Skip to main content

Advertisement

Log in

Chronic toxicity of diclofenac, carbamazepine and their mixture to Daphnia magna: a comparative two-generational study

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The chronic toxicity of diclofenac (DCF) and carbamazepine (CBZ) as separate substances and in conjunction with their mixture on Daphnia magna was assessed in the parental (F0) and first filial (F1) generations. The second (F1–B2) and fifth (F1–B5) broods of F1 offspring were investigated and compared. Both drugs and their mixture were exposed to each generation of Daphnia magna for 21 days with life history, behavioural and gene expressions as measured endpoints. After the parental exposure, offspring from these two broods were transferred to a clean medium for a 21-day recovery. Exposure to diclofenac, carbamazepine and their mixture significantly inhibited growth, reproduction, swimming activities, heart rate, thoracic limb activities, reproductive and antioxidant-related genes in the parental as well as the first filial generations. These effects were relatively greater in the F1 generation. This indicates that Daphnia magna’s sensitivity improved while its fitness declined over the two generations, which is an indicator of greater energy requirements for maintenance. Besides, the significant inhibition in the antioxidant-related genes implies that oxidative stress occurred in Daphnia magna under the exposure to these drugs. The significant reduction in the reproductive output, moulting frequency and cyp314 gene expression as a result of exposure to CBZ simultaneously obtained herein may indicate that this drug could act as an endocrine disruptor. Most of these significant effects were not recoverable after the 21-day recovery period. The findings reported herein highlight the necessity to include maternal effects in environmental risk assessment processes, considering that pollutant effects are underestimated during single-generational exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All data generated or analysed during this study are included in this published article and its supplementary information files.

References

  • Aksakal, F.I., 2020. Evaluation of boscalid toxicity on Daphnia magna by using antioxidant enzyme activities, the expression of genes related to antioxidant and detoxification systems, and life-history parameters. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 237, 108830.

  • Blewett TA, Delompré PLM, He Y, Folkerts EJ, Flynn SL, Alessi DS, Goss GG (2017) Sublethal and reproductive effects of acute and chronic exposure to flowback and produced water from hydraulic fracturing on the water flea Daphnia magna. Environ Sci Technol 51:3032–3039

    Article  CAS  Google Scholar 

  • Borgatta M, Decosterd L-A, Waridel P, Buclin T, Chèvre N (2015) The anticancer drug metabolites endoxifen and 4-hydroxy-tamoxifen induce toxic effects on Daphnia pulex in a two-generation study. Sci Total Environ 520:232–240

    Article  CAS  Google Scholar 

  • Bownik A (2017) Daphnia swimming behaviour as a biomarker in toxicity assessment: a review. Sci Total Environ 601:194–205

    Article  Google Scholar 

  • Brennan SJ, Brougham CA, Roche JJ, Fogarty AM (2006) Multi-generational effects of four selected environmental oestrogens on Daphnia magna. Chemosphere 64:49–55

    Article  CAS  Google Scholar 

  • Canton JH (1976) The toxicity of benomyl, thiophanate-methyl, and BCM to four freshwater organisms. Bull Environ Contam Toxicol 16:214–218

    Article  CAS  Google Scholar 

  • Charoy CP, Janssen CR, Persoone G, Clément P (1995) The swimming behaviour of Brachionus calyciflorus (rotifer) under toxic stress. I. The use of automated trajectometry for determining sublethal effects of chemicals. Aquat Toxicol 32:271–282. https://doi.org/10.1016/0166-445X(94)00098-B

    Article  CAS  Google Scholar 

  • Cleuvers M (2003) Aquatic ecotoxicity of pharmaceuticals including the assessment of combination effects. Toxicol Lett 142:185–194

    Article  CAS  Google Scholar 

  • Cody, M.L., 1966. A general theory of clutch size. Evolution (N. Y). 20, 174–184.

  • Dietrich S, Ploessl F, Bracher F, Laforsch C (2010) Single and combined toxicity of pharmaceuticals at environmentally relevant concentrations in Daphnia magna–A multigenerational study. Chemosphere 79:60–66

    Article  CAS  Google Scholar 

  • Duquesne S, Küster E (2010) Biochemical, metabolic, and behavioural responses and recovery of Daphnia magna after exposure to an organophosphate. Ecotoxicol Environ Saf 73:353–359. https://doi.org/10.1016/j.ecoenv.2009.11.008

    Article  CAS  Google Scholar 

  • Gabriel W, Luttbeg B, Sih A, Tollrian R (2005) Environmental tolerance, heterogeneity, and the evolution of reversible plastic responses. Am Nat 166:339–353. https://doi.org/10.1086/432558

    Article  Google Scholar 

  • Gunamalai V, Kirubagaran R, Subramoniam T (2004) Hormonal coordination of molting and female reproduction by ecdysteroids in the mole crab Emerita asiatica (Milne Edwards). Gen Comp Endocrinol 138:128–138

    Article  CAS  Google Scholar 

  • Harris, K.D.M., Bartlett, N.J., Lloyd, V.K., 2012. Daphnia as an emerging epigenetic model organism. Genet. Res. Int. 2012.

