Skip to main content
Log in

Environmental endocrine disruptor concentrations in urine samples from Mexican Indigenous women

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The Indigenous communities in Mexico show significant degrees of vulnerability to pollution due to the lack of knowledge of health risks, traditions, low levels of support, and restricted access to healthcare. As a result, exposure to environmental endocrine disruptors increases in these populations through plastic components or indoor air pollution. Therefore, the aim of the study was to evaluate the exposure to phthalate metabolites, 1-hydroxypyrene, and bisphenol A through biomonitoring data from indigenous Mexican women. A total of 45 women from the Tocoy community in San Luis Potosí, Mexico, were included. Urine samples were analyzed for Bisphenol A and 4 phthalate metabolites by ultra-performance liquid chromatography couples to tandem mass spectrometry; additionally, the 1-hydroxypyrene concentrations were evaluated by high-performance liquid chromatography coupled to a fluorescence detector. Among the main pollution sources were the use of plastic containers and burning garbage (98–100%). Indigenous women presented an exposure of 100% to mono-2-ethyl phthalate, mono-n-butyl phthalate, and 1-hydroxypyrene, with a median (25th–75th percentiles) of 17,478 (11,362–37,355), 113.8 (61.7–203.5), and 1.2 (0.9–1.7) µg/g creatinine, respectively. The major findings show urinary mono-2-ethyl phthalate concentrations higher than those measured from other studies. Therefore, these results show an impressive exposure to di(2-ethylhexyl) phthalate in Indigenous women. The current study reflects the absence of regulatory policies in marginalized populations. It highlights the need to design strategies that mitigate exposure and the importance of biological monitoring to evaluate and prevent health risk associated with exposure to environmental endocrine disruptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and materials

Not applicable.

References

  • Abraham A, Chakraborty P (2020) A review on sources and health impacts of bisphenol A. Rev Environ Health 35:201–210

    Article  CAS  Google Scholar 

  • Almeida S, Raposo A, Almeida-González M (2018) Carrascosa CJCRiFS, Safety F. Bisphenol a: Food Exposure and Impact on Human Health 17:1503–1517

    Google Scholar 

  • Amiridou D, Voutsa D (2011) Alkylphenols and phthalates in bottled waters. J Hazard Mater 185:281–286

    Article  CAS  Google Scholar 

  • Ait Bamai Y, Araki A, Kawai T, Tsuboi T, Yoshioka E, Kanazawa A, Cong S, Kishi R (2015) Comparisons of urinary phthalate metabolites and daily phthalate intakes among Japanese families. Int J Hyg Environ Health 218(5):461–470. https://doi.org/10.1016/j.ijheh.2015.03.013

    Article  CAS  Google Scholar 

  • Apel P, Angerer J, Wilhelm M, Kolossa-Gehring M (2017) New HBM values for emerging substances, inventory of reference and HBM values in force, and working principles of the German Human Biomonitoring Commission. Int J Hyg Environ Health 220:152–166

    Article  Google Scholar 

  • Bourdrel T, Bind M-A, Béjot Y, Morel O, Argacha J-F (2017) Cardiovascular effects of air pollution. Arch Cardiovasc Dis 110:634–642

    Article  Google Scholar 

  • Cantonwine DE, Hauser R, Meeker JD (2013): Bisphenol A and human reproductive health. Expert review of obstetrics & gynecology 8

  • Cantonwine DE, Cordero JF, Rivera-González LO, Anzalota Del Toro LV, Ferguson KK, Mukherjee B, Calafat AM, Crespo N, Jiménez-Vélez B, Padilla IY, Alshawabkeh AN, Meeker JD (2014) Urinary phthalate metabolite concentrations among pregnant women in Northern Puerto Rico: Distribution, temporal variability, and predictors. Environ Int 62:1–11. https://doi.org/10.1016/j.envint.2013.09.014

    Article  CAS  Google Scholar 

  • Cao M, Pan w, Shen X, Li C, Zhou J, Liu J (2020) Urinary levels of phthalate metabolites in women associated with risk of premature ovarian failure and reproductive hormones. Chemosphere 242:125206. https://doi.org/10.1016/j.chemosphere.2019.125206

