Skip to main content
Log in

Transcriptome analysis of the toxicity response of green macroalga Caulerpa lentillifera J. Agardh to high dissolved arsenite

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Arsenic (As) is a hazardous pollutant that negatively impacts the physiological functions of alga. So far, a detailed understanding of algal response to As stress is still lacking. In this study, a transcriptome analysis was performed to illustrate the toxicity response of Caulerpa lentillifera J. Agardh, an edible algae with rich nutrition, to arsenite [As(III)], a toxic form of As. Totally, 1913 differentially expressed genes (DEGs) were screened, of which 642 were up- and 1271 were downregulated in C. lentillifera under As(III) stress (30 mg·L–1) compared with control. As(III) stress promoted the growth of C. lentillifera at low concentration (0.1 mg·L–1) and inhibited the growth at high concentration (≥ 0.5 mg·L–1). Multiple DEGs involved in oxidoreductase activities were significantly affected by As(III), and several DEGs related to antioxidant enzyme activity were downregulated, resulting in suffering from oxidative stress in C. lentillifera. Results also showed that As(III) stress inhibited chlorophyll and carotenoid synthesis, destroyed the integrity of chloroplasts, and interfered with the absorption of light energy, thereby inhibiting photosynthesis in C. lentillifera. The highly enriched ABC transporter-related genes involved in the detoxification process were upregulated under As(III) stress, indicating their critical role in the resistance to As stress in C. lentillifera. The gene expressions for 10 selected DEGs were confirmed by qRT-PCR, showing the reliability of the data revealed by RNA sequencing. Our novel work illustrated the toxicity of C. lentillifera under As(III) stress at the molecular level, serving as a basis for future investigations on the prevention and treatment of such pollutants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Abbas G, Murtaza B, Bibi I, Shahid M, Niazi NK, Khan MI, Amjad M, Hussain M (2018) Arsenic uptake, toxicity, detoxification, and speciation in plants: physiological, biochemical, and molecular aspects. Int J Environ Res Public Health 15:59

    Article  CAS  Google Scholar 

  • Aioub AAA, Zuo Y, Li Y, Qie X, Zhang X, Essmat N, Wu W, Hu Z (2021) Transcriptome analysis of Plantago major as a phytoremediator to identify some genes related to cypermethrin detoxification. Environ Sci Pollut Res 28:5101–5115

    Article  CAS  Google Scholar 

  • Ali W, Rasool A, Junaid M, Zhang H (2018) A comprehensive review on current status, mechanism, and possible sources of arsenic contamination in groundwater: a global perspective with prominence of Pakistan scenario. Environ Geochem Health 41:737–760

    Article  CAS  Google Scholar 

  • Altschul SF, Madden TL, Schäffer AA, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  Google Scholar 

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts Polyphenoloxidase in Beta Vulgaris. Plant Physiol 24:1–15

    Article  CAS  Google Scholar 

  • Budzyńska S, Goliński P, Niedzielski P, Gasecka M, Mleczek M (2019) Arsenic content in two-year-old Acer platanoides L. and Tilia cordata Miller seedlings growing under dimethylarsinic acid exposure–model experiment. Environ Sci Pollut Res 26:6877–6889

    Article  CAS  Google Scholar 

  • Anders S, Huber W (2010) Differential expression analysis for sequence count data. Genome Biol 11:R106

    Article  CAS  Google Scholar 

  • Bundschuh J, Maity JP (2015) Geothermal arsenic: occurrence, mobility and environmental implications. Renew Sustain Energy Rev 42:1214–1222

    Article  CAS  Google Scholar 

  • Chu DB, Duong HT, Luu MTN, Vu-Thi HA, Loi VD (2021) Arsenic and heavy metals in vietnamese rice: assessment of human exposure to these elements through rice consumption. J Anal Methods Chem 5:1–10

    Article  CAS  Google Scholar 

  • Di A, Zheng F, Norton GJ, Beesley L, Zhang Z, Lin H, Zhi S, Liu X, Ding Y (2021) Physiological responses and transcriptome analyses of Upland Rice following exposure to arsenite and arsenate. Environ Exp Bot 183:104366