  • Jeong SW, Lee SM, Yum SS, Iguchi T, Seo YR (2013) Genomic expression responses toward bisphenol-A toxicity in Daphnia magna in terms of reproductive activity. Mol Cell Toxicol 9:149–158

    Article  CAS  Google Scholar 

  • Jux U, Baginski RM, Arnold H-G, Krönke M, Seng PN (2002) Detection of pharmaceutical contaminations of river, pond, and tap water from Cologne (Germany) and surroundings. Int J Hyg Environ Health 205:393–398. https://doi.org/10.1078/1438-4639-00166

    Article  CAS  Google Scholar 

  • Kim HY, Lee MJ, Yu SH, Kim SD (2012) The individual and population effects of tetracycline on Daphnia magna in multigenerational exposure. Ecotoxicology 21:993–1002

    Article  CAS  Google Scholar 

  • Kim HY, Yu S, Jeong T, Kim SD (2014) Relationship between trans-generational effects of tetracycline on Daphnia magna at the physiological and whole organism level. Environ Pollut 191:111–118

    Article  CAS  Google Scholar 

  • Lamichhane K, Garcia SN, Huggett DB, DeAngelis DL, La Point TW (2013) Chronic effects of carbamazepine on life-history strategies of Ceriodaphnia dubia in three successive generations. Arch Environ Contam Toxicol 64:427–438

    Article  CAS  Google Scholar 

  • LaMontagne JM, McCauley E (2001) Maternal effects in Daphnia: what mothers are telling their offspring and do they listen? Ecol Lett 4:64–71

    Article  Google Scholar 

  • Lari E, Steinkey D, Morandi G, Rasmussen JB, Giesy JP, Pyle GG (2017) Oil sands process-affected water impairs feeding by Daphnia magna. Chemosphere 175:465–472. https://doi.org/10.1016/j.chemosphere.2017.02.088

    Article  CAS  Google Scholar 

  • Le T-H, Lim E-S, Lee SK, Choi Y-W, Kim Y-H, Min J (2010) Effects of glyphosate and methidathion on the expression of the Dhb, Vtg, Arnt, CYP4 and CYP314 in Daphnia magna. Chemosphere 79:67–71

    Article  CAS  Google Scholar 

  • Leblanc GA, Mclachlan JB (1999) Molt-independent growth inhibition of Daphnia magna by a vertebrate antiandrogen. Environ Toxicol Chem 18:1450–1455. https://doi.org/10.1002/etc.5620180715

    Article  CAS  Google Scholar 

  • Liu J-L, Wong M-H (2013) Pharmaceuticals and personal care products (PPCPs): a review on environmental contamination in China. Environ Int 59:208–224. https://doi.org/10.1016/j.envint.2013.06.012

    Article  CAS  Google Scholar 

  • Liu, J., Shen, J., Lu, G., Xu, X., Yang, H., Yan, Z., Chen, W., 2020. Multilevel ecotoxicity assessment of environmentally relevant bisphenol F concentrations in Daphnia magna. Chemosphere 240, 124917.

  • Liu S, Ding R, Nie X (2019a) Assessment of oxidative stress of paracetamol to Daphnia magna via determination of Nrf1 and genes related to antioxidant system. Aquat Toxicol 211:73–80. https://doi.org/10.1016/j.aquatox.2019.03.014

    Article  CAS  Google Scholar 

  • Liu, Y., Ding, R., Pan, B., Wang, L., Liu, S., Nie, X., 2019b. Simvastatin affect the expression of detoxification-related genes and enzymes in Daphnia magna and alter its life history parameters. Ecotoxicol. Environ. Saf. 182, 109389.

