Skip to main content

Advertisement

Log in

Trophic structure of fish communities in mangrove systems subject to different levels of anthropogenic intervention, Tropical Eastern Pacific, Colombia

  • Ecosystems for Future Generations
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Mangroves are important ecosystems of tropical and subtropical shorelines. Anthropogenic activity decreases their habitat quality, affecting structural and functional trophic features. We hypothesized that higher levels of anthropogenic intervention generate diversity loss and modify the trophic structure of tropical mangrove fish communities. We compared the taxonomic and isotopic (δ13C/δ15N) composition, abundance, trophic position, and isotopic niche of fish communities from three mangrove systems with different anthropogenic intervention levels in the Colombian Pacific. Non-parametric statistical tests and a Bayesian approach were used to analyze data. A total of 1254 specimens belonging to 23 families, 25 genera, and 30 species were identified, presenting higher abundance (821) in moderate anthropogenic intervention level mangrove (Moderate-AIL), with high dominance of one species (Lile stolifera). The low anthropogenic intervention level mangrove (Low-AIL) was the second in abundance (291) but exhibited a greater number of species (23), while the high anthropogenic intervention level mangrove (High-AIL) presented the least abundance (142) and species number (17). The isotopic composition ​​reveals that Moderate and High-AIL mangroves presented enriched 13C and 15 N compared to Low-AIL (~ 2 to 4 ‰). Mean trophic position (TP) of communities was slightly higher in the more intervened systems (~ 1 to 2 orders of magnitude), as well as in specific species (Centropomus spp.). Isotopic niche width (TA and SEAc) was greater in High-AIL (41.1 and 9.2), more than doubled compared to Moderate-AIL (33.0 and 4.1). In High-AIL isotopic niche width increased, indicating lesser availability of prey and basal resources. The results obtained in this study support the proposed hypothesis and, suggest that anthropogenic intervention modifies diversity and food webs dynamics, affecting the transfer of matter and energy from macrotidal tropical mangroves to coastal ecosystems. However, it is recommended to be careful concluding differences based exclusively on the anthropogenic intervention level, since it is widely documented that mangrove settings also influence the analyzed trophic parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Abrantes KG, Johnston R, Connolly RM (2015) Importance of mangrove carbon for aquatic food webs in wet – dry tropical estuaries. Estuaries Coasts 38:383–399. https://doi.org/10.1007/s12237-014-9817-2

    Article  CAS  Google Scholar 

  • Abrantes KG, Johnston R, Connolly RM, Sheaves M (2014) Importance of mangrove carbon for aquatic food webs in wet–dry tropical estuaries. Estuaries Coasts 38:383–399. https://doi.org/10.1007/s12237-014-9817-2

    Article  CAS  Google Scholar 

  • Adite A, Imoroutoko I, Gbankoto A (2013) Fish assemblages in the degraded mangrove ecosystems of the coastal zone, Benin, West Africa: Implications for ecosystem restoration and resources conservation. J Environ Prot 4:1461–1475. https://doi.org/10.4236/jep.2013.412168

  • Alvarez-Rubio M, Amezcua-Linares F, Yañez-Arancibia A (1986) Ecología y estructura de las comunidades de peces en el sistema lagunar Teacapán-Agua Brava, Nayarit, México. An Inst Cienc Mar Limnol Univ Nac Aut Mex 13(185–242):1–2

    Google Scholar 

  • Bates CR, Saunders GW, Chopin T (2019) An assessment of two taxonomic distinctness indices for detecting seaweed assemblage responses to environmental stress an assessment of two taxonomic distinctness indices for detecting seaweed assemblage responses to environmental stress. Bot Mar. https://doi.org/10.1515/BOT.2005.034

  • Betancourt-Portela J, Sánchez-Díazgranados J, Mejía-Ladino L, Cantera-Kintz J (2011) Quality of superficial waters in Bahía Málaga Colombian Pacific. Acta Biol Colomb 16:175–192

    Google Scholar 

  • Blanco JF, Cantera JR (2001) The estuary ecosystem of Buenaventura Bay, Colombia. Coastal Marine Ecosystems of Latin America. Springer, Berlin Heidelberg, pp 265–280

    Google Scholar 

  • Bongiorni L, Fiorentino F, Auriemma R, Bernardi-Aubry F, Camatti E, Camin F, Nasi F, Pansera M, Ziller L, Grall J (2016) Food web of a confined and anthropogenically affected coastal basin ( the Mar Piccolo of Taranto ) revealed by carbon and nitrogen stable isotopes analyses. Env Sci Pollut Res. https://doi.org/10.1007/s11356-015-5380-z