    Article  CAS  Google Scholar 

  • Casas L, Fernández MF, Llop S, Guxens M, Ballester F, Olea N, Irurzun MB, Rodríguez LSM, Riaño I, Tardón A, Vrijheid M, Calafat AM, Sunyer J (2011) Urinary concentrations of phthalates and phenols in a population of Spanish pregnant women and children. Environ Int 37(5):858–866. https://doi.org/10.1016/j.envint.2011.02.012

    Article  CAS  Google Scholar 

  • Cheng S, Zhang H, Wang P, Zou K, Duan X, Wang S, Yang Y, Shi L, Wang W (2021): Benchmark dose analysis for PAHs hydroxyl metabolites in urine based on mitochondrial damage of peripheral blood leucocytes in coke oven workers in China. Environmental Toxicology and Pharmacology, 103675

  • Fernández-Llamazares Á, Garteizgogeascoa M, Basu N, Brondizio ES, Cabeza M, Martínez-Alier J, McElwee P, Reyes-García VJIea, management (2020) A state-of-the-art review of indigenous peoples and environmental pollution. Integrated Environmental Assesment and Management 16:324–341

  • Flores-Ramírez R, Ortiz-Pérez M, Batres-Esquivel L, Castillo C, Ilizaliturri-Hernandez C, Diaz-Barriga F (2014) Rapid analysis of persistent organic pollutants by solid phase microextraction in serum samples. Talanta 123:169–178

    Article  Google Scholar 

  • Flores-Ramírez R, Pérez-Vázquez F, Cilia-López V, Zuki-Orozco B, Carrizales L, Batres-Esquivel L, Palacios-Ramírez A, Diaz-Barriga F (2016) Assessment of exposure to mixture pollutants in Mexican indigenous children. Environ Sci Pollut Res 23:8577–8588

    Article  Google Scholar 

  • Flores-Ramírez R, Perez-Vazquez F, Rodríguez-Aguilar M, Medellín-Garibay S, Van Brussel E, Cubillas-Tejeda A, Carrizales-Yáñez L, Díaz-Barriga F (2017) Biomonitoring of persistent organic pollutants (POPs) in child populations living near contaminated sites in Mexico. Sci Total Environ 579:1120–1126

    Article  Google Scholar 

  • Flores-Ramírez R, Ortega-Romero M, Christophe-Barbier O, Meléndez-Marmolejo JG, Rodriguez-Aguilar M, Lee-Rangel HA (2021) de León-Martínez LDJES, Research P. Exposure to Polycyclic Aromatic Hydrocarbon Mixtures and Early Kidney Damage in Mexican Indigenous Population 28:23060–23072

    Google Scholar 

  • Frederiksen H, Skakkebaek NE, Andersson AM (2007) Metabolism of phthalates in humans. Mol Nutr Food Res 51:899–911

    Article  CAS  Google Scholar 

  • Fu X, Xu J, Zhang R, Yu J (2020): The association between environmental endocrine disruptors and cardiovascular diseases: a systematic review and meta-analysis. Environmental Research 187, 109464

  • Gao C-J, Liu L-Y, Ma W-L, Ren N-Q, Guo Y, Zhu N-Z, Jiang L, Li Y-F, Kannan K (2016) Phthalate metabolites in urine of Chinese young adults: Concentration, profile, exposure and cumulative risk assessment. Sci Transl Med 543:19–27. https://doi.org/10.1016/j.scitotenv.2015.11.005

    Article  CAS  Google Scholar 

  • Gao P, da Silva E, Hou L, Denslow ND, Xiang P, Ma LQ (2018) Human exposure to polycyclic aromatic hydrocarbons: metabolomics perspective. Environ Int 119:466–477

    Article  CAS  Google Scholar 

  • Guo Y (2011) Comparative assessment of human exposure to phthalate esters from house dust in China and the United States. Environ Sci Technol 45:3788–3794

