, y = 4bk1k2, then there is y > (k1 + k2)x. We know that (16bk1k2 − (k1 + 2k2)(η + bp0)2)2 − (4bk1k2 − (k1 + k2)(η + bp0)2)(48bk1k2 − (k1 + 4k2)(η + bp0)2) = (4y − (k1 + 2k2)x)2 − (y − (k1 + k2)x)(12y − (k1 + 4k2)x) = 16y2 − 8xy(k1 + 2k2) + (k1 + 2k2)2x2 − (12y2 − xy(k1 + 4k2) − 12xy(k1 + k2) + (k1 + k2)(k1 + 4k2)x2) = 4y2 + 5xyk1 − k1k2x2 = 4y2 + k1x(5y − k2x) > 4y2 + xk1(5(k1 + k2)x − k2x) = 4y2 + xk1(5k1 + 4k2) > 0, then there is \( {\Pi}_{SC}^D>{\Pi}_{SC}^L \).

Appendix Q

Proof of Theorem 9

Taking the second-order partial derivatives of \( {\Pi}_M^C \) and \( {\Pi}_{T+R}^C \) with respect to em and et, we can obtain

$$ \frac{\partial^2{\Pi}_M^C}{\partial {e}_m^2}=\frac{{\left(\eta +{bp}_0\right)}^2}{4b}-2{k}_1t,\frac{\partial^2{\Pi}_{T+R}^C}{\partial {e}_t^2}=\frac{{\left(\eta +{bp}_0\right)}^2}{8b}-2{k}_2t. $$

Let’s make \({\partial^2\Pi^C_M/\partial{e}_{m}}^2\) and \({\partial^2\Pi^C_{T+R}/\partial{e}_t}^2\) less than zero, and we get \( \eta <2\sqrt{2{bk}_1t}-{bp}_0 \) and \( \eta <4\sqrt{bk_2t}-{bp}_0 \). At this time, the manufacturer’s profit function, \( {\Pi}_M^C \), is concave in em, and the retailer-transporter alliance’s profit function, \( {\Pi}_{T+R}^C \), is concave in et. Letting the first-order conditions of the profit function be zero, that is \(\partial\Pi^C_M/\partial{e}_m=0\) and \(\partial\Pi^C_{T+R}/\partial{e}_t=0\), and simultaneously solving the two equations, then the final carbon emission from the manufacturer and the retailer-transporter alliance are given, respectively, by

$$ \left\{\begin{array}{*{20}c}{e}_m^C=\frac{16 bt{k}_1{k}_2{e}_{m0}-\left({k}_1{e}_{m0}-2t{k}_2{e}_{t0}\right){\left(\eta +b{p}_0\right)}^2-2t{k}_2\left(\eta +b{p}_0\right)\left(a- bc- bv+ bM{p}_0\right)}{16 bt{k}_1{k}_2-\left({k}_1+2t{k}_2\right){\left(\eta +b{p}_0\right)}^2}\\ {}{e}_t^C=\frac{16 bt{k}_1{k}_2{e}_{t0}-\left(2t{k}_2{e}_{t0}-{k}_1{e}_{m0}\right){\left(\eta +b{p}_0\right)}^2-{k}_1\left(\eta +b{p}_0\right)\left(a- bc- bv+ bM{p}_0\right)}{16 bt{k}_1{k}_2-\left({k}_1+2t{k}_2\right){\left(\eta +b{p}_0\right)}^2}\end{array}\right. $$

Then, the carbon emission reduction of the supply chain system is expressed as

$$ \Delta {e}_{SC}^C=\left({e}_{m0}-{e}_m^C\right)+\left({e}_{t0}-{e}_t^C\right)=\frac{\left({k}_1+2{tk}_2\right)\left(\eta +{bp}_0\right)\left(a- bc- bv+{bMp}_0-\left(\eta +{bp}_0\right)\left({e}_{m0}+{e}_{t0}\right)\right)}{16{btk}_1{k}_2-\left({k}_1+2{tk}_2\right){\left(\eta +{bp}_0\right)}^2}. $$

Appendix R

Proof of Theorem 10

Substituting the values of \( {e}_m^C \) and \( {e}_t^C \) into p(em, et) and w(em, et), it is not difficult to get the expression of pC and wC. Substituting the values of pC and wC into Equation (21) and the market demand function q(p, em, et), we can easily obtain \( {\Pi}_M^C \), \( {\Pi}_{T+R}^C \), and qC. The profit of the supply chain system is expressed as

$$\Pi^C_M=\Pi^C_M+\Pi^C_{T+R}=\frac{k_1k_2(48t^2bk_1k_2-(k_1+4t^2k_2)(\eta+bp_0)^2)(a-bc-bv+bMp_0-(\eta+bp_0)(e_{m0}+e_{t0}))^2}{16tbk_1k_2-(k_1+2tk_2)(\eta+bp_0)^2)^2}$$

Appendix S

Proof of Corollary 9

To simplify the discussion, we denote x = k1(η + bp0)2, y = 2k2(η + bp0)2, and z = 16bk1k2, then there is z > x + y.

