Skip to main content

Advertisement

Log in

Enhancement of output power of semitransparent photovoltaic thermal air collector using ANFIS model

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The paper aims to develop a model using adaptive neuro-fuzzy inference system (ANFIS) architecture for enhancing output power of semitransparent photovoltaic thermal (PV/T) air collector by predicting the failure of PV panels for different weather conditions and different climate zones. Increased temperature of the photovoltaic module is a big problem which reduces its working life. The working and hotspot temperatures of photovoltaic (PV) modules have been reduced using ANFIS-based thermal design with optimal placement of PV cells which increase their life and reduce the failure rate which in turn increase the output power. The overall analysis reveals that output power is enhanced using ANFIS-based model by minimizing absolute error to 1.4% in 100 epochs by predicting accurate parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

αc :

Absorptivity of solar cell

βo :

Temperature coefficient of efficiency

bdx:

Bottom insulation length

τg :

Transmissivity of glass

ho :

Top loss heat coefficient

βc :

Packing factor of cell

Tc :

Cell temperature

T :

Temperature difference between solar cell and ambient

Ta :

Ambient temperature

I(t):

Incident solar radiation

ηc :

Cell efficiency

hgi :

Overall heat transfer coefficient from solar cell to ambient through glass cover

ηel :

Electrical efficiency of semitransparent PVT air collector

Tb :

Bottom insulation temperature

ηth :

Thermal efficiency of semitransparent PVT air collector

R i :

Thermal resistance of Ei in perfect placement

ηo :

Efficiency of semitransparent PVT air collector at standard test condition

R ij :

Coupling thermal resistance between Ei and Ej

αb :

Absorptivity of bottom insulation

W i :

Power dissipation in Ei

hf :

Heat transfer coefficient in duct

ab :

Total modules in an array (Nos.)

Tf :

Outlet air temperature of duct

θ pi :

Temperature rise of Ei due to heat dissipation of other modules

hb :

Heat transfer coefficient for bottom insulation to ambient

θ i :

Junction temperature rise of Ei

\(\dot{m_a}\) :

Mass flow rate

θj :

Junction temperature rise of Ej

Ca :

Specific heat of air

A pi :

Constant, weight given to Rei and Wj

Ub :

Overall back loss coefficient from flowing air to ambient

B pi :

Constant, weight given to Rei

F(t; T):

Failure time distribution function

γi :

Positive constant, weight given to θpi

λ(T):

Failure rate

Ea :

Activation energy

A:

Acceleration factor due to temperature

K:

Rate constant

R:

Universal gas constant

References

  • Abdelhamid M, Singh R, Omar M (2014) Review of microcrack detection techniques for silicon solar cells. IEEE J of photov 4(1):514–524

    Article  Google Scholar 

  • Agrawal B, Tiwari GN (2011) An energy and exergy analysis of building integrated photovoltaic thermal systems. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 33(7):649–664. https://doi.org/10.1080/15567030903226280

    Article  Google Scholar 

  • Agresti A, Pescetelli S, Busby Y, Aernouts T (2019) Thermally induced fullerene domain coarsening process in organic solar cells. IEEE Trans on Electron Devices. 66(1):678–688

    Article  CAS  Google Scholar 

  • Ahmad N, Khandakar A, El-Tayeb A, Benhmed K, Iqbal A, Touati F (2018) Novel design for thermal management of PV cells in harsh environmental conditions. Energies. 11(11):1–9

    Article  Google Scholar 

  • Alferidi A, Karki R (2017) Development of probabilistic reliability models of photovoltaic system topologies for system adequacy evaluation. 7(2):1–16

    Google Scholar 

  • Baker D et al (1971) (1971) Physical Design of Electronic systems. Prentice-Hall 1:152–287

    Google Scholar 

  • Beniwal R, Gupta HO, Tiwari GN (2018) A generalized ANN model for reliability analysis of a semitransparent photovoltaic solar module with cost modeling. J of Computational Electronics. 17(3):1167–1175. https://doi.org/10.1007/s10825-018-1200-2

    Article  Google Scholar 

  • Couderc R, Amara M, Lemiti M (2016) In-Depth Analysis of Heat Generation in Silicon Solar Cells. IEEE J of Photovoltaics. 6(5):1123–1131

    Article  Google Scholar 

  • Curtin J, Statler RL (1975) Review of radiation damage to silicon solar cells. IEEE Trans on Aerospace and Electronic Systems AES 11(4):499–513

    Article  Google Scholar 

  • Dhimish M, Mather P, Holmes V (2018) Evaluating power loss and performance ratio of hot-spotted photovoltaic modules IEEE Trans on Electron Devices. 65(12):5419–5427

    CAS  Google Scholar 

  • Dubey S, Sandhu GS, Tiwari A (2009a) Analytical expression for electrical efficiency of PVT hybrid air collector. Applied Energy 86(5):697–705