    Article  Google Scholar 

  • Bouillon S, Connolly RM, Gillikin DP (2011) Use of stable isotopes to understand food webs and ecosystem functioning in estuaries, in: Treatise on estuarine and coastal science. Elsevier Inc., pp. 143–173. https://doi.org/10.1016/B978-0-12-374711-2.00711-7

  • Bui THH, Lee SY (2014) Does ‘you are what you eat’ apply to mangrove Grapsid crabs? PLoS ONE 9:e89074. https://doi.org/10.1371/journal.pone.0089074

    Article  CAS  Google Scholar 

  • Camacho-Cruz KA, Ortiz-hernández MC, Sánchez A, Carrillo L, Navarrete A (2019) Water quality in the eastern karst region of the Yucatan Peninsula : nutrients and stable nitrogen isotopes in turtle grass, Thalassia testudinum. Env Sci Pollut Res. https://doi.org/10.1007/s11356-019-04757-3

  • Cantera JR, Blanco JF (2001) The estuary ecosystem of Buenaventura Bay, Colombia. In: Seeliger U, Kjerfve B (eds) Coastal Marine Ecosystems of Latin America. Ecological Studies (Analysis and Synthesis), vol 144. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04482-7_19

  • Cantera J, Thomassin B, Arnaud P (1999) Faunal zonation and assemblages in the Pacific Colombian mangroves. Hydrobiologia 413:17–33

    Article  Google Scholar 

  • Castellanos-Galindo G, Krumme U, Rubio E, Saint-Paul U (2013) Spatial variability of mangrove fish assemblage composition in the tropical eastern Pacific Ocean Spatial variability of mangrove fish assemblage composition in the tropical eastern Pacific Ocean. Fish Biol Fish 23:69–86. https://doi.org/10.1007/s11160-012-9276-4

    Article  Google Scholar 

  • Castellanos-Galindo GA, Cantera J, Valencia N, Giraldo S, Peña E, Kluger LC, Wolff M (2017) Modeling trophic flows in the wettest mangroves of the world: the case of Bahía Málaga in the Colombian Pacific coast. Hydrobiologia 803:13–27. https://doi.org/10.1007/s10750-017-3300-6

    Article  Google Scholar 

  • Castellanos-Galindo GA, Krumme U (2013) Tidal, diel and seasonal effects on intertidal mangrove fish in a high-rainfall area of the Tropical Eastern Pacific. Mar Ecol Prog Ser 494:249–265. https://doi.org/10.3354/meps10512

    Article  Google Scholar 

  • Castellanos-Galindo G, Medina-Contreras D, Lazarus J, Cantera-Kintz J (2020) Peces criptobentónicos en el Parque Nacional Natural Uramba Bahía Málaga (Colombia), Pacífico Oriental Tropical. Bull Mar Coast Res 49:119–136

  • Clarke KR, Warwick RM (2001) Change in marine communities: an approach to statistical analysis and interpretation. 2nd Edition, PRIMER-E, Ltd., Plymouth Marine Laboratory, Plymouth

  • Hutchinson G (1957) Concluding remarks. Cold Spring Harb Symp Quant Biol 22:415–427

    Article  Google Scholar 

  • Jackson AL, Inger R, Parnell AC, Bearhop S (2011) Comparing isotopic niche widths among and within communities: SIBER - Stable Isotope Bayesian Ellipses in R. J Anim Ecol 80:595–602. https://doi.org/10.1111/j.1365-2656.2011.01806.x

    Article  Google Scholar 

  • James NC, Whitfield AK, Cowley PD (2008) Long-term stability of the fish assemblages in a warm-temperate South African estuary. Estuar Coast Shelf Sci 76. https://doi.org/10.1016/j.ecss.2007.07.036

  • Kanniah KD, Kang CS, Sharma S, Amir AA (2021) Remote sensing to study Mangrove fragmentation and its impacts on leaf area index and gross primary productivity in the South of Peninsular Malaysia. Remote Sens 13:1427. https://doi.org/10.3390/rs13081427

  • Krumme U, Saint-paul U, Rosenthal H (2004) Tidal and diel changes in the structure of a nekton assemblage in small intertidal creeks in northern Brazil Tidal and diel changes in the structure of a nekton assemblage in small intertidal mangrove creeks in northern Brazil. https://doi.org/10.1051/alr