Firstly, we analyze the value range of t when the cost-sharing contract is valid for the manufacturer. We have the following:

$$\Pi^C_M-\Pi^L_M=\frac{32t^2bk_1k_2-((1-t)k_1+4t^2k_2)(\eta+bp_0)^2)A}{(16tbk_1k_2-(k_1+2tk_2)(\eta+bp_0)^2)^2}-\frac{(32bk_1k_2-4k_2(\eta+bp_0)^2)A}{(16bk_1k_2-(k_1+2k_2)(\eta+bp_0)^2)^2}$$

Letting \( g(t)=\frac{\Pi_M^C-{\Pi}_M^L}{A} \), then we have \( G(t)=\frac{2\left(z-y\right){t}^2-\left(1-t\right)x}{{\left(\left(z-y\right)t-x\right)}^2}-\frac{2\left(z-y\right)}{{\left(z-x-y\right)}^2}=\frac{x\left(t-1\right)\left({x}^2-\left(4t-1\right){\left(y-z\right)}^2+2 tx\left(z-y\right)\right)}{{\left(\left(z-y\right)t-x\right)}^2{\left(z-x-y\right)}^2}=\frac{x\left(\left(2x\left(z-y\right)-4{\left(z-y\right)}^2\right){t}^2+\left({x}^2+5{\left(z-y\right)}^2-2x\left(z-y\right)\right)t-\left({x}^2+{\left(z-y\right)}^2\right)\right)}{{\left(\left(z-y\right)t-x\right)}^2{\left(z-x-y\right)}^2} \). We denote (t) = (2x(z − y) − 4(z − y)2)t2 + (x2 +5(z − y)2 − 2x(z − y))t − (x2 + (z − y)2), then it is not difficult to find that g(t) is a quadratic function with a parabola going downwards, and its discriminant is given by Δg(t) = x2(z − x − y)2(3z + x − 3y)2. We know that it meets z > x + y, then there is Δg(t) > 0. Therefore, g(t) has two intersections with the horizontal axis, represented by \( {t}_M^1=\frac{x^2+{\left(z-y\right)}^2}{2\left(2z-x-2y\right)\left(z-y\right)} \) and \( {t}_M^2=1 \). Due to (x2 + (z − y)2) − 2(2z − x − 2y)(z − y) =  − (z − x − y)(3z + x − 3y) < 0, then there is \( {t}_M^2<{t}_M^1 \). From the above, we obtain \( {t}_M^1=\frac{x^2+{\left(z-y\right)}^2}{2\left(2z-x-2y\right)\left(z-y\right)}\le t\le 1={t}_M^2 \).

Secondly, we analyze the value range of t when the cost-sharing contract is valid for the transporter-retailer alliance. We have the following:

$$\Pi^C_{T+R}-\Pi^L_{T+R}=\frac{(16t^2bk_1k_2-tk_1(\eta+bp_0)^2)A}{(16tbk_1k_2-(k_1+k_2t2k_2)(\eta+bp_0)^2)^2}-\frac{16bk_1k_2-k_1(\eta+bp_0)^2A}{(16bk_1k_2-(k_1+2k_2)(\eta+bp_0)^2)^2}$$