    Article  CAS  Google Scholar 

  • Dubey S, Solanki SC, Tiwari A (2009b) Energy and exergy analysis of PVT air collector connected in series. Energy and Building 41(8):863–870

    Article  Google Scholar 

  • Gautam NK, Kaushika ND (2002) Reliability evaluation of solar photovoltaic arrays. Solar Energy 72(2):129–135

    Article  Google Scholar 

  • Ghritlahre HK, Verma M (2021a) Accurate prediction of exergetic efficiency of solar air heaters using various predicting methods. Journal of Cleaner Production 288:125115

    Article  Google Scholar 

  • Ghritlahre HK, Chandrakar P, Ahmad A (2020) Application of ANN model to predict the performance of solar air heater using relevant input parameters. Sustainable Energy Technologies and Assessments. 40:100764

    Article  Google Scholar 

  • Ghritlahre HK, Prasad RK (2019) Modelling of back propagation neural network to predict the thermal performance of porous bed solar air heater. Archives of Thermodynamics. 40(4):103–128

    CAS  Google Scholar 

  • Ghritlahre HK, Prasad RK (2018a) Investigation of thermal performance of unidirectional flow porous bed solar air heater using MLP. GRNN, and RBF models of ANN technique, Thermal Science and Engineering Progress 6:226–235

    Google Scholar 

  • Ghritlahre HK, Prasad RK (2018b) Exergetic performance prediction of solar air heater using MLP, GRNN and RBF models of Artificial Neural Network technique. Journal of Environmental Management 223:566–575

    Article  Google Scholar 

  • Ghritlahre HK, Prasad RK (2018c) Investigation on heat transfer characteristics of roughened solar air heater using ANN technique. International Journal of Heat and Technology. 102-110:10.18280/ijht.360114

    Google Scholar 

  • Ghritlahre HK, Prasad RK (2018d) Prediction of exergetic efficiency of artificial arc shape roughened solar air heater using ANN model. International Journal of Heat and Technology. 36(3):1107–1115

    Article  Google Scholar 

  • Ghritlahre HK, Verma M (2021b) Solar air heaters performance prediction using multi-layer perceptron neural network- A systematic review. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects https://doi.org/10.1080/15567036.2021.1923869.

  • Ghritlahre HK, Chandrakar P, Ahmad A (2021) A comprehensive review on performance prediction of solar air heaters using artificial neural network. Annals of Data Science. 8:405–449. https://doi.org/10.1007/s40745-019-00236-1

    Article  Google Scholar 

  • Ghritlahre HK, Prasad RK (2018e) Application of ANN technique to predict the performance of solar collector systems - A review. Renewable and Sustainable Energy Reviews. 84:75–88

    Article  Google Scholar 

  • Gil A, Medrano M, Martorell I, Lazaro A, Dolado P, Zalba B, Cabeza L (2010) State of the art on high temperature thermal energy storage for power generation. Part 1VConcepts, materials and modellization. Renew. Sustain. Energy Rev. 14:31–55

    Article  CAS  Google Scholar 

  • Gorecki K, Gorecki P and Paduch K (2013) Modelling of solar cells characteristics with thermal phenomena taken into account. Proc of Microtherm 2013 Microtechnology and Thermal Problems in Electronics Łódź 298-303

  • Gupta H, Sharma J (1982) Thermal Design of Electronic-Circuit Layout For Reliability. IEEE Transactions on Reliability R-31(1):19–22

    Article  Google Scholar 

  • Hannemann R (1977) Electronic System Thermal Design for Reliability. IEEE Transactions on Reliability. R-26(5):306–310

    Article  Google Scholar 

  • Hegazy AA (2000) Comparative study of the performances of four photovoltaic/thermal solar air collector. Energy Convert-sion and Management. 41(8):861–881

    Article  CAS  Google Scholar 

  • Jang JSR, Sun CT, Mizutani E (1997) Neuro-Fuzzy and soft computing: a computational approach to learning and machine intelligence. Prentice Hall Inc

  • Jordan DC, Silverman TJ, Wohlgemuth JH, Kurtz SR, VanSant KT (2017) Photovoltaic failure and degradation modes, Progress in photovoltaics; research and applications, published online at wileyonlinelibrary.com, https://doi.org/10.1002/pip.2866.

  • Jordon DC, Kurtz SR (2012) Photovoltaic Degradation Rates- An Analytical Review, National Renewable Energy Laboratory NREL/JA-5200-51664

  • Joshi AS, Tiwari A (2007) Energy and exergy efficiencies of a hybrid photovoltaic Thermal (PVT) air collector. Renewable Energy 32(13):2223–2241

    Article  CAS  Google Scholar 

  • Kennerud KL (1969) Analysis of Performance Degradation in CdS Solar Cells, IEEE Transactions on Aerospace and Electronic systems AES-5(6)

  • Koca A, Oztop HF, Varol Y, Koca GO (2011) Estimation of solar radiation using artificial neural networks with different input parameters for Mediterranean region of Anatolia in Turkey. Expert Syst. Appl. 38(7):8756–8762