  • Layman CA (2007) What can stable isotope ratios reveal about mangroves as fish habitat? Bull Mar Sci 80(3):513–527

  • Lee SY (1998) Ecological role of grapsid crabs in mangrove ecosystems: a review. Mar Freshw Res 49:335–343

    Article  Google Scholar 

  • Liu MS, Zhang J, Chen H, Guo S (2005) Factors influencing nutrient dynamics in the eutrophic Jiaozhou Bay. North China 66:66–85. https://doi.org/10.1016/j.pocean.2005.03.009

    Article  Google Scholar 

  • López-Rasgado F, Luch-Cota S, Balart E, Herzka S (2016) Variation in isotopic trophic structure and fish diversity in mangrove systems subject to different levels of habitat modification in the Gulf of California , Mexico. Bull Mar Sci -Miamy. https://doi.org/10.5343/bms.2015.1100

  • McCutchan JH, Lewis WM, Kendall C, McGrath CC (2003) Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos 102:378–390. https://doi.org/10.1034/j.1600-0706.2003.12098.x

    Article  CAS  Google Scholar 

  • Medina-Contreras D, Arenas-González F, Cantera-Kintz J, Sánchez-González A, Giraldo A (2020) Food web structure and isotopic niche in a fringe macro- tidal mangrove system , Tropical Eastern Pacific 0123456789. https://doi.org/10.1007/s10750-020-04295-x

  • Medina-Contreras D, Cantera-Kintz J, Sánchez-González A, Mancera JE (2018) Food web structure and trophic relations in a riverine mangrove system of the Tropical Eastern Pacific, Central Coast of Colombia. Estuaries and Coasts 41. https://doi.org/10.1007/s12237-017-0350-y

  • Mejía-Rentería JC, Castellanos-Galindo GA, Cantera-Kintz JR, Hamilton SE (2018) A comparison of Colombian Pacific mangrove extent estimations: Implications for the conservation of a unique Neotropical tidal forest. Estuar Coast Shelf Sci 212:233–240. https://doi.org/10.1016/j.ecss.2018.07.020

    Article  Google Scholar 

  • Mendoza E, Castillo-Rivera M, Za´rate-Herna´ndez R, Ortiz- Burgos S (2009) Seasonal variations in the diversity, abundance, and composition of species in an estuarine fish community in the Tropical Eastern Pacific, Mexico. Ichthyol Res 56:330–339

  • Nagelkerken I, Blaber SJM, Bouillon S, Green P, Haywood M, Kirton LG, Meynecke J, Pawlik J, Penrose HM, Sasekumar A, Somerfield PJ (2008) The habitat function of mangroves for terrestrial and marine fauna : A review 89, 155–185. https://doi.org/10.1016/j.aquabot.2007.12.007

  • Newsome SD, Bearhop S (2007) A niche for isotopic ecology. https://doi.org/10.1890/060150.1

  • Olson DM, Dinerstein E (2002) The global 200: priority ecoregions for global conservation. Ann Missouri Bot Gard 89:199–224. https://doi.org/10.2307/3298564

    Article  Google Scholar 

  • Palacios ML, Cantera JR (2017) Mangrove timber use as an ecosystem service in the Colombian Pacific. Hydrobiologia 803:345–358. https://doi.org/10.1007/s10750-017-3309-x

    Article  Google Scholar 

  • Palacios Peñaranda ML, CanteraKintz JR, Peña Salamanca EJ (2019) Carbon stocks in mangrove forests of the Colombian Pacific. Estuar Coast Shelf Sci 227:106299. https://doi.org/10.1016/j.ecss.2019.106299

    Article  CAS  Google Scholar 

  • Peterson BJ, Fry B (1987) Stable isotopes in ecosystem studies. Annu Rev Ecol Syst 18(18):293–320

    Article  Google Scholar 

  • Phillips DL, Inger R, Bearhop S, Jackson AL, Moore JW, Parnell AC, Semmens BX, Ward EJ (2014) Best practices for use of stable isotope mixing models in food-web studies. Can J Zool 92:823–835. https://doi.org/10.1139/cjz-2014-0127

  • Pianka ER (1974) Niche overlap and diffuse competition. Proceedings of the National Academy of Sciences 71(5):2141–2145

  • Post DM (2002) Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83:703–718

    Article  Google Scholar 

  • Poveda G, Mesa O (2000) On the Existence of Lloró (the Rainiest Locality on Earth): Enhanced Ocen-Land-Atmosphere Interaction by a Low Level Jet. Geophys Res Lett 27:1675–1678