    Article  CAS  Google Scholar 

  • Halden RU (2010) Plastics and health risks. Annu Rev Public Health 31:179–194

    Article  Google Scholar 

  • Hamid N, Syed JH, Junaid M, Mahmood A, Li J, Zhang G, Malik RN (2018) Elucidating the urban levels, sources and health risks of polycyclic aromatic hydrocarbons (PAHs) in Pakistan: implications for changing energy demand. Sci Total Environ 619:165–175

    Article  Google Scholar 

  • Hauser R, Gaskins AJ, Souter I, Smith KW, Dodge LE, Ehrlich S, Meeker JD, Calafat AM, Williams PL (2016) Environmental Health Perspectives 124(6):831–839. https://doi.org/10.1289/ehp.1509760

    Article  CAS  Google Scholar 

  • Hays SM (2012) Interpreting human biomonitoring data in a public health risk context using biomonitoring equivalents. International Journal of Hygiene and Environmental Health 215:145–148

    Article  CAS  Google Scholar 

  • Holland N, Huen K, Tran V, Street K, Nguyen B, Bradman A, Eskenazi B (2016) Urinary Phthalate Metabolites and Biomarkers of Oxidative Stress in a Mexican-American Cohort: Variability in Early and Late Pregnancy. Toxics 4(1):7. https://doi.org/10.3390/toxics4010007

    Article  CAS  Google Scholar 

  • Horn O, Nalli S, Cooper D, Nicell JJWR (2004) Plasticizer Metabolites in the Environment 38:3693–3698

    CAS  Google Scholar 

  • Johns LE, Cooper GS, Galizia A, Meeker JD (2015) Exposure assessment issues in epidemiology studies of phthalates. Environ Int 85:27–39

    Article  CAS  Google Scholar 

  • Kang H, Kim S, Lee G, Lee I, Lee JP, Lee J, Park H, Moon H-B, Park J, Kim S, Choi G, Choi K (2019) Urinary metabolites of dibutyl phthalate and benzophenone-3 are potential chemical risk factors of chronic kidney function markers among healthy women. Environ Int 124:354–360. https://doi.org/10.1016/j.envint.2019.01.028

    Article  CAS  Google Scholar 

  • Keresztes S, Tatar E, Czegeny Z, Zaray G, Mihucz VG (2013) Study on the leaching of phthalates from polyethylene terephthalate bottles into mineral water. Sci Total Environ 458–460:451–458

    Article  Google Scholar 

  • Kermani M, Jonidi Jafari A, Gholami M, Taghizadeh F, Masroor K, Abdolahnejad A, Shahsavani A, Fanaei F (2021): Characterisation of PM2. 5–bound PAHs in outdoor air of Karaj megacity: the effect of meteorological factors. International Journal of Environmental Analytical Chemistry, 1–19

  • Kim W, Jeong S-C, Shin C-y, Song M-K, Cho Y, Lim J-h, Gye MC, Ryu J-C (2018) A study of cytotoxicity and genotoxicity of particulate matter (PM 2.5) in human lung epithelial cells (A549). Mol Cell Toxicol 14:163–172

    Article  CAS  Google Scholar 

  • Krishnan K, Gagné M, Nong A, Aylward LL, Hays SMJRT, Pharmacology (2010): biomonitoring equivalents for bisphenol A (BPA). 58, 18–24

  • Lee S, Hong S, Liu X, Kim C, Jung D, Yim UH, Shim WJ, Khim JS, Giesy JP, Choi K (2017) Endocrine disrupting potential of PAHs and their alkylated analogues associated with oil spills. Environ Sci Process Impacts 19:1117–1125

    Article  CAS  Google Scholar 

  • Li AJ, Martinez-Moral M-P, Al-Malki AL, Al-Ghamdi MA, Al-Bazi MM, Kumosani TA, Kannan K (2019a) Mediation analysis for the relationship between urinary phthalate metabolites and type 2 diabetes via oxidative stress in a population in Jeddah, Saudi Arabia. Environ Int 126:153–161. https://doi.org/10.1016/j.envint.2019.01.082

  • Li L, Ying Y, Zhang C, Wang W, Li Y, Feng Y, Liang J, Song H, Wang Y (2019b) Bisphenol A exposure and risk of thyroid nodules in Chinese women: A case-control study. Environ Int 126:321–328. https://doi.org/10.1016/j.envint.2019.02.026