    Article  CAS  Google Scholar 

  • Duan C, Fang L, Yang C, Chen W, Cui Y, Li S (2018) Reveal the response of enzyme activities to heavy metals through in situ zymography. Ecotox Environ Safe 156:106–115

    Article  CAS  Google Scholar 

  • Eddy SR (1998) Profile hidden Markov models. Bioinformatics 14:755–763

    Article  CAS  Google Scholar 

  • Ercal N, Gurer-Orhan H, Aykin-Burns N (2001) Toxic metals and oxidative stress part I: mechanisms involved in metal-induced oxidative damage. Curr Top Med Chem 1:529–539

    Article  CAS  Google Scholar 

  • Farnese FS, Oliveira JA, Farnese MS, Gusman GS, Silveria NM, Siman LI (2014) Uptake arsenic by plants: effects on mineral nutrition, growth and antioxidant capacity. Idesia (arica) 32:99–106

    Article  Google Scholar 

  • Gao X, Peng L, Ruan X, Chen X, Ji H, Ma J, Ni H, Jiang S, Guo D (2018) Transcriptome profile analysis reveals cardiotoxicity of maduramicin in primary chicken myocardial cells. Arch Toxicol 92:1267–1281

    Article  CAS  Google Scholar 

  • Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A (2013) Trinity: reconstructing a full-length transcriptome without a genome from RNA-Seq data. Nat Biotechnol 29:644–652

    Article  CAS  Google Scholar 

  • Gustin J, Zanis M, Salt D (2011) Structure and evolution of the plant cation diffusion facilitator family of ion transporters. BMC Evol Biol 11:76

    Article  CAS  Google Scholar 

  • Guo H, Yao J, Sun Z, Duan D (2015) Effect of temperature, irradiance on the growth of the green alga Caulerpa lentillifera (Bryopsidophyceae, Chlorophyta). J Appl Phycol 27:879–885

    Article  CAS  Google Scholar 

  • Guo P, Gong Y, Wang C, Liu X, Liu J (2011) Arsenic speciation and effect of arsenate inhibition in a Microcystis aeruginosa culture medium under different phosphate regimes. Environ Toxicol Chem 30:1754–1759

    Article  CAS  Google Scholar 

  • Guodong F, Yan M, Meng Z, Puyou JI, Chengguo LI, Yonghong ZH (2019) Synthesis of bio-base plasticizer using waste cooking oil and its performance testing in soft poly (vinyl chloride) films. J Bioresour Bioprod 4(2):99–110

    Article  Google Scholar 

  • Hansen HK, Ribeiro A, Mateus E (2006) Biosorption of arsenic(v) with lessonia nigrescens. Miner Eng 19:486–490

    Article  CAS  Google Scholar 

  • Hensley K, Williamson KS, Floyd RA (2003) Fluorogenic analysis of H2O2 in biological materials. In: Hensley K, Floyd RA (eds) Methods in Biological Oxidative Stress. Humana Press Inc, Totowa, pp 169–175

  • Hussain MM, Bibi I, Shahid M, Shaheen SM, Shakoor MB, Bashir S, Younas F, Rinklebe J, Niazi NK (2019) Chapter two-biogeochemical cycling, speciation and transformation pathways of arsenic in aquatic environments with the emphasis on algae In Comprehensive Analytical Chemistry, Duarte, AC, Reis, V, Eds, Elsevier, pp 15–51

  • Hussain MM, Wang J, Bibi I, Shahid M, Niazi NK, Iqbal J, Mian IA, Shaheen SM, Bashir S, Shah NS, Hina K, Rinklebe J (2021) Arsenic speciation and biotransformation pathways in the aquatic ecosystem: the significance of algae. J Hazard Mater 403:124027