    Article  Google Scholar 

  • Quezada-romegialli C, Jackson AL, Hayden B, Kahilainen K, Lopes C, Harrod C (2018) t R ophic P osition , an r package for the Bayesian estimation of trophic position from consumer stable isotope ratios 2018, 1592–1599. https://doi.org/10.1111/2041-210X.13009

  • Ramírez-Martínez GA, Castellanos-galindo GA, Krumme U (2016) Tidal and diel patterns in abundance and feeding of a marine-estuarine-dependent fish from macrotidal mangrove creeks in the Tropical Eastern Pacific ( Colombia ). Estuaries Coasts 39:1249–1261. https://doi.org/10.1007/s12237-016-0070-8

    Article  CAS  Google Scholar 

  • Rangel O, Arellano H (2004) Clima del chocó biogeográfico/costa pacífica de colombia, in: Colombia Diversidad Biótica IV: El Chocó Biogeográfico/Costa Pacífica. p. Universidad nacional de Colombia

  • Richards DR, Thompson BS, Wijedasa L (2020) Quantifying net loss of global mangrove carbon stocks from 20 years of land cover change. Nat Commun 1–7. https://doi.org/10.1038/s41467-020-18118-z

  • Robertson R, Allen GR (2015) Shorefishes of the Tropical Eastern Pacific: online information system. Version 2.0. Smithson Trop Res Inst Balboa, Panamá

  • Rooney N, Mccann K, Gellner G, Moore JC (2006) Structural asymmetry and the stability of diverse food webs 442, 265–269. https://doi.org/10.1038/nature04887

  • Rubio E (1984) Estudios sobre la ictiofauna del Pacífico colombiano I. Composición taxonómica de la ictiofauna asociada al ecosistema manglar estuario de la bahía de Buenaventura. Cespedesia 13(49–50):296–315

    Google Scholar 

  • Rubio E, Estupiñan F (1992) Ictiofauna del PNN Sanquianga, un análisis de su estructura y perspectivas para su manejo. In: SENALMAR (ed) Memorias del VIII Seminario Nacional de Ciencias del Mar, Santa Marta, Colombia 660–670

  • Sánchez A, Anguas-Cabrera D, Camacho-Cruz K, Ortiz-Hernández MC, Aguíñiga-García S (2020) Spatial and temporal variation of the δ15N in Thalassia testudinum in the Mexican Caribbean (2009–2017). Marine and Freshwater Research 71(8):905–912

  • Schielke EG, Post DM (2010) Size matters : comparing stable isotope ratios of tissue plugs and whole organisms. Oceanogr METHODS 348–351. https://doi.org/10.4319/lom.2010.8.348

  • Sepúlveda-Lozada A, Mendoza-Carranza M, Wolff M, Saint-Paul U, Ponce-Mendoza A (2015) Differences in food web structure of mangroves and freshwater marshes: evidence from stable isotope studies in the Southern Gulf of Mexico. Wetl Ecol Manag 23:293–314. https://doi.org/10.1007/s11273-014-9382-2

    Article  Google Scholar 

  • Shahraki M, Fry B, Krumme U, Rixen T (2014) Microphytobenthos sustain fish food webs in intertidal arid habitats: a comparison between mangrove-lined and un-vegetated creeks in the Persian Gulf. Estuar Coast Shelf Sci 149:203–212. https://doi.org/10.1016/j.ecss.2014.08.017

    Article  CAS  Google Scholar 

  • Sheaves M (2000) Short-circuit in the mangrove food chain. https://doi.org/10.3354/meps199097

  • Souza C, Arrivabene HP, Craig C, Midwood AJ, Thornton B, Matsumoto ST, Elliott M, Wunderlin DA, Monferrán MV, Fernandes MN (2018) Science of the total environment interrogating pollution sources in a mangrove food web using multiple stable isotopes. Sci Total Environ 640–641:501–511. https://doi.org/10.1016/j.scitotenv.2018.05.302

    Article  CAS  Google Scholar 

  • Stuthmann LE, Castellanos-Galindo GA (2020) Trophic position and isotopic niche of mangrove fish assemblages at both sides of the Isthmus of Panama. Bull Mar Sci 96:449–467. https://doi.org/10.5343/bms.2019.0025

    Article  Google Scholar 

  • Taylor DS, Reyier EA, Davis WP, Mcivor CC (2007) Mangrove removal in the Belize cays : Effects on mangrove-associated fish assemblages in the intertidal and subtidal. Bull Mar Sci 80:879–890

  • Then AY, Adame MF, Fry B, Chong VC, Riekenberg PM, Zakaria RM, Lee SY (2020) Stable isotopes clearly track mangrove inputs and food web changes along a reforestation gradient. Ecosystems. https://doi.org/10.1007/s10021-020-00561-0

    Article  Google Scholar 

  • Vásquez R, Abitia L, Gálvan F (2008) Food habits of the yellow snapper Lutjanus argentiventris ( Peters, 1869) ( Percoidei : Lutjanidae) in La Paz Bay, Mexico. Rev Biol Mar Oceanogr 43:295–302

    Article  Google Scholar 

  • Viana IG, Valiela I, Martinetto P, Monteiro Pierce R, Fox SE, Viana G, Valiela I, Martinetto P, Monteiro R, Fox SE (2015) Isotopic studies in Paci fi c Panama mangrove estuaries reveal lack of effect of watershed deforestation on food webs In e. Mar Environ Res 103:95–102. https://doi.org/10.1016/j.marenvres.2014.10.003

    Article  CAS  Google Scholar 

  • West RC (1956) Mangrove swamps of the Pacific Coast of Colombia. Ann Assoc Am Geogr 46:98–121

    Article  Google Scholar 

Download references

Acknowledgements

Special thanks to Gustavo Castellanos-Galindo for supplying the fishing nets for the project no. 110665944115, for his valuable knowledge in specimen identification, and for transmitting his extensive experience in mangrove fish communities of the Colombian Pacific. To Colombo Estupiñán for his help with the Bayesian approach. To every local co-researcher that has shared their intimate knowledge of these priceless ecosystems.

Funding

Financial and logistic support for this study has been given by the projects: Análisis de la dinámica trófica en dos manglares del Pacífico colombiano, mediante el uso integrado de isótopos estables y modelación ecosistémica: Importancia para la producción pesquera del sistema (code 110665944115), Aporte de la diversidad funcional de los ecosistemas de manglar al bienestar humano en las costas Caribe y Pacífico, de Colombia: Una mirada desde el enfoque de los servicios ecosistémicos (code 71323), both accomplished by Universidad del Valle and co-funded by Departamento Administrativo de Ciencia, Tecnología e Innovación (COLCIENCIAS) through the call numbers 659 of 2014 and 852 -2019 (Ministerio de Ciencia Tecnología e Innovación) respectively. And the projects: Variabilidad espacio-temporal del nitrógeno utilizando bioindicadores y nutrientes en ambientes marinos transicionales (codes SIP 20195113, 20200708), Influencia de los Arribazones de Sargassum spp. como fuente de Nitrógeno en la costa de Caribe Mexicano (code SIP 20210421). DMC is supported by the doctoral scholarship number 734084 funded by Consejo Nacional de Ciencia y Tecnología (CONACYT) Mexico and ‘‘Beca de estímulo Institucional de Formación de Investigadores BEIFI’’ fellowship from Instituto Politécnico Nacional, Mexico.

Author information

Authors and Affiliations

Authors

Contributions

DMC conceived the research question and hypothesis of this manuscript as part of her doctoral thesis. She took part in all samplings, processed the samples, carried out the data analysis, and wrote the manuscript. JCK received the grant to finance the project, conceived part of the original idea and methods, and contributed to the writing of the manuscript. ASG received financial support for the analysis of some muscle samples; he tutored DMC during a research internship for the processing of samples. He contributed to the data analysis and writing of the manuscript.

Corresponding author

Correspondence to Diana Medina-Contreras.

Ethics declarations

Ethics approval and consent to participate

This study was performed under the collection permit for wildlife no-commercial scientific researched, granted by the Autoridad Nacional de Licencias Ambientales (ANLA) through Resolution 1070 of August 28, 2015, to Universidad del Valle. The research does not involve genetic analysis and/or in vivo experiments and was endorsed by the ethics committee of the Universidad del Valle (2014–06), national wildlife export permit (ANLA no. 00961), and Governmental Interior Ministry supported concept (EXTIMI 2015–0021691).

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Thomas Hein

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Medina-Contreras, D., Cantera-Kintz, J. & Sánchez, A. Trophic structure of fish communities in mangrove systems subject to different levels of anthropogenic intervention, Tropical Eastern Pacific, Colombia. Environ Sci Pollut Res 29, 61608–61622 (2022). https://doi.org/10.1007/s11356-021-16814-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-021-16814-x

Keywords

Navigation