Skip to main content

Advertisement

Log in

Road dust–driven elemental distribution in megacity Dhaka, Bangladesh: environmental, ecological, and human health risks assessment

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

This article has been updated

Abstract

Road dust, which reflects ambient air quality, receives various pollutants including toxic metal(oid)s from several natural and/or anthropogenic sources. This manuscript reports a comprehensive evaluation of the levels of seventeen metal(oid)s in road dust of a megacity (Dhaka, Bangladesh). Different evaluation approaches were implemented including statistical analysis and GIS mapping, besides environmental, ecological, and human health risk indices. From 30 sampling sites, representative samples were collected, which were analyzed by neutron activation analysis. The average concentrations (± SD) of Na, Mg, Al, Sc, Ti, V, Cr, Mn, Fe, Co, Zn, As, Rb, Sb, Cs, Ba, and W were 11,738 ± 560 µg g−1, 12,410 ± 1249 µg g−1, 62,127 ± 5937 µg g−1, 8.89 ± 0.47 µg g−1, 5224 ± 1244 µg g−1, 66 ± 8 µg g−1, 66.7 ± 6.9 µg g−1, 547 ± 110 µg g−1, 25,150 ± 1723 µg g−1, 8.39 ± 0.65 µg g−1, 125 ± 17 µg g−1, 3.63 ± 0.56 µg g−1, 87 ± 9 µg g−1, 0.75 ± 0.28 µg g−1, 4.40 ± 0.48 µg g−1, 397 ± 87 µg g−1, and 3.82 ± 1.77 µg g−1, respectively. The distance-based redundancy analysis showed that the northern region was enriched with Na, Mn, Al, Fe, Zn, and Rb, while the southern region was enriched with Fe, Al, Ti, Cr, and Mg. The GIS mapping shows hot spots of Sc, Cr, Zn, and Cs were observed mostly in heavy traffic areas. Significant positive correlations of Fe-Sc, Al–Mg, V-Mg, V-Al, Cs-Rb, Cs-Sc, Rb-Sc, As-Na, and Cs-Rb invoked their inter-dependency and persistence in road dust. Depending on a set of environmental and ecological index–based calculation, the degree of metal(oid) pollution followed the descending order as W > Sb > Zn > Cr > As > Ti > Sc > V, while no pollution was recorded by Mn, Fe, Al, Rb, Cs, Co, and Ba. Importantly, the total hazard index values for adults and children were higher than unity, indicating potential non-carcinogenic health risks from exposure of road dust. Furthermore, the total carcinogenic risks from Cr and As through ingestion and dermal contact exceeded the standard guideline values. The implementation of different evaluation approaches strengthens the findings of metal(oid) source apportionment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Source identification of the road dust elements and their existing co-occurrence in the sampling areas. The size of the node in the co-occurring network indicated the concentration of the element

Fig. 5

Similar content being viewed by others

Data availability

Not applicable.

Change history

  • 29 November 2021

    Citation change in Supplementary Tables 2 and 3.

References

  • Ahmed F, Ishiga H (2006) Trace metal concentrations in street dusts of Dhaka City, Bangladesh. Atmosph Environ 40(21):3835–3844

    CAS  Google Scholar 

  • Ahmed F, Bibi MH, Ishiga H (2007) Environmental assessment of Dhaka City (Bangladesh) based on trace metal contents in road dusts. Environ Geol 51(6):975–985

    CAS  Google Scholar 

  • Akhter MS, Madany IM (1993) Heavy metals in street and house dust in Bahrain. Water Air Soil Pollut 66(1):111–119

    CAS  Google Scholar 

  • Ali MU, Liu G, Yousaf B, Abbas Q, Ullah H, Munir MAM, Fu B (2017) Pollution characteristics and human health risks of potentially (eco) toxic elements (PTEs) in road dust from metropolitan area of Hefei, China. Chemosphere 181:111–121

    CAS  Google Scholar 

  • Al-Momani IF (2007) Trace elements in street and household dusts in Amman, Jordan. Soil Sediment Contamin 16(5):485–496

    CAS  Google Scholar 

  • Aminiyan Mirzaei M, Baalousha M, Mousavi R et al (2018) The ecological risk, source identification, and pollution assessment of heavy metals in road dust: a case study in Rafsanjan, SE Iran. Environ Sci Pollut Res 25:13382–13395. https://doi.org/10.1007/s11356-017-8539-y

    Article  CAS  Google Scholar 

  • Ashaiekh MA, Eltayeb MAH, Ali AH, Ebrahim AM, Salih I, Idris AM (2019) Spatial distribution of total and bioavailable heavy metal contents in soil from agricultural, residential, and industrial areas in Sudan. Toxin Reviews 38(2):93–105