    Article  CAS  Google Scholar 

  • Ibrahim M, Li G, Khan S, Chi Q, Xu Y (2017) Biochars mitigate greenhouse gas emissions and bioaccumulation of potentially toxic elements and arsenic speciation in Phaseolus vulgaris L. Environ Sci Pollut Res 24:19524–19534

    Article  CAS  Google Scholar 

  • Jeffrey SW, Humphrey GF (1975) New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochem Physiol Pflanzen 167:191–194

    Article  CAS  Google Scholar 

  • Jiang H, Zhao X, Fang J, Xiao Y (2018) Physiological responses and metal uptake of Miscanthus under cadmium/arsenic stress. Environ Sci Pollut Res 25(28):28275–28284

    Article  CAS  Google Scholar 

  • Kovalchuk I, Filkowski J, Smith K, Kovalchuk O (2003) Reactive oxygen species stimulate homologous recombination in plants. Plant Cell Environ 26(9):1531–1539

    Article  CAS  Google Scholar 

  • Karadjova IB, Slaveykova VI, Tsalev DL (2008) The biouptake and toxicity of arsenic species on the green microalga Chlorella salina in seawater. Aquat Toxicol 87:264–271

    Article  CAS  Google Scholar 

  • Kawahigashi H (2009) Transgenic plants for phytoremediation of herbicides. Curr Opin Biotechnol 20(2):225–230

    Article  CAS  Google Scholar 

  • Khanom S, Jang J, Lee OR (2019) Overexpression of ginseng cytochrome P450 CYP736A12 alters plant growth and confers phenylurea herbicide tolerance in Arabidopsis. J Ginseng Res 43(4):645–653

    Article  Google Scholar 

  • Kramárová Z, Fargašová A, Molnárová M, Bujdoš M (2012) Arsenic and selenium interactive effect on alga Desmodesmus quadricauda. Ecotox Environ Safe 86:1–6

    Article  CAS  Google Scholar 

  • Kumar M, Gupta V, Kumari P, Redd CRK, Jha B (2011) Assessment of nutrient composition and antioxidant potential of Caulerpaceae seaweeds. J Food Compos Anal 24:270–278

    Article  CAS  Google Scholar 

  • Kumar S, Trivedi PK (2018) Glutathione S-transferases: role in combating abiotic stresses including arsenic detoxification in plants. Front Plant Sci 9:751

    Article  Google Scholar 

  • Kumarathilaka P, Seneweera S, Meharg A, Bundschuh J (2018) Arsenic speciation dynamics in paddy rice soil-water environment: sources, physico-chemical, and biological factors – a review. Water Res 140:403–414

    Article  CAS  Google Scholar 

  • Lane TS, Rempe CS, Davitt J, Staton ME, Peng Y, Soltis DE, Chase M (2016) Diversity of ABC transporter genes across the plant kingdom and their potential utility in biotechnology. BMC Biotechnol 16(1):1–10

    Article  CAS  Google Scholar 

  • Li B, Dewey CN (2011) RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform 12:323

    Article  CAS  Google Scholar 

  • Li H, Hu T, Amombo E, Fu J (2017) Transcriptome profilings of two tall fescue (Festuca arundinacea) cultivars in response to lead (Pb) stress. BMC Genomics 18:145

    Article  CAS  Google Scholar 

  • Liu CP, Luo CL, Gao Y, Li FB, Lin LW, Wu CA, Li XD (2010) Arsenic contamination and potential health risk implications at an abandoned tungsten mine, southern china. Environ Pollut 158:820–826

    Article  CAS  Google Scholar 

  • Liu LP, Zhang T, Li XD, Jin G, Lin SZ, Zheng XX, Liu CM, Qin J (2020a) Enrichment of Caulerpa lentillfera for heavy metal elements and its food safety. Journal of Shenzhen Polytechnic 19:41–46

    Google Scholar 

  • Liu Y, Yang C, Sun L, Wang A, Lan X, Xu W, Liang Y, Ma S, Xia Q (2020) In-depth transcriptome unveils the cadmium toxicology and a novel metallothionein in silkworm. Chemosphere 2020:128522