    Article  Google Scholar 

  • Laing D, Bahl C, Bauer T, Fi QM., Breidenbach N, and Hempel M (2012) High-temperature solid-media thermal energy storage for solar thermal power plants, Proc. IEEE, Special Issue on Massive Energy Storage

  • Linderman RJ, Judkins ZS, Shoecraft M, Dawson MJ (2012) Thermal Performance of the SunPower Alpha-2 PV Concentrator. IEEE J of Photovoltaics. 2(2):196–201

    Article  Google Scholar 

  • Meyer EL, Dyk EEV (2004) Assessing the reliability and degradation of photovoltaic module performance parameters. IEEE Trans on Rel 53(1):83–92

    Article  Google Scholar 

  • Radziemska E (2009) Performance analysis of a photovoltaic-Thermal Integrated System, International Journal of Photo energy, Article ID 732093-99. https://doi.org/10.1155/2009/732093.

  • Rahimi R, Afshari E, Farhangi B and Farhangi S (2015) Optimal placement of additional switch in the photovoltaic single-phase grid-connected transformer less full bridge inverter for reducing common mode leakage current. IEEE Conf on Energy Conversion (CENCON), Johor Bahru:408-412

  • Raman V, Tiwari GN (2009) A Comparison study of energy and exergy performance of a hybrid photovoltaic double-pass and single-pass air collector. Energy Research 33(6):605–617

    Article  CAS  Google Scholar 

  • Ross Jr. RG (2014) PV Reliability Development Lessons From JPL’s Flat Plate Solar Array Project, IEEE J Photovolt. 4(1)

  • Sen C et al (2019) Assessing the impact of thermal profiles on the elimination of light- and elevated-temperature-induced degradation. IEEE J of Photovolt. 9(1):40–48

    Article  Google Scholar 

  • Siegal B (2010) Solar Photovoltaic Cell thermal measurement issues, 26th Annual IEEE Semiconductor Thermal Measurement and Management Symposium (SEMI-THERM), Santa Clara, CA:132-135

  • Sintamarean NC, Blaabjerg F, Wang H, Iannuzzo F, Rimmen P (2015) Reliability Oriented Design Tool For the New Generation of Grid Connected PV-Inverters. IEEE Trans on power electronics. 30(5):2635–2644

    Article  Google Scholar 

  • Solanki SC, Dubey S, Tiwari A (2009) Indoor simulation and testing of photovoltaic thermal (PVT) air collectors. Applied Energy. 86(11):2421–2428

    Article  CAS  Google Scholar 

  • Sopian K, Yigit KS, Liu HT, Kakac S, Veziroglu TN (1996) Performance analysis of photovoltaic thermal air heaters. Energy Conversion and Management 37(11):657–1670

    Article  Google Scholar 

  • Sun X et al (2016) A novel approach to thermal design of solar modules: Selective-spectral and radiative cooling IEEE 43rd Photovoltaic Specialists Conference (PVSC), Portland, OR:3584-3586

  • Tiwari A, Sodha MS, Chandra A, Joshi JC (2006) Performance evaluation of photovoltaic thermal solar air collector for composite climate of India. Solar Energy Materials and Solar Cells. 90(2):175–189

    Article  CAS  Google Scholar 

  • Tiwari GN (2016) Solar Energy: Fundamentals, Design, Modeling and Applications, Narosa Publisher, New Delhi, India, ISBN: 0849324092.

  • Tripanagnostopoulos Y (2007) Aspects and improvements of hybrid photovoltaic/thermal solar energy systems. Solar Energy 81(9):1117–1131

    Article  CAS  Google Scholar 

  • Zarębski J, Górecki K (2008) A Method of the Thermal Resistance Measurements of Semiconductor Devices with P-N Junction Measurement 41(3):259–265

    Google Scholar 

  • Zhang C, Zhang YJ (2016) Optimal solar panel placement in microgrids, IEEE International Conference on Smart Grid Communications (SmartGridComm), Sydney, NSW:376-381

Download references

Acknowledgements

The authors acknowledge Prof. GN Tiwari, Ex-Professor, IIT Delhi, India, and Prof. Sanjay Agarwal for providing literature and suggestions in the field of PV/T air collector.

Author information

Authors and Affiliations

Authors

Contributions

Ruby Beniwal did the mathematical modeling of semitransparent PV/T air collector. She also designed ANFIS model with detailed methodology and was a major contributor in writing the manuscript. NS Beniwal did thermal design analysis. HO Gupta along with R. Beniwal and NS Beniwal analyzed and interpret the results. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ruby Beniwal.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beniwal, R., Beniwal, N.S. & Gupta, H.O. Enhancement of output power of semitransparent photovoltaic thermal air collector using ANFIS model. Environ Sci Pollut Res 29, 44378–44390 (2022). https://doi.org/10.1007/s11356-022-18521-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-022-18521-7

Keywords

Navigation