  • Liu Y, Han W, Xu Z, Fan W, Peng W, Luo S (2018) Comparative toxicity of pristine graphene oxide and its carboxyl, imidazole or polyethylene glycol functionalized products to Daphnia magna: a two generation study. Environ Pollut 237:218–227

    Article  CAS  Google Scholar 

  • Liu Y, Wang L, Pan B, Wang C, Bao S, Nie X (2017) Toxic effects of diclofenac on life history parameters and the expression of detoxification-related genes in Daphnia magna. Aquat Toxicol 183:104–113

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2 (-Delta Delta C (T)) method. Methods 25:402–408

    Article  CAS  Google Scholar 

  • Lotka AJ (1913) A natural population norm. J Wash Acad Sci 3:241–248

    Google Scholar 

  • Lürling M, Sargant E, Roessink I (2006) Life-history consequences for Daphnia pulex exposed to pharmaceutical carbamazepine. Environ Toxicol an Int J 21:172–180

    Article  Google Scholar 

  • Minguez L, Ballandonne C, Rakotomalala C, Dubreule C, Kientz-Bouchart V, Halm-Lemeille M-P (2015) Transgenerational effects of two antidepressants (sertraline and venlafaxine) on Daphnia magna life history traits. Environ Sci Technol 49:1148–1155

    Article  CAS  Google Scholar 

  • Nkoom M, Lu G, Liu J, Dong H (2020) Biological uptake, depuration and biochemical effects of diclofenac and carbamazepine in Carassius carassius. Ecotoxicol Environ Saf 205:111106. https://doi.org/10.1016/j.ecoenv.2020.111106

    Article  CAS  Google Scholar 

  • Nkoom M, Lu G, Liu J, Dong H, Yang H (2019a) Bioconcentration, behavioral, and biochemical effects of the non-steroidal anti-inflammatory drug diclofenac in Daphnia magna. Environ Sci Pollut Res 26:5704–5712

    Article  CAS  Google Scholar 

  • Nkoom M, Lu G, Liu J, Yang H, Dong H (2019b) Bioconcentration of the antiepileptic drug carbamazepine and its physiological and biochemical effects on Daphnia magna. Ecotoxicol Environ Saf 172:11–18

    Article  CAS  Google Scholar 

  • OECD, 2012. Test No. 211: Daphnia magna reproduction test. https://doi.org/10.1787/9789264185203-en

  • OECD, 2004. Test No. 202: Daphnia sp. acute immobilisation test. https://doi.org/10.1787/9789264069947-en

  • Oliveira P, Almeida Â, Calisto V, Esteves VI, Schneider RJ, Wrona FJ, Soares AMVM, Figueira E, Freitas R (2017) Physiological and biochemical alterations induced in the mussel Mytilus galloprovincialis after short and long-term exposure to carbamazepine. Water Res 117:102–114. https://doi.org/10.1016/j.watres.2017.03.052

    Article  CAS  Google Scholar 

  • Oropesa AL, Floro AM, Palma P (2016) Assessment of the effects of the carbamazepine on the endogenous endocrine system of Daphnia magna. Environ Sci Pollut Res 23:17311–17321

    Article  CAS  Google Scholar 

  • Parolini M, De Felice B, Ferrario C, Salgueiro-González N, Castiglioni S, Finizio A, Tremolada P (2018) Benzoylecgonine exposure induced oxidative stress and altered swimming behavior and reproduction in Daphnia magna. Environ Pollut 232:236–244. https://doi.org/10.1016/j.envpol.2017.09.038

    Article  CAS  Google Scholar 

  • Rasheed T, Bilal M, Nabeel F, Adeel M, Iqbal HMN (2019) Environmentally-related contaminants of high concern: potential sources and analytical modalities for detection, quantification, and treatment. Environ Int 122:52–66. https://doi.org/10.1016/j.envint.2018.11.038

    Article  CAS  Google Scholar 

  • Ribeiro F, Ferreira NCG, Ferreira A, Soares AMVM, Loureiro S (2011) Is ultraviolet radiation a synergistic stressor in combined exposures? The case study of Daphnia magna exposure to UV and carbendazim. Aquat Toxicol 102:114–122

    Article  CAS  Google Scholar 

  • Rivetti C, Campos B, Barata C (2016) Low environmental levels of neuro-active pharmaceuticals alter phototactic behaviour and reproduction in Daphnia magna. Aquat Toxicol 170:289–296. https://doi.org/10.1016/j.aquatox.2015.07.019

    Article  CAS  Google Scholar 

  • Scherer C, Seeland A, Oehlmann J, Müller R (2013) Interactive effects of xenobiotic, abiotic and biotic stressors on Daphnia pulex—results from a multiple stressor experiment with a fractional multifactorial design. Aquat Toxicol 138–139:105–115. https://doi.org/10.1016/j.aquatox.2013.04.014

    Article  CAS  Google Scholar 

  • Shyama SK (1987) Studies on moulting and reproduction in the prawn Macrobrachium idella (Heller). Mahasagar 20:15–21