  • Lopez-Carrillo L, Hernandez-Ramirez RU, Calafat AM, Torres-Sanchez L, Galvan-Portillo M, Needham LL, Ruiz-Ramos R, Cebrian ME (2010) Exposure to phthalates and breast cancer risk in Northern Mexico. Environ Health Persp 118:539–544

    Article  CAS  Google Scholar 

  • Ma Q, Qi Y, Shan Q, Liu S, He H (2020): Understanding the knowledge gaps between air pollution controls and health impacts including pathogen epidemic. Environmental Research 189, 109949

  • Mandel ND, Gamboa-Loira B, Cebrian ME, Merida-Ortega A, Lopez-Carrillo L (2019) Challenges to regulate products containing bisphenol A: implications for policy. Salud Publica Mex 61:692–697

    Article  Google Scholar 

  • Mínguez-Alarcón L, Messerlian C, Bellavia A, Gaskins AJ, Chiu Y-H, Ford JB, Azevedo AR, Petrozza JC, Calafat AM, Hauser R, Williams PL (2019) Urinary concentrations of bisphenol A, parabens and phthalate metabolite mixtures in relation to reproductive success among women undergoing in vitro fertilization. Environ Int 126:355–362. https://doi.org/10.1016/j.envint.2019.02.025

    Article  CAS  Google Scholar 

  • Nalli S, Cooper DG (2006) Nicell JAJSotte. Metabolites from the Biodegradation of Di-Ester Plasticizers by Rhodococcus Rhodochrous 366:286–294

    CAS  Google Scholar 

  • Net S, Sempere R, Delmont A, Paluselli A, Ouddane BJES, Technology (2015): Occurrence, fate, behavior and ecotoxicological state of phthalates in different environmental matrices. 49, 4019–4035

  • OHCHR (2020): General call for contributions on the consequences of exposure of indigenous people to toxic and otherwise hazardous substances. In: toxics SRohra (Hrsg.), SR Hazardous Substances and Wastes. Office of the United Nations High Commissioner for Human Rights (OHCHR), Geneva

  • Olujimi O, Ogunseye O, Oladiran K, Ajakore S (2018) Preliminary investigation into urinary 1-hydroxypyrene as a biomarker for polycyclic aromatic hydrocarbons exposure among charcoal workers in Ogun and Oyo States, Nigeria. Saf Health Work 9:416–420

    Article  CAS  Google Scholar 

  • Parkerton TF, Staples CAJSAC (2003): An assessment of the potential environmental risks posed by phthalates in soil and sediment. 317–349

  • Pérez-Maldonado IN, Martínez-Salinas RI, Pruneda Alvarez LG, Pérez-Vázquez FJJIjoehr (2014): Urinary 1-hydroxypyrene concentration from Mexican children living in the southeastern region in Mexico. 24, 113–119

  • Perez-Vazquez FJ, Flores-Ramirez R, Ochoa-Martinez AC, Orta-Garcia ST, Hernandez-Castro B, Carrizalez-Yañez L, Pérez-Maldonado IN (2015) Concentrations of persistent organic pollutants (POPs) and heavy metals in soil from San Luis Potosí, México. Environ Monit Assess 187:1–15

    Article  CAS  Google Scholar 

  • Pruneda-Álvarez LG, Pérez-Vázquez FJ, Ruíz-Vera T, Ochoa-Martínez ÁC, Orta-García ST, Jiménez-Avalos JA, Pérez-Maldonado IN (2016) Urinary 1-hydroxypyrene concentration as an exposure biomarker to polycyclic aromatic hydrocarbons (PAHs) in Mexican women from different hot spot scenarios and health risk assessment. Environ Sci Pollut Res 23(7):6816-6825. https://doi.org/10.1007/s11356-015-5918-0

  • Rahmatinia T, Kermani M, Farzadkia M, Jonidi Jafari A, Delbandi A-A, Rashidi N, Fanaei F (2021a): The effect of PM2. 5-related hazards on biomarkers of bronchial epithelial cells (A549) inflammation in Karaj and Fardis cities. Environmental Science and Pollution Research, 1–11