    Google Scholar 

  • Mao X, Cai T, Olyarchuk JG, Wei L (2005) Automated genome annotation and pathway identifification using the KEGG Orthology (KO) as a controlled vocabulary. Bioinformatics 21:3787–3793

    Article  CAS  Google Scholar 

  • Matanjun P, Mohamed S, Mustapha NM, Muhammad K (2009) Nutrient content of tropical edible seaweeds, Eucheuma cottonii, Caulerpa lentillifera and Sargassum polycystum. J Appl Phycol 21:75–80

    Article  CAS  Google Scholar 

  • Niazi NK, Bibi I, Shahid M, Ok YS, Burton ED, Wang H, Shaheen SM, Rinklebe J, Lüttge A (2018) Arsenic removal by perilla leaf biochar in aqueous solutions and groundwater: an integrated spectroscopic and microscopic examination. Environ Pollut 232:31–41

    Article  CAS  Google Scholar 

  • Nzengue Y, Steiman R, Garrel C, Lefèbvre E, Guiraud P (2008) Oxidative stress and DNA damage induced by cadmium in the human keratinocyte HaCaT cell line: role of glutathione in the resistance to cadmium. Toxicology 243:193–206

    Article  CAS  Google Scholar 

  • Pandey S, Rai R, Rai LC (2012) Proteomics combines morphological, physiological and biochemical attributes to unravel the survival strategy of Anabaena sp pcc7120 under arsenic stress. J Proteomics 75:921–937

    Article  CAS  Google Scholar 

  • Paul NA, Neveux N, Magnusson M, de Nys R (2014) Comparative production and nutritional value of sea grapes — the tropical green seaweeds Caulerpa lentillifera and C. racemosa. J Appl Phycol 26:1833–1844

    CAS  Google Scholar 

  • Perales-Vela HV, García RV, Gómez-Juárez EA, Salcedo-Álvarez MO, Cañizares-Villanueva RO (2016) Streptomycin affects the growth and photochemical activity of the alga Chlorella vulgaris. Ecotox Environ Safe 132:311–317

    Article  CAS  Google Scholar 

  • Petrusevski B, Sharma S, Schippers JC, Shordt K (2007) Arsenic in drinking water. IRC International Water and Sanitation Centre, The Netherlands

  • Shakoor MB, Nawaz R, Hussain F, Raza M, Ali S, Rizwan M, Oh SE, Ahmad S (2017) Human health implications, risk assessment and remediation of ascontaminated water: a critical review. Sci Total Environ 601–602:756–769

    Article  CAS  Google Scholar 

  • Sharma VK, Sohn M (2009) Aquatic arsenic: toxicity, speciation, transformations, and remediation. Environ Int 35:743–759

    Article  CAS  Google Scholar 

  • Shri M, Kumar S, Chakrabarty D, Trivedi PK, Mallick S, Misra P, Tripathi RD (2009) Effect of arsenic on growth, oxidative stress, and antioxidant system in rice seedlings. Ecotox Environ Safe 72(4):1102–1110

    Article  CAS  Google Scholar 

  • Song WY, Park J, Mendoza-cozatl DG, Suter-grotemeyer M, Shim D, Hortensteiner S, Geisler M, Weder B, Rea P, Rentsch D, Schroeder J, Lee Y, Martinoia E (2010) Arsenic tolerance in Arabidopsis is mediated by two ABCC-type phytochelatin transporters. Proc Natl Acad Sci U S A 107:21187–21192

    Article  CAS  Google Scholar 

  • Song WY, Yamaki T, Yamaji N, Ko D, Jung KH, Fujii-Kashino M, Lee Y, An G, Martinoia E, Ma JF (2014) A rice ABC transporter, Os ABCC1, reduces arsenic accumulation in the grain. Proc Natl Acad Sci U S A 111:15699–15704