    Google Scholar 

  • Atiemo MS, Ofosu GF, Kuranchie-Mensah H, Tutu AO, Palm ND, Blankson SA (2011) Contamination assessment of heavy metals in road dust from selected roads in Accra, Ghana. Res J Environ Earth Sci 3(5):473–480

    CAS  Google Scholar 

  • Baalousha M, Yang Y, Vance ME, Colman BP, McNeal S, Xu J, Blaszczak J, Steele M, Bernhardt E, Hochella MF Jr (2016) Outdoor urban nanomaterials: the emergence of a new, integrated, and critical field of study. Sci Total Environ 557:740–753

    Google Scholar 

  • Baruah SG, Ahmed I, Das B, Ingtipi B, Sanjay HB, Gupta K, Nema AK, Chabukdhara M (2021) Heavy metal(loid)s contamination and health risk assessment of soil-rice system in rural and peri-urban areas of lower Brahmaputra Valley, Northeast India. Chemosphere 266:129150

    CAS  Google Scholar 

  • Begum M, Khan R, Roy DK, Habib MA, Rashid MB, Naher K, Islam MA, Tamim U, Das SC, Mamun SMMA, Hossain SM (2021) Geochemical characterization of Miocene core sediments from Shahbazpur gas-wells (Bangladesh) in terms of elemental abundances by instrumental neutron activation analysis. J Radioanal Nucl Chem (accepted). https://doi.org/10.1007/s10967-021-07770-4

    Article  Google Scholar 

  • Boudissa SM, Lambert J, Müller C, Kennedy G, Gareau L, Zayed J (2006) Manganese concentrations in the soil and air in the vicinity of a closed manganese alloy production plant. Sci Total Environ 361(1):67–72

    CAS  Google Scholar 

  • BRTA (Bangladesh Road Transport Authority) 2016. Air pollution in Bangladesh. BRTA Associated With Greater Dhaka Metropolitan Area Integrated Transport Study, Working Paper No. 23.

  • Cappuyns V, Slabbinck E (2012) Impact of human activities on soil contamination. Appl Environ Soil Sci 2012:979501. https://doi.org/10.1155/2012/979501

    Article  CAS  Google Scholar 

  • Chabukdhara M, Nema AK (2013) Heavy metals assessment in urban soil around industrial clusters in Ghaziabad, India: probabilistic health risk approach. Ecotoxicol Environ Saf 87:57–64

    CAS  Google Scholar 

  • Chen J, Wei F, Zheng C, Wu Y, Adriano DC (1991) Background concentrations of elements in soils of China. Water Air Soil Pollut 57(1):699–712

    Google Scholar 

  • Chen H, Lu X, Li LY, Gao T, Chang Y (2014) Metal contamination in campus dust of Xi’an, China: a study based on multivariate statistics and spatial distribution. Sci Total Environ 484:27–35

    CAS  Google Scholar 

  • Chowdhury QI, Rahman G, Majumder MK, Rana B (2000) Smoke and haze in Dhaka’s concrete jungle. Air pollution in Asian cities. Forum of Environmental Journalists of Bangladesh (FEJB), Dhaka, pp 1–14

    Google Scholar 

  • Christoforidis A, Stamatis N (2009) Heavy metal contamination in street dust and roadside soil along the major national road in Kavala’s region, Greece. Geoderma 151(3–4):257–263

    CAS  Google Scholar 

  • Das M, Ahmed MK, Islam MS, Islam MM, Akter SM (2011) Heavy metals in industrial effluents (tannery and textile) and adjacent rivers of Dhaka City, Bangladesh. Terr Aquat Environ Toxicol 5(1):8–13

    Google Scholar 

  • Datta S, Vero SE, Hettiarachchi GM et al (2017) Tungsten contamination of soils and sediments: current state of science. Curr Pollution Rep 3:55–64. https://doi.org/10.1007/s40726-016-0046-0

    Article  CAS  Google Scholar 

  • de Miguel E, Llamas JF, Chacón E, Berg T, Larssen S, Røyset O, Vadset M (1997) Origin and patterns of distribution of trace elements in street dust: unleaded petrol and urban lead. Atmos Environ 31(17):2733–2740

    Google Scholar 

  • Delibašić Š, Nedžla Đ-K, Mirela K, Indina K, Aldina V, Jasna H, Kristina H, Adina S, Samra S, Sabina Ž, Sabina G-S, Amela P, Arzija P (2020) Health risk assessment of heavy metal contamination in street dust of Federation of Bosnia and Herzegovina. Human Ecol Risk Assess 27:1296–1308. https://doi.org/10.1080/10807039.2020.1826290