  • Rahmatinia T, Kermani M, Farzadkia M, Nicknam MH, Soleimanifar N, Mohebbi B, Jafari AJ, Shahsavani A, Fanaei F (2021b): Potential cytotoxicity of PM2. 5–bound PAHs and toxic metals collected from areas with different traffic densities on human lung epithelial cells (A549). Journal of Environmental Health Science and Engineering, 1–12

  • Rodriguez-Carmona Y, Cantoral A, Trejo-Valdivia B, Tellez-Rojo MM, Svensson K, Peterson KE, Meeker JD, Schnaas L, Solano M, Watkins DJ (2019) Phthalate exposure during pregnancy and long-term weight gain in women. Environ Res 169:26–32

    Article  CAS  Google Scholar 

  • Romero-Franco M, Hernández-Ramírez RU, Calafat AM, Cebrián ME, Needham LL, Teitelbaum S, Wolff MS (2011) López-Carrillo LJEi. Personal Care Product Use and Urinary Levels of Phthalate Metabolites in Mexican Women 37:867–871

    CAS  Google Scholar 

  • Sarigiannis DA, Karakitsios S, Dominguez-Romero E, Papadaki K, Brochot C, Kumar V, Schuhmacher M, Sy M, Mielke H, Greiner M, Mengelers M, Scheringer M (2019) Physiology-based toxicokinetic modelling in the frame of the European Human Biomonitoring Initiative. Environ Res 172:216–230

    Article  CAS  Google Scholar 

  • Schwanse E (2011) Recycling policies and programmes for PET drink bottles in Mexico. Waste Manag Res 29:973–981

    Article  Google Scholar 

  • Shaffer RM, Ferguson KK, Sheppard L, James-Todd T, Butts S, Chandrasekaran S, Swan SH, Barrett ES, Nguyen R, Bush N, McElrath TF, Sathyanarayana S (2019) Maternal urinary phthalate metabolites in relation to gestational diabetes and glucose intolerance during pregnancy. Environ Int 123:588–596. https://doi.org/10.1016/j.envint.2018.12.021

    Article  CAS  Google Scholar 

  • Shi Y, Qi W, Xu Q, Wang Z, Cao X, Zhou L, Ye L (2021) The role of epigenetics in the reproductive toxicity of environmental endocrine disruptors. Environ Mol Mutagen 62:78–88

    Article  CAS  Google Scholar 

  • Shin H-M, Bennett DH, Barkoski J, Ye X, Calafat AM, Tancredi D, Hertz-Picciotto I (2019) Variability of urinary concentrations of phthalate metabolites during pregnancy in first morning voids and pooled samples. Environ Int 122:222–230. https://doi.org/10.1016/j.envint.2018.11.012

    Article  CAS  Google Scholar 

  • Snoj Tratnik J, Kosjek T, Heath E, Mazej D, Ćehić S, Karakitsios SP, Sarigiannis DA, Horvat M (2019) Urinary bisphenol A in children, mothers and fathers from Slovenia: Overall results and determinants of exposure. Environ Res 168:32–40. https://doi.org/10.1016/j.envres.2018.09.004

    Article  CAS  Google Scholar 

  • Sun X, Chen W, Weng S, Pan T, Hu X, Wang F, Xia T, Chen H, Luo T (2020) Effects of the environmental endocrine disruptors di-2-ethylhexyl phthalate and mono-2-ethylhexyl phthalate on human sperm function in vitro. Reprod Fertil Dev 32:629–636

    Article  CAS  Google Scholar 

  • Suzuki Y, Niwa M, Yoshinaga J, Mizumoto Y, Serizawa S, Shiraishi H (2010) Prenatal exposure to phthalate esters and PAHs and birth outcomes. Environ Int 36(7):699–704. https://doi.org/10.1016/j.envint.2010.05.003

    Article  CAS  Google Scholar 

  • Tahmid M, Dey S, Syeda SRJJoLPitPI (2020): Mapping human vulnerability and risk due to chemical accidents. 68, 104289

  • Taussky HH (1954) A micro-colorimetric determination of creatinine in urine by the Jaffe’s reaction. J Biol Chem 208:853–861

  • Van Cleve AR (2017) Development of a 1-hydroxypyrene quantification method for use as a biomarker in assessment of polycyclic aromatic hydrocarbon exposure. Doctoral dissertation

  • Viswanathan MP, Mullainadhan V, Chinnaiyan M, Karundevi BJT (2017): Effects of DEHP and its metabolite MEHP on insulin signalling and proteins involved in GLUT4 translocation in cultured L6 myotubes. 386, 60–71

  • Wang Q, Wang L, Chen X, Rao KM, Lu SY, Ma ST, Jiang P, Zheng D, Xu SQ, Zheng HY, Wang JS, Yu ZQ, Zhang R, Tao Y, Yuan J (2011) Increased urinary 8-hydroxy-2’-deoxyguanosine levels in workers exposed to di-(2-ethylhexyl) phthalate in a waste plastic recycling site in China. Environ Sci Pollut Res Int 18:987–996

    Article  CAS  Google Scholar 

  • Wang Y, Zhu H, Kannan K (2019) A review of biomonitoring of phthalate exposures. Toxics 7:21

    Article  Google Scholar 

  • Wang C, Zhou S, Wu S, Tang J, Li H, Du J (2020): Exposure to polycyclic aromatic hydrocarbons (PAHs) in people living in urban and rural areas as revealed by hair analysis. Chemosphere 246, 125764

  • Webb J, Coomes OT, Mergler D, Ross NA (2018) Levels of 1-hydroxypyrene in urine of people living in an oil producing region of the Andean Amazon (Ecuador and Peru). Int Arch Occup Environ Health 91:105–115

    Article  CAS  Google Scholar 

  • Wenzel AG, Brock JW, Cruze L, Newman RB, Unal ER, Wolf BJ, Somerville SE, Kucklick JR (2018) Prevalence and predictors of phthalate exposure in pregnant women in Charleston, SC. Chemosphere 193:394–402. https://doi.org/10.1016/j.chemosphere.2017.11.019

    Article  CAS  Google Scholar 

  • Xie F, Chen X, Weng S, Xia T, Sun X, Luo T, Li P (2019) Effects of two environmental endocrine disruptors di-n-butyl phthalate (DBP) and mono-n-butyl phthalate (MBP) on human sperm functions in vitro. Reprod Toxicol 83:1–7

    Article  CAS  Google Scholar 

  • Zhang Y, Dong S, Wang H, Tao S, Kiyama R (2016) Biological impact of environmental polycyclic aromatic hydrocarbons (ePAHs) as endocrine disruptors. Environ Pollut 213:809–824

    Article  CAS  Google Scholar 

Download references

Funding

The authors acknowledge grants and fellowships from the National Council on Science and Technology- Sectoral Research Fund for Education Basic-Science # A1-S-28176.

Consejo Nacional de Ciencia y Tecnología,A1-S-28176,Rogelio Flores-Ramírez

Author information

Authors and Affiliations

Authors

Contributions

ASRB: Conceptualization, Sampling, Analytical methods, Writing and Editing. SEMG: Conceptualization and Analytical methods, Writing and Editing. MRA: Conceptualization and Analytical methods. JSA: Conceptualization and Analytical methods. RCMS: Analytical methods. RFR: Conceptualization, Sampling, Analytical methods, Writing and Editing and Funding.

Corresponding authors

Correspondence to Susanna Edith Medellín-Garibay or Rogelio Flores-Ramírez.

Ethics declarations

Ethics approval

The protocol was approved by the Ethics Committee of the Faculty of Medicine of the Autonomous University of San Luis Potosí (CEI-2018–002).

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Lotfi Aleya

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodríguez-Báez, A.S., Medellín-Garibay, S.E., Rodríguez-Aguilar, M. et al. Environmental endocrine disruptor concentrations in urine samples from Mexican Indigenous women. Environ Sci Pollut Res 29, 38645–38656 (2022). https://doi.org/10.1007/s11356-021-18197-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-021-18197-5

Keywords

Navigation