Letting \( H(t)=\frac{\Pi_{T+R}^C-{\Pi}_{T+R}^L}{A} \), then we have \( H(t)=\frac{zt^2- tx}{{\left( zt-\left(x+ yt\right)\right)}^2}-\frac{z-x}{{\left(z-\left(x+y\right)\right)}^2}=\frac{\left({zt}^2- tx\right){\left(z-\left(x+y\right)\right)}^2-\left(z-x\right){\left( zt-\left(x+ yt\right)\right)}^2}{{\left( zt-\left(x+ yt\right)\right)}^2{\left(z-\left(x+y\right)\right)}^2} \) \( =\frac{x\left(\left({y}^2-z\left(z-x\right)\right){t}^2+\left({z}^2-{x}^2-{y}^2\right)t-x\left(z-x\right)\right)}{{\left( zt-\left(x+ yt\right)\right)}^2{\left(z-\left(x+y\right)\right)}^2} \). We denote h(t) = (y2 − z(z − x))t2 + (z2 − x2 − y2)t − x(z − x), then it is not difficult to find that h(t) is a quadratic function with a parabola going downwards, and its discriminant is given by Δh(t) = x2(z − x − y)2(z − x + y)2. We know that it meets z > x + y, then there is Δh(t) > 0. Therefore, h(t) has two intersections with the horizontal axis, represented by \( {t}_{T+R}^1=\frac{x\left(z-x\right)}{z\left(z-x\right)-{y}^2} \) and \( {t}_{T+R}^2=1 \). Due to (z − x) − (z(z − x) − y2) = − (z − x − y)(z − x + y) < 0, then there is \( {t}_{T+R}^2<{t}_{T+R}^1 \). From the above, we obtain \( {t}_{T+R}^1=\frac{x\left(z-x\right)}{z\left(z-x\right)-{y}^2}\le t\le 1={t}_{T+R}^2 \).

By comparing \( {t}_M^1 \) and \( {t}_{T+R}^1 \), we find that it is difficult to determine their size relationship, so the value range of t is expressed by \( \mathit{\max}\left\{{t}_M^1,{t}_{T+R}^1\right\}\le t\le 1 \).

Appendix T

Proof of Corollary 10

Comparing the supply chain system’s profit of the cost-sharing contract model and the OCD model, we have the following:

$$ \frac{\varPi_{SC}^D}{\varPi_{SC}^C}=\frac{{\left(16t{bk}_1{k}_2-\left({k}_1+2{tk}_2\right){\left(\eta +{bp}_0\right)}^2\right)}^2}{\left(4b{k}_1{k}_2-\left({k}_1+{k}_2\right){\left(\eta +{bp}_0\right)}^2\right)\left(48{t}^2b{k}_1{k}_2-\left({k}_1+4{t}^2{k}_2\right){\left(\eta +{bp}_0\right)}^2\right)}. $$

To simplify the discussion, we denote x = k1(η + bp0)2, y = k2(η + bp0)2, and z = 4bk1k2, then there is z > x + y. Letting Ψ(t) =(16tbk1k2 − (k1 + 2tk2)(η + bp0)2)2 − (4bk1k2 − (k1 + k2)(η + bp0)2)(48t2bk1k2 − (k1 + 4tk2)(η + bp0)2) = (4zt − (x + 2yt))2 − (z − x − y)(12zt2 − (x + 4yt2) = (4(2z − y)2 − (z − x − y)(12z − 4y))t2 − 4x(2z − y)t + x(z − y). It is not difficult to find that Ψ(t) is a quadratic function with a parabola going upwards, and its discriminant is given by ΔΨ(t) =  − 16xz(z − x − y) < 0, then we know that Ψ(t) has no intersection with the horizontal axis. In other words, no matter what t is, Ψ(t) is always greater than zero, that is \( {\Pi}_{SC}^D>{\Pi}_{SC}^C \).

Appendix U

Proof of Theorem 11

Substituting the equations of \( {e}_m^D \) and \( {e}_t^D \) into p(em, et) and w(em, et), we can obtain the expression of pT and wT. Then, Substituting the expressions of pT and wT into Eqs. (22) and (23) and the market demand function q(p, em, et), we can easily get \(\Pi^T_M\), \(\Pi^T_{T+R}\), and qT. Hence, the profit of the supply chain system is expressed by

$$ {\varPi}_{SC}^T={\varPi}_M^T+{\varPi}_{T+R}^T=\frac{k_1{k}_2{\left(a- bc- bv+ bM{p}_0-\left(\eta +{bp}_0\right)\left({e}_{m0}+{e}_{t0}\right)\right)}^2}{4b{k}_1{k}_2-\left({k}_1+{k}_2\right){\left(\eta +{bp}_0\right)}^2}. $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Qin, Y. Carbon emission reduction cooperation of three-echelon supply chain under consumer environmental awareness and cap-and-trade regulation. Environ Sci Pollut Res 29, 82411–82438 (2022). https://doi.org/10.1007/s11356-022-20190-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-022-20190-5

Keywords

Navigation