Skip to main content

Advertisement

Log in

The use of regression tree method for Sentinel-2 satellite data to mapping percent tree cover in different forest types

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Quantifying forest systems is of importance for ecological services and economic benefits in ecosystem models. This study aims to map the percent tree cover (PTC) of various forest stands in the Buyuk Menderes Basin, located in the western part of Turkey with different characteristics in the Mediterranean and Terrestrial transition regions Sentinel-2 data with 10-m spatial resolution. In recent years, some researches have been carried out in different fields to show the capabilities and potential of Sentinel-2 satellite sensors. However, the limited number of PTC researches conducted with Sentinel-2 images reveals the importance of this study. This study aimed to demonstrate reliable PTC data in landscape planning or ecosystem modeling by introducing an advanced approach with high spatial, spectral, and temporal resolution and more cost-effective. In this study, a regression tree algorithm, one of the popular machine learning techniques for ecological modeling, was used to estimate the tree cover’s dependent variable based on high-resolution monthly metrics’ spectral signatures. Six frames of TripleSat images were used as training data in the regression tree. Monthly Sentinel-2 bands and produced metrics including NDVI, LAI, fCOVER, MSAVI2, and MCARI were almost the first time used as predictor variables. Stepwise linear regression (SLR) was applied to select these predictor bands in the regression tree and a correlation coefficient of 0.83 was obtained. Result PTC maps were produced and the results were evaluated based on coniferous and broadleaf. The results were tested using high spatial resolution TripleSat images and higher model accuracy was determined in both forest types. The high correlation is due to the Sentinel 2 satellite’s band characteristics and the metrics are directly related to the tree cover. As a result, the high-accuracy availability of the Sentinel2 satellite is seen to map the PTC on a regional scale, including complex forest types between the Mediterranean and terrestrial transition climates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

Download references

Availability of data and materials

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Funding

This work was supported by the Ministry of Agriculture and Forest of Turkey within Buyuk Menderes Watershed - Landscape Atlas Project.

Author information

Authors and Affiliations

Authors

Contributions

AC: (corresponding author) collected the datasets and analyzed the data, validation, writing the manuscript review and editing; SB: designed the research, methodology, investigation and editing; CD: methodology, review and editing; MS: remote sensing data analysis, modeling.

Corresponding author

Correspondence to Ahmet Cilek.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cilek, A., Berberoglu, S., Donmez, C. et al. The use of regression tree method for Sentinel-2 satellite data to mapping percent tree cover in different forest types. Environ Sci Pollut Res 29, 23665–23676 (2022). https://doi.org/10.1007/s11356-021-17333-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-021-17333-5

Keywords

Navigation