    Article  CAS  Google Scholar 

  • Do Dong J, Yu M, Bian Z, Wang Y, Di C (2011) Geostatistical analyses of heavy metal distribution in reclaimed mine land in Xuzhou, China. Environ Earth Sci 62(1):127–137

    Google Scholar 

  • Du Y, Gao B, Zhou H, Ju X, Hao H, Yin S (2013) Health risk assessment of heavy metals in road dusts in urban parks of Beijing, China. Procedia Environ Sci 18:299–309

    CAS  Google Scholar 

  • Elagib MFA, Ghandour IA, Abdel Rahman ME, Baldo SMH, Idris AM (2021) Influence of cement dust exposure on periodontal health of occupational workers. Toxin Reviews. https://doi.org/10.1080/15569543.2020.1737824

    Article  Google Scholar 

  • El-Gohary SES, Zaki HR, Elnaggar MF (2012) Geochemical study and distribution of some trace metals along coastal zone of Abu-Qir Bay, Mediterranean Sea- Alexandria, Egypt. World Appl Sci J 18:1011–1022

    CAS  Google Scholar 

  • El-Zahhar AA, Idris AM, Fawy KF, Arshad M (2021) SEM, SEM-EDX, µ-ATR-FTIR and XRD for urban street dust characterization. Int J Environ Anal Chem 101(7):988–1006

    CAS  Google Scholar 

  • Ertani A, Mietto A, Borin M et al (2017) Chromium in agricultural soils and crops: a review. Water Air Soil Pollut 228:190. https://doi.org/10.1007/s11270-017-3356-y

    Article  CAS  Google Scholar 

  • Ghrefat H, Yusuf N (2006) Assessing Mn, Fe, Cu, Zn, and Cd pollution in bottom sediments of Wadi Al-Arab Dam, Jordan. Chemosphere 65(11):2114–2121

    CAS  Google Scholar 

  • Gogos A, Knauer K, Bucheli TD (2012) Nanomaterials in plant protection and fertilization: current state, foreseen applications, and research priorities. J Agric Food Chem 60:9781–9792. https://doi.org/10.1021/jf302154y

    Article  CAS  Google Scholar 

  • Goudarzi G, Daryanoosh SM, Godini H, Hopke PK, Sicard P, De Marco A, Rad HD, Harbizadeh A, Jahedi F, Mohammadi MJ, Savari J (2017) Health risk assessment of exposure to the Middle-Eastern dust storms in the Iranian megacity of Kermanshah. Public Health 148:109–116

    CAS  Google Scholar 

  • Habib MA, Khan R (2021) Environmental impacts of coal-mining and coal-fired power-plant activities in a developing country with global context. Spatial modeling and assessment of environmental contaminants (Chapter 24): Environmental challenges and solutions. Springer Nature Switzerland AG, Cham. https://doi.org/10.1007/978-3-030-63422-3_24

    Chapter  Google Scholar 

  • Habib MA, Basuki T, Miyashita S, Bekelesi W, Nakashima S, Techato K, Khan R, Majlis ABK, Phoungthong K (2019a) Assessment of natural radioactivity in coals and coal combustion residues from a coal-based thermoelectric plant in Bangladesh: implications for radiological health hazards. Environ Monit Assess 191:27. https://doi.org/10.1007/s10661-018-7160-y

    Article  CAS  Google Scholar 

  • Habib MA, Basuki T, Miyashita S, Bekelesi W, Nakashima S, Phoungthong K, Khan R, Rashid MB, Islam ARMT, Techato K (2019b) Distribution of naturally occurring radionuclides in soil around a coal-based power plant and their potential radiological risk assessment. Radiochim Acta 107(3):243–259. https://doi.org/10.1515/ract-2018-3044

    Article  CAS  Google Scholar 

  • Habib MA, Islam ARMT, Bodrud-Doza M, Mukta FA, Khan R, Siddique MAB, Phoungthong K, Techato K (2020) Simultaneous appraisals of pathway and probable health risk associated with trace metals contamination in groundwater from Barapukuria coal basin, Bangladesh. Chemosphere 242:125183. https://doi.org/10.1016/j.chemosphere.2019.125183

    Article  CAS  Google Scholar 

  • Hakanson L (1980) Ecological risk index for aquatic pollution control, a sedimentological approach. Water Res 14(8):975–1001

    Google Scholar 

  • Hama S, Kumar P, Alam MS, Rooney DJ, Bloss WJ, Shi Z, Harrison RM, Crilley LR, Khare M, Gupta SK (2021) Chemical source profiles of fine particles for five different sources in Delhi. Chemosphere 274:129913

    CAS  Google Scholar 

  • Han X, Lu X, Qinggeletu WuY (2017) Health risks and contamination levels of heavy metals in dusts from parks and squares of an industrial city in semi-arid area of China. Int J Environ Res Public Health 14:886. https://doi.org/10.3390/ijerph14080886

    Article  CAS  Google Scholar 

  • Hoque MM, Mozammal ZAM, Humayun KM, Eusuf S, Sumaya N (2020) Meteorological influences on seasonal variations of air pollutants (SO2, NO2, O3, CO, PM2.5 and PM10) in the Dhaka megacity. Am J Pure Appl Biosci 2(2):15–23

    Google Scholar 

  • Horovitz CT (ed) (2000) Biochemistry of scandium and yttrium, part 1: physical and chemical fundamentals. Kluwer Academic/Plenum Publishers, New York, Boston, Dordrecht, London and Moscow

    Google Scholar 

  • Hu X, Zhang Y, Ding Z, Wang T, Lian H, Sun Y, Wu J (2012) Bioaccessibility and health risk of arsenic and heavy metals (Cd Co, Cr, Cu, Ni, Pb, Zn and Mn) in TSP and PM2.5 in Nanjing, China. Atmos Environ 57:146–152

    CAS  Google Scholar 

  • Hu WY, Wang HF, Dong LR, Huang B, Borggaard OK, Hansen BHC, He Y, Holm PE (2018) Source identification of heavy metals in peri-urban agricultural soils of southeast China: an integrated approach. Environ Pollut 237:650–661

    CAS  Google Scholar 

  • Idris AM, Said TO, Brima EI, Sahlabji T, Alghamdi MM, El-Zahhar AA, Arshad M, El Nemr AM (2019) Assessment of contents of selected heavy metals in street dust from Khamees-Mushait City, Saudi Arabia, using multivariate statistical analysis, GIS mapping, geochemical indices and health risk. Fresenius Environ Bull 28(8):6059–6069

    CAS  Google Scholar 

  • Idris AM, Alqahtani FMS, Said TO, Fawy KF (2020) Contamination level and risk assessment of heavy metal deposited in street dusts in Khamees-Mushait City, Saudi Arabia. Hum Ecol Risk Assess Int J 26(2):495–511

    CAS  Google Scholar 

  • Ite AE, Udousoro II, Ibok UJ (2014) Distribution of some atmospheric heavy metals in lichen and moss samples collected from Eket and Ibeno local government areas of Akwa Ibom State, Nigeria. Am J Environ Protect 2(1):22–31

    CAS  Google Scholar 

  • Jehan S, Khattak SA, Muhammad S, Ahmad R, Farooq M, Khan S, Khan A, Ali L (2018) Ecological and health risk assessment of heavy metals in the Hattar industrial estate, Pakistan. Toxin Reviews. https://doi.org/10.1080/15569543.2018.1478858

    Article  Google Scholar 

  • Kabir MH, Islam MS, Hoq ME, Tusher TR, Islam MS (2020) Appraisal of heavy metal contamination in sediments of the Shitalakhya River in Bangladesh using pollution indices, geo-spatial, and multivariate statistical analysis. Arab J Geosci 13(21):1135. https://doi.org/10.1007/s12517-020-06072-5

    Article  CAS  Google Scholar 

  • Kabir MH, Kormoker T, Islam MS, Khan R, Shammi RS, Tusher TR, Proshad R, Islam MS, Idris AM (2021) Potentially toxic elements in street dust from an urban city of a developing country: ecological and probabilistic health risks assessment. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-021-14581-3

    Article  Google Scholar 

  • Khan R, Rouf MA, Das S, Tamim U, Naher K, Podder J, Hossain SM (2017) Spatial and multi-layered assessment of heavy metals in the sand of Cox’s-Bazar Beach of Bangladesh. Reg Stud Mar Sci 16:171–180. https://doi.org/10.1016/j.rsma.2017.09.003

    Article  Google Scholar 

  • Khan R, Parvez MS, Tamim U, Das S, Islam MA, Naher K, Khan MHR, Nahid F, Hossain SM (2018) Assessment of rare earth elements, Th and U profile of a site for a potential coal based power plant by instrumental neutron activation analysis. Radiochim Acta 106(6):515–524. https://doi.org/10.1515/ract-2017-2867

    Article  CAS  Google Scholar 

  • Khan R, Das S, Kabir S, Habib MA, Naher K, Islam MA, Tamim U, Rahman AKMR, Deb AK, Hossain SM (2019a) Evaluation of the elemental distribution in soil samples collected from ship-breaking areas and an adjacent island. J Environ Chem Eng 7:103189. https://doi.org/10.1016/j.jece.2019.103189

    Article  CAS  Google Scholar 

  • Khan R, Parvez MS, Jolly YN, Haydar MA, Alam MF, Khatun MA, Sarker MMR, Habib MA, Tamim U, Das S, Sultana S, Islam MA, Naher K, Paul D, Akter S, Khan MHR, Nahid F, Huque R, Rajib M, Hossain SM (2019b) Elemental abundances, natural radioactivity and physicochemical records of a southern part of Bangladesh: implication for assessing the environmental geochemistry. Environ Nanotechnol Monit Manag 12:100225. https://doi.org/10.1016/j.enmm.2019.100225

    Article  Google Scholar 

  • Khan R, Ghosal S, Sengupta D, Tamim U, Hossain SM, Agrahari S (2019c) Studies on heavy mineral placers from eastern coast of Odisha, India by instrumental neutron activation analysis. J Radioanal Nucl Chem 319(1):471–484. https://doi.org/10.1007/s10967-018-6250-1

    Article  CAS  Google Scholar 

  • Khan R, Islam MS, Tareq ARM, Naher K, Islam ARMT, Habib MA, Siddique MAB, Islam MA, Das S, Rashid MB, Ullah AKMA, Miah MMH, Masrura SU, Bodrud-Doza M, Sarker MR, Badruzzaman ABM (2020) Distribution, sources and ecological risk of trace elements and polycyclic aromatic hydrocarbons in sediments from a polluted urban river in central Bangladesh. Environ Nanotechnol Monit Manag 14:100318. https://doi.org/10.1016/j.enmm.2020.100318

    Article  Google Scholar 

  • Khan R, Islam HMT, Islam ARMT (2021a) Mechanism of elevated radioactivity in a freshwater basin: radiochemical characterization, provenance and associated hazards. Chemosphere. https://doi.org/10.1016/j.chemosphere.2020.128459

    Article  Google Scholar 

  • Khan R, Mohanty S, Sengupta D (2021b) Studying the elemental distribution in the core sediments of Podampata, Eastern coast of Odisha, India: potentiality of rare earth elements and Th exploration. Arab J Geosci 14:81. https://doi.org/10.1007/s12517-020-06371-x

    Article  CAS  Google Scholar 

  • Kolakkandi V, Sharma B, Rana A, Dey S, Rawat P, Sarkar S (2019) Spatially resolved distribution, sources and health risks of heavy metals in size-fractionated road dust from 57 sites across megacity Kolkata, India. Sci Total Environ 705:135805. https://doi.org/10.1016/j.scitotenv.2019.135805

    Article  CAS  Google Scholar 

  • Kormoker T, Proshad R, Islam S, Ahmed S, Chandra K, Uddin M, Rahman M (2019) Toxic metals in agricultural soils near the industrial areas of Bangladesh: ecological and human health risk assessment. Toxin Rev. 2019:1–20

    Google Scholar 

  • Li Z, Ma Z, van der Kuijp TJ, Yuan Z, Huang L (2014) A review of soil heavy metal pollution from mines in China: pollution and health risk assessment. Sci Total Environ 468:843–853

    Google Scholar 

  • Li HH, Chen LJ, Yu L et al (2017a) Pollution characteristics and risk assessment of human exposure to oral bioaccessibility of heavy metals via urban street dusts from different functional areas in Chengdu, China. Sci Total Environ 586:1076–1084

    CAS  Google Scholar 

  • Li F, Zhang J, Jiang W, Liu C, Zhang Z, Zhang C, Zeng G (2017b) Spatial health risk assessment and hierarchical risk management for mercury in soils from a typical contaminated site, China. Environ Geochem Health 39(4):923–934

    CAS  Google Scholar 

  • Li Y, Qu X, Zhang M, Peng W, Yu Y, Gao B (2018) Anthropogenic impact and ecological risk assessment of thallium and cobalt in Poyang Lake using the geochemical baseline. Water 10(11):1703. https://doi.org/10.3390/w10111703

    Article  CAS  Google Scholar 

  • Liu E, Yan T, Birch G, Zhu Y (2014) Pollution and health risk of potentially toxic metals in urban road dust in Nanjing, a mega-city of China. Sci Total Environ 476:522–531

    Google Scholar 

  • Lu X, Wang L, Li LY, Lei K, Huang L, Kang D (2010) Multivariate statistical analysis of heavy metals in street dust of Baoji, NW China. J Hazard Mater 173:744–749. https://doi.org/10.1016/j.jhazmat.2009.09.001

    Article  CAS  Google Scholar 

  • Luo XS, Yu S, Zhu YG (2012a) Trace metal contamination in urban soils of China. Sci Total Environ 421–422:17–30. https://doi.org/10.1016/j.scitotenv.2011.04.020

    Article  CAS  Google Scholar 

  • Luo X-S, Ding J, Xu B, Wang Y-J, Li H-B, Yu S (2012b) Incorporating bioaccessibility into human health risk assessments of heavy metals in urban park soils. Sci Total Environ 424:88–96

    CAS  Google Scholar 

  • Maragkidou A, Arar S, Al-Hunaiti A, Ma Y, Harrad S, Jaghbeir O, Faouri D, Hämeri K, Hussein T (2017) Occupational health risk assessment and exposure to floor dust PAHs inside an educational building. Sci Total Environ 579:1050–1056

    CAS  Google Scholar 

  • Mohiuddin AK (2018) Chemical contaminants and pollutants in the measurable life of Dhaka City. J Environ Sci Public Health 3(2018):57–73

    Google Scholar 

  • Momani KA (2006) Partitioning of lead in urban street dust based on the particle size distribution and chemical environments. Soil Sediment Contamin 15(2):131–146

    CAS  Google Scholar 

  • Moryani HT, Kong S, Du J, Bao J (2020) Health risk assessment of heavy metals accumulated on PM2.5 fractioned road dust from two cities of Pakistan. Int J Environ Res Public Health 17:7124. https://doi.org/10.3390/ijerph17197124

    Article  CAS  Google Scholar 

  • Müller G (1969) Index of geoaccumulation in sediments of the Rhine River. GeoJournal 2:108–118

    Google Scholar 

  • Nkansah MA, Darko G, Dod M, Opoku F, Essuman TB, Antwi-Boasiako J (2017) Assessment of pollution levels, potential ecological risk and human health risk of heavy metals/metalloids in dust around fuel filling stations from the Kumasi Metropolis, Ghana. Cogent Environ Sci 3:1412153. https://doi.org/10.1080/23311843.2017.1412153

    Article  CAS  Google Scholar 

  • Nogueira P, Rodrigues TA, de Melo WJ, Fonseca IM, Marques MO, Hec Z (2010) Barium uptake by maize plants as affected by sewage sludge in a long-term field study. J Hazard Mater 181:1148–1157

    CAS  Google Scholar 

  • Palit S, Sharma A, Talukder G (1994) Effects of cobalt on plants. Bot Rev 60:149–181. https://doi.org/10.1007/BF02856575

    Article  Google Scholar 

  • Pavlů L, Borůvka L, Drábek O et al (2021) Effect of natural and anthropogenic acidification on aluminium distribution in forest soils of two regions in the Czech Republic. J For Res 32:363–370. https://doi.org/10.1007/s11676-019-01061-1

    Article  CAS  Google Scholar 

  • Praveena SM, Pradhan B, Ismail SNS (2015) Spatial assessment of heavy metals in surface soil from Klang District (Malaysia): an example from a tropical environment. Human Ecol Risk Assess 27:1–24

    Google Scholar 

  • Qadeer A, Saqib ZA, Ajmal Z, Xing C, Khalil SK, Usman M, Huang Y, Bashir S, Ahmad Z, Ahmed J, Thebo KH, Liu M (2020) Concentrations, pollution indices and health risk assessment of heavy metals in road dust from two urbanized cities of Pakistan: comparing two sampling methods for heavy metals concentration. Sustain Cities Socie 53:101959. https://doi.org/10.1016/j.scs.2019.101959

    Article  Google Scholar 

  • Qi C, Liu G, Kang Y, Lam PKS, Chou C (2011) Assessment and distribution of antimony in soils around Three Coal Mines, Anhui, China. J Air Waste Manag Assoc 61(8):850–857. https://doi.org/10.3155/1047-3289.61.8.850

    Article  CAS  Google Scholar 

  • Qiu Y, Guan D, Song W, Huang K (2009) Capture of heavy metals and sulfur by foliar dust in urban Huizhou, Guangdong Province, China. Chemosphere 75(4):447–452

    CAS  Google Scholar 

  • Rahman MS, Khan MDH, Jolly YN, Kabir J, Akter S, Salam A (2019) Assessing risk to human health for heavy metal contamination through street dust in the Southeast Asian megacity: Dhaka, Bangladesh. Sci Total Environ 660:1610–1622

    Google Scholar 

  • Rai H, Kawabata M (2020) The dynamics of radio-cesium in soils and mechanism of cesium uptake into higher plants: newly elucidated mechanism of cesium uptake into rice plants. Front Plant Sci 11:528. https://doi.org/10.3389/fpls.2020.00528

    Article  Google Scholar 

  • Rakib MA, Ali M, Akter MS, Bhuiyan MA (2014) Assessment of heavy metal (Pb, Zn, Cr and Cu) content in roadside dust of Dhaka Metropolitan City, Bangladesh. Int Res J Environ Sci [internet] 3(1):1–5

    CAS  Google Scholar 

  • Roy S, Gupta SK, Prakash J et al (2019) Ecological and human health risk assessment of heavy metal contamination in road dust in the National Capital Territory (NCT) of Delhi, India. Environ Sci Pollut Res 26:30413–30425. https://doi.org/10.1007/s11356-019-06216-5

    Article  CAS  Google Scholar 

  • Rudnick RL, Gao S, (2014) Composition of the continental crust. Treatise on Geochemistry, Second ed., pp. 1–64 (Chapter 4).

  • Sadiqur R, Rashad A (2018) Pollution all around a cross-section of people share their opinions with New Age Staff Correspondents. NEW AGE, Bangladesh

    Google Scholar 

  • Shakya PR, Tamrakar CS (2011) Assessment of heavy metals in street dust in Kathmandu Metropolitan City and their possible impacts on the environment. Pakistan J Anal Environ Chem 12:1

    Google Scholar 

  • Shi G, Chen Z, Bi C, Li Y, Teng J, Wang L, Xu S (2010) Comprehensive assessment of toxic metals in urban and suburban street deposited sediments (SDSs) in the biggest metropolitan area of China. Environ Pollut 158(3):694–703

    CAS  Google Scholar 

  • Shi G, Chen Z, Bi C, Wang L, Teng J, Li Y, Xu S (2011) A comparative study of health risk of potentially toxic metals in urban and suburban road dust in the most populated city of China. Atmos Environ 45(3):764–771

    CAS  Google Scholar 

  • Shifaw E (2018) Review of heavy metals pollution in China in agricultural and urban soils. J Heal Poll. 18:180607

    Google Scholar 

  • Smith AH, Marshall G, Yuan Y, Ferreccio C, Liaw J, von Ehrenstein O, Steinmaus C, Bates MN, Selvin S (2006) Increased mortality from lung cancer and bronchiectasis in young adults after exposure to arsenic in utero and in early childhood. Environ Health Perspect 114(8):1293–1296

    CAS  Google Scholar 

  • Tamim U, Khan R, Jolly YN, Fatema K, Das S, Naher K, Islam MA, Islam SMA, Hossain SM (2016) Elemental distribution of metals in urban river sediments near an industrial effluent source. Chemospher 155:509–518. https://doi.org/10.1016/j.chemosphere.2016.04.099

    Article  CAS  Google Scholar 

  • Tomlinson DL, Wilson JG, Harris CR, Jeffrey DW (1980) Problems in the assessment of heavy metal levels in estuaries and the formation of a pollution index. Helgolander Meeresunters 33(1–4):566–575

    Google Scholar 

  • Trojanowska M, Świetlik R (2019) Investigations of the chemical distribution of heavy metals in street dust and its impact on risk assessment for human health, case study of Radom (Poland). Human Ecol Risk Assess 26(7):1907–1926. https://doi.org/10.1080/10807039.2019.1619070

    Article  CAS  Google Scholar 

  • Trujillo-González JM, Torres-Mora MA, Keesstra S, Brevik EC, Jiménez-Ballesta R (2016) Heavy metal accumulation related to population density in road dust samples taken from urban sites under different land uses. Sci Total Environ 553:636–642

    Google Scholar 

  • Turekian KK, Wedepohl KH (1961) Distribution of the elements in some major units of the Earth’s crust. Geol Soc Am Bull 72(2):175

    CAS  Google Scholar 

  • United Nations - World Population Prospects. https://www.macrotrends.net/cities/20119/dhaka/population (Retrieved in July 2021)

  • USDOE. 2011. The Risk Assessment Information System (RAIS). Cass Avenue Argonne, IL: U.S. Department of Energy’s Oak Ridge Operations Office (ORO).

  • USEPA (United States Environmental Protection Agency). 1997. Exposure factors handbook. EPA/600/P-95/002F. Washington D.C.: Environmental Protection Agency, Office of Research and Development; 1997.

  • USEPA. 1999. Screening level ecological risk assessment protocol for hazardous waste combustion facilities, appendix E: toxicity reference values. Washington DC, USA. p. 340–357.

  • USEPA. 2001. Methods for collection, storage and manipulation of sediments for chemical and toxicological analyses. Technical manual, EPA-823-B-01–002, Office of Water, Washington, DC.

  • USEPA. 2011. Exposure factors handbook: 2011 Edition. Washington, DC: National Center for Environmental Assessment, Office of Research and Development, EPA/600/R-09/052F.

  • Varol M (2011) Assessment of heavy metal contamination in sediments of the Tigris River (Turkey) using pollution indices and multivariate statistical techniques. J Hazard Mater 195:355–364

    CAS  Google Scholar 

  • Wahab MIA, AbdRazak WMA, Sahani M, Khna MF (2020) Characteristics and health effect of heavy metals on non-exhaust road dusts in Kuala Lumpur. Sci Total Environ 703:135535

    CAS  Google Scholar 

  • Wu S, Peng S, Zhang X, Wu D, Luo W, Zhang T, Zhou S, Yang G, Wan H, Wu L (2015) Levels and health risk assessments of heavy metals in urban soils in Dongguan, China. J Geochem Explor 148:71–78

    CAS  Google Scholar 

  • Wuana RA, Okieimen FE (2011) Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. Int Scholar Res Network 2011:402647

    Google Scholar 

  • Xie J-J, Xuan Hu, Shen Y-W, Yuan C-G, Zhang K-G, Zhao X (2017) Bioavailability and speciation of arsenic in urban street dusts from Baoding city, China. Chem Spec Bioavail 29(1):135–142. https://doi.org/10.1080/09542299.2017.1366281

    Article  CAS  Google Scholar 

  • Xu S, Zheng N, Liu J, Wang Y, Chang S (2013) Geochemistry and health risk assessment of arsenic exposure to street dust in the zinc smelting district, Northeast China. Environ Geochem Health 35:89–99

    CAS  Google Scholar 

  • Xu X, Lu X, Han X, Zhao N (2015) Ecological and health risk assessment of metal in resuspended particles of urban street dust from an industrial city in China. Curr Sci 108:72–79

    CAS  Google Scholar 

  • Yang Z, Lu W, Long Y, Bao X, Yang Q (2011) Assessment of heavy metals contamination in urban topsoil from Changchun City, China. J Geochem Exp 108:27–38

    CAS  Google Scholar 

  • Yongming H, Peixuan D, Junji C, Posmentier ES (2006) Multivariate analysis of heavy metal contamination in urban dusts of Xi’an, Central China. Sci Total Environ 355(1–3):176–186

    Google Scholar 

  • Yu L, Zhang B, Zhang SQ (2004) Heavy metal elements pollution evaluation on the ecological environment of the Sanjiang Plain based on GIS. Chin J Soil Sci 35(5):529–532

    CAS  Google Scholar 

  • Zhao L, Xu Y, Hou H, Shangguan Y, Li F (2014) Source identification and health risk assessment of metals in urban soils around the Tanggu chemical industrial district, Tianjin, China. Sci Total Environ 468–469:654–662

    Google Scholar 

  • Żukowska J, Biziuk M (2008) Methodological evaluation of method for dietary heavy metal intake. J Food Sci 73(2):R21–R29

    Google Scholar 

Download references

Acknowledgements

We are thankful to the technical personnel associated with this study, especially to the persons involved in the TRIGA Mark-II research reactor operation at the Center for Research Reactor, AERE, Bangladesh Atomic Energy Commission.

Funding

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through the Group Research Project under grant number (R.G.P.2/33/42).

Author information

Authors and Affiliations

Authors

Contributions

Tapos Kormoker: conceptualization, methodology, sample collection and processing, data curation, data analyses, and writing and preparation of the original draft. Md. Humayan Kabir: sample collection and processing, data curation, data analyses, and writing and preparation of the original draft. Rahat Khan and Md. Saiful Islam: laboratory analysis, visualization, investigation, and supervision. Rifat Shahid Shammi: sample collection and processing, reviewing, and editing. Mamun Abdullah Al and Ram Proshad: validation, data analyses, and writing which included reviewing and editing. Umma Tamim: laboratory analysis. Md. Eusuf Sarker and Md. Tajul Islam Taj: data checking and validation. Ayesha Akter: resources. Abubakr M. Idris: writing which included reviewing and editing.

Corresponding authors

Correspondence to Tapos Kormoker, Rahat Khan or Abubakr M. Idris.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible Editor: Philippe Garrigues

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 108 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kormoker, T., Kabir, M., Khan, R. et al. Road dust–driven elemental distribution in megacity Dhaka, Bangladesh: environmental, ecological, and human health risks assessment. Environ Sci Pollut Res 29, 22350–22371 (2022). https://doi.org/10.1007/s11356-021-17369-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-021-17369-7

Keywords

Navigation