    Google Scholar 

  • Silva ARR, Cardoso DN, Cruz A, Mendo S, Soares AMVM, Loureiro S (2019) Long-term exposure of Daphnia magna to carbendazim: how it affects toxicity to another chemical or mixture. Environ Sci Pollut Res 26:16289–16302

    Article  CAS  Google Scholar 

  • Smirnov N (2013) Physiology of the Cladocera. Academic Press, San Diego, CA

    Google Scholar 

  • Smirnov NN (2016) The recent state and prospects of studying the cladocera (Crustacea) physiology. Zool ZHURNAL 95:788–804

    Google Scholar 

  • Snyder MJ (2000) Cytochrome P450 enzymes in aquatic invertebrates: recent advances and future directions. Aquat Toxicol 48:529–547

    Article  CAS  Google Scholar 

  • Sumiya E, Ogino Y, Miyakawa H, Hiruta C, Toyota K, Miyagawa S, Iguchi T (2014) Roles of ecdysteroids for progression of reproductive cycle in the fresh water crustacean Daphnia magna. Front Zool 11:60

    Article  Google Scholar 

  • Tian, Y., Xia, X., Wang, Jinhua, Zhu, L., Wang, Jun, Zhang, F., Ahmad, Z., 2019. Chronic toxicological effects of carbamazepine on Daphnia magna Straus: effects on reproduction traits, body length, and intrinsic growth. bull. Environ. Contam. Toxicol. 1–6.

  • Tkaczyk A, Bownik A, Dudka J, Kowal K, Ślaska B (2021) Daphnia magna model in the toxicity assessment of pharmaceuticals: a review. Sci Total Environ 763:143038. https://doi.org/10.1016/j.scitotenv.2020.143038

    Article  CAS  Google Scholar 

  • Uttieri, M., Sandulli, R., Spezie, G., Zambianchi, E., 2014. From small to large scale: a review of the swimming behaviour of Daphnia. Daphnia Biol. Math. Perspect. Nov. Sci. Publ. New York 309–312.

  • Valcárcel Y, González Alonso S, Rodríguez-Gil JL, Gil A, Catalá M (2011) Detection of pharmaceutically active compounds in the rivers and tap water of the Madrid Region (Spain) and potential ecotoxicological risk. Chemosphere 84:1336–1348. https://doi.org/10.1016/j.chemosphere.2011.05.014

    Article  CAS  Google Scholar 

  • Vandenbergh GF, Adriaens D, Verslycke T, Janssen CR (2003) Effects of 17α-ethinylestradiol on sexual development of the amphipod Hyalella azteca. Ecotoxicol Environ Saf 54:216–222

    Article  CAS  Google Scholar 

  • Winston GW, Di Giulio RT (1991) Prooxidant and antioxidant mechanisms in aquatic organisms. Aquat Toxicol 19:137–161. https://doi.org/10.1016/0166-445X(91)90033-6

    Article  CAS  Google Scholar 

  • Xie L, Klerks PL (2004) Fitness cost of resistance to cadmium in the least killifish (Heterandria formosa). Environ Toxicol Chem an Int J 23:1499–1503

    Article  CAS  Google Scholar 

  • Yang H, Lu G, Yan Z, Liu J, Dong H (2018) Influence of suspended sediment characteristics on the bioaccumulation and biological effects of citalopram in Daphnia magna. Chemosphere 207:293–302. https://doi.org/10.1016/j.chemosphere.2018.05.091

    Article  CAS  Google Scholar 

  • Zhu X, Wang Q, Zhang L, Liu J, Zhu C, Yang Z (2015) Offspring performance of Daphnia magna after short-term maternal exposure to mixtures of microcystin and ammonia. Environ Sci Pollut Res 22:2800–2807. https://doi.org/10.1007/s11356-014-3520-5

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by the National Natural Science Foundation of China (No. 51879228), the National Science Funds for Creative Research Groups of China (No. 51421006) and the Priority Academic Programme Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Contributions

MN: Conceptualisation, methodology, investigation, formal analysis, writing—original draft, writing—review and editing. GL: conceptualisation, methodology, formal analysis, writing—original draft, writing—review and editing, funding acquisition, supervision. JL: methodology, formal analysis, writing—review and editing, resources. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Guanghua Lu.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Communicated by Bruno Nunes.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 352 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nkoom, M., Lu, G. & Liu, J. Chronic toxicity of diclofenac, carbamazepine and their mixture to Daphnia magna: a comparative two-generational study. Environ Sci Pollut Res 29, 58963–58979 (2022). https://doi.org/10.1007/s11356-022-19463-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-022-19463-w

Keywords

Navigation