    Article  CAS  Google Scholar 

  • Songy A, Vallet J, Gantet M, Boos A, Ronot P, Tarnus C, Clément C, Larignon P, Goddard ML, Fontaine F (2019) Sodium arsenite effect on Vitis vinifera L. physiology. J Plant Physiol 238:72–79

    Article  CAS  Google Scholar 

  • Stobart AK, Griffiths WT, Ameen-Bukhari I, Sherwood RP (1985) The effect of Cd2+ on the biosynthesis of chlorophyll in leaves of barley. Physiol Plantarum 63:293–298

    Article  CAS  Google Scholar 

  • Tang D, Shi X, Guo H, Wang Z (2019) Comparative transcriptome analysis of the gills of Procambarus clarkii provides novel insights into the immune-related mechanism of copper stress tolerance. Fish Shellfish Immun 2019:96

    Google Scholar 

  • Vega-Millán CB, Dévora-Figueroa AG, Burgess JL, Beamer PI, Furlong M, Lantz RC, Meza-Figueroa D, O´Rourke MK, García-Rico L, Meza-Escalante ER, Balderas-Cortés JJ, Meza-Montenegro MM (2021) Inflammation biomarkers associated with arsenic exposure by drinking water and respiratory outcomes in indigenous children from three Yaqui villages in southern Sonora, México. Environ Sci Pollut Res

  • Vimercati L, Gatti MF, Gagliardi T, Cuccaro F, De Maria L, Caputi A, Quarato M, Baldassarre A (2017) Environmental exposure to arsenic and chromium in an industrial area. Environ Sci Pollut Res 24:11528–11535

    Article  CAS  Google Scholar 

  • Wang NX, Li Y, Deng XH, Miao AJ, Ji R, Yang LY (2013) Toxicity and bioaccumulation kinetics of arsenate in two freshwater green algae under different phosphate regimes. Water Res 47:2497–2506

    Article  CAS  Google Scholar 

  • Yuan ZF, Cao Q, Zhang K, Ata-Ul-Karim ST, Tian Y, Zhu Y, Liu X (2016) Optimal leaf positions for SPAD meter measurement in rice. Front Plant Sci 7:719

    Google Scholar 

  • Xia JR, Li YJ, Zou DH (2004) Effects of salinity stress on PSII in Ulva lactuca as probed by chlorophyll fluorescence measurements. Aquat Bot 80:129–137

    Article  CAS  Google Scholar 

  • Zhang J, Ding T, Zhang C (2013) Biosorption and toxicity responses to arsenite (As[III]) in Scenedesmus quadricauda. Chemosphere 92:1077–1084

    Article  CAS  Google Scholar 

  • Zhang M, Ma Y, Che X, Huang Z, Chen P, Xia G, Zhao M (2020) Comparative analysis of nutrient composition of Caulerpa lentillifera from different regions. J Ocean U China 19:439–445

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the funds (JCYJ20170818140317993) received from Shenzhen Science and Technology Project “Studies on cultivation ecology of macroalgae with high value and key basic questions about food safety,” and Post-doctoral Foundation Project of Shenzhen Polytechnic (6019330003K).

Funding

This research was funded by Shenzhen Science and Technology Project “Studies on cultivation ecology of macroalgae with high value and key basic questions about food safety” (JCYJ20170818140317993) and Post-doctoral Foundation Project of Shenzhen Polytechnic (6019330003 K).

Author information

Authors and Affiliations

Authors

Contributions

Jianguo Dai and Gang Jin designed the experiments. Meixia Pang and Zhili Huang conducted most of the experiments and analyzed the data. Yongjun Tang assisted in experiments and discussion of results. Meixia Pang contributed to writing the manuscript, and Gang Jin revised the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Gang Jin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Gangrong Shi

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pang, M., Huang, Z., Tang, Y. et al. Transcriptome analysis of the toxicity response of green macroalga Caulerpa lentillifera J. Agardh to high dissolved arsenite. Environ Sci Pollut Res 29, 38591–38605 (2022). https://doi.org/10.1007/s11356-021-18122-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-021-18122-w

Keywords